Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,807)

Search Parameters:
Keywords = EV reducers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 766 KiB  
Review
From the “One-Molecule, One-Target, One-Disease” Concept towards Looking for Multi-Target Therapeutics for Treating Non-Polio Enterovirus (NPEV) Infections
by Hugo Roux, Franck Touret, Pascal Rathelot, Patrice Vanelle and Manon Roche
Pharmaceuticals 2024, 17(9), 1218; https://doi.org/10.3390/ph17091218 - 16 Sep 2024
Viewed by 302
Abstract
Non-polio enteroviruses (NPEVs), namely coxsackieviruses (CV), echoviruses (E), enteroviruses (EV), and rhinoviruses (RV), are responsible for a wide variety of illnesses. Some infections can progress to life-threatening conditions in children or immunocompromised patients. To date, no treatments have been approved. Several molecules have [...] Read more.
Non-polio enteroviruses (NPEVs), namely coxsackieviruses (CV), echoviruses (E), enteroviruses (EV), and rhinoviruses (RV), are responsible for a wide variety of illnesses. Some infections can progress to life-threatening conditions in children or immunocompromised patients. To date, no treatments have been approved. Several molecules have been evaluated through clinical trials without success. To overcome these failures, the multi-target directed ligand (MTDL) strategy could be applied to tackle enterovirus infections. This work analyzes registered clinical trials involving antiviral drugs to highlight the best candidates and develops filters to apply to a selection for MTDL synthesis. We explicitly stated the methods used to answer the question: which solution can fight NPEVs effectively? We note the originality and relevance of this proposal in relation to the state of the art in the enterovirus-inhibitors field. Several combinations are possible to broaden the antiviral spectrum and potency. We discuss data related to the virus and data related to each LEAD compound identified so far. Overall, this study proposes a perspective on different strategies to overcome issues identified in clinical trials and evaluate the “MTDL” potential to improve the efficacy of drugs, broaden the antiviral targets, possibly reduce the adverse effects, drug design costs and limit the selection of drug-resistant virus variants. Full article
(This article belongs to the Special Issue Hit to Lead Design of New Anti-Infective Drugs)
24 pages, 1733 KiB  
Review
Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition
by Mauro Lombardo, Gilda Aiello, Deborah Fratantonio, Sercan Karav and Sara Baldelli
Nutrients 2024, 16(18), 3097; https://doi.org/10.3390/nu16183097 - 13 Sep 2024
Viewed by 438
Abstract
Background/Objectives: Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related [...] Read more.
Background/Objectives: Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related muscle decline and other chronic diseases, such as sarcopenia. This review aims to provide an overview of the role of EVs in muscle function and to explore how nutritional and physical interventions can optimise their release and function. Methods: A literature review of studies examining the impact of exercise and nutritional interventions on MS-derived EVs was conducted. Major scientific databases, including PubMed, Scopus and Web of Science, were searched using keywords such as ‘extracellular vesicles’, ‘muscle’, ‘exercise’, ‘nutrition’ and ‘sarcopenia’. The selected studies included randomised controlled trials (RCTs), clinical trials and cohort studies. Data from these studies were synthesised to identify key findings related to the release of EVs, their composition and their potential role as therapeutic targets. Results: Dietary patterns, specific foods and supplements were found to significantly modulate EV release and composition, affecting muscle health and metabolism. Exercise-induced changes in EV content were observed after both acute and chronic interventions, with a marked impact on miRNAs and proteins related to muscle growth and inflammation. Nutritional interventions, such as the Mediterranean diet and omega-3 fatty acids, have also shown the ability to alter EV profiles, suggesting their potential to improve cardiovascular health and reduce inflammation. Conclusions: EVs are emerging as critical mediators of the beneficial effects of diet and exercise on muscle health. Both exercise and nutritional interventions can modulate the release and content of MS-derived EVs, offering promising avenues for the development of novel therapeutic strategies targeting sarcopenia and other muscle diseases. Future research should focus on large-scale RCT studies with standardised methodologies to better understand the role of EVs as biomarkers and therapeutic targets. Full article
Show Figures

Figure 1

24 pages, 11964 KiB  
Article
Projecting Response of Ecological Vulnerability to Future Climate Change and Human Policies in the Yellow River Basin, China
by Xiaoyuan Zhang, Shudong Wang, Kai Liu, Xiankai Huang, Jinlian Shi and Xueke Li
Remote Sens. 2024, 16(18), 3410; https://doi.org/10.3390/rs16183410 - 13 Sep 2024
Viewed by 392
Abstract
Exploring the dynamic response of land use and ecological vulnerability (EV) to future climate change and human ecological restoration policies is crucial for optimizing regional ecosystem services and formulating sustainable socioeconomic development strategies. This study comprehensively assesses future land use changes and EV [...] Read more.
Exploring the dynamic response of land use and ecological vulnerability (EV) to future climate change and human ecological restoration policies is crucial for optimizing regional ecosystem services and formulating sustainable socioeconomic development strategies. This study comprehensively assesses future land use changes and EV in the Yellow River Basin (YRB), a climate-sensitive and ecologically fragile area, by integrating climate change, land management, and ecological protection policies under various scenarios. To achieve this, we developed an EV assessment framework combining a scenario weight matrix, Markov chain, Patch-generating Land Use Simulation model, and exposure–sensitivity–adaptation. We further explored the spatiotemporal variations of EV and their potential socioeconomic impacts at the watershed scale. Our results show significant geospatial variations in future EV under the three scenarios, with the northern region of the upstream area being the most severely affected. Under the ecological conservation management scenario and historical trend scenario, the ecological environment of the basin improves, with a decrease in very high vulnerability areas by 4.45% and 3.08%, respectively, due to the protection and restoration of ecological land. Conversely, under the urban development and construction scenario, intensified climate change and increased land use artificialization exacerbate EV, with medium and high vulnerability areas increasing by 1.86% and 7.78%, respectively. The population in high and very high vulnerability areas is projected to constitute 32.75–33.68% and 34.59–39.21% of the YRB’s total population in 2040 and 2060, respectively, and may continue to grow. Overall, our scenario analysis effectively demonstrates the positive impact of ecological protection on reducing EV and the negative impact of urban expansion and economic development on increasing EV. Our work offers new insights into land resource allocation and the development of ecological restoration policies. Full article
Show Figures

Figure 1

12 pages, 4198 KiB  
Article
Decorating TiO2 Nanoparticle Thin Film with SnSx (x < 1): Preparation, Characterization, and Photocatalytic Activity
by Fang Xu, Nicola Scaramuzza and Carlo Versace
Coatings 2024, 14(9), 1185; https://doi.org/10.3390/coatings14091185 - 12 Sep 2024
Viewed by 340
Abstract
We report a study on the SnSx (x < 1) decoration of porous TiO2 nanoparticle thin films using the ionic layer adsorption and reaction (ILAR) method. UV-vis absorption measurements revealed a direct bandgap of 1.40–2.10 eV for SnSx (with [...] Read more.
We report a study on the SnSx (x < 1) decoration of porous TiO2 nanoparticle thin films using the ionic layer adsorption and reaction (ILAR) method. UV-vis absorption measurements revealed a direct bandgap of 1.40–2.10 eV for SnSx (with x = 0.85) and 3.15 eV for TiO2. Degradation of rhodamine B molecules in aqueous solutions shows that coating with a Sn-to-Ti molar ratio of 2% improves the efficiency of the photocatalytic performance of titanium dioxide, but excessive coverage decreases it. We interpret the observed behavior as due to a delicate balance of many competing factors. The formation of intimate interfaces guaranteed by the ILAR growth technique and a nearly optimal alignment of conduction band edges facilitate electron transfer, reducing electron–hole recombination rates. However, the valence hole transfer from TiO2 to SnS reduces the oxidative potential, which is crucial in the degradation mechanism. Full article
Show Figures

Figure 1

27 pages, 2897 KiB  
Review
Essential Features and Torque Minimization Techniques for Brushless Direct Current Motor Controllers in Electric Vehicles
by Arti Aniqa Tabassum, Haeng Muk Cho and Md. Iqbal Mahmud
Energies 2024, 17(18), 4562; https://doi.org/10.3390/en17184562 - 12 Sep 2024
Viewed by 324
Abstract
The use of electric automobiles, or EVs, is essential to environmentally conscious transportation. Battery EVs (BEVs) are predicted to become increasingly accepted for passenger vehicle transportation within the next 10 years. Although enthusiasm for EVs for environmentally friendly transportation is on the rise, [...] Read more.
The use of electric automobiles, or EVs, is essential to environmentally conscious transportation. Battery EVs (BEVs) are predicted to become increasingly accepted for passenger vehicle transportation within the next 10 years. Although enthusiasm for EVs for environmentally friendly transportation is on the rise, there remain significant concerns and unanswered research concerns regarding the possible future of EV power transmission. Numerous motor drive control algorithms struggle to deliver efficient management when ripples in torque minimization and improved dependability control approaches in motors are taken into account. Control techniques involving direct torque control (DTC), field orientation control (FOC), sliding mode control (SMC), intelligent control (IC), and model predictive control (MPC) are implemented in electric motor drive control algorithms to successfully deal with this problem. The present study analyses only sophisticated control strategies for frequently utilized EV motors, such as the brushless direct current (BLDC) motor, and possible solutions to reduce torque fluctuations. This study additionally explores the history of EV motors, the operational method between EM and PEC, and EV motor design techniques and development. The future prospects for EV design include a vital selection of motors and control approaches for lowering torque ripple, as well as additional research possibilities to improve EV functionality. Full article
(This article belongs to the Special Issue Advances in Permanent Magnet Motor and Motor Control)
Show Figures

Figure 1

35 pages, 14744 KiB  
Review
Review of the Properties of GaN, InN, and Their Alloys Obtained in Cubic Phase on MgO Substrates by Plasma-Enhanced Molecular Beam Epitaxy
by Edgar López Luna and Miguel Ángel Vidal
Crystals 2024, 14(9), 801; https://doi.org/10.3390/cryst14090801 - 11 Sep 2024
Viewed by 582
Abstract
Gallium nitride (GaN) semiconductors and their broadband InGaN alloys in their hexagonal phase have been extensively studied over the past 30 years and have allowed the development of blue-ray lasers, which are essential disruptive developments. In addition to high-efficiency white light-emitting diodes, which [...] Read more.
Gallium nitride (GaN) semiconductors and their broadband InGaN alloys in their hexagonal phase have been extensively studied over the past 30 years and have allowed the development of blue-ray lasers, which are essential disruptive developments. In addition to high-efficiency white light-emitting diodes, which have revolutionized lighting technologies and generated a great industry around these semiconductors, several transistors have been developed that take advantage of the characteristics of these semiconductors. These include power transistors for high-frequency applications and high-power transistors for power electronics, among other devices, which have far superior achievements. However, less effort has been devoted to studying GaN and InGaN alloys grown in the cubic phase. The metastable or cubic phase of III-N alloys has superior characteristics compared to the hexagonal phase, mainly because of the excellent symmetry. It can be used to improve lighting technologies and develop other devices. Indium gallium nitride, InxGa1−xN alloy, has a variable band interval of 0.7 to 3.4 eV that covers almost the entire solar spectrum, making it a suitable material for increasing the efficiencies of photovoltaic devices. In this study, we successfully synthesized high-quality cubic InGaN films on MgO (100) substrates using plasma-assisted molecular beam epitaxy (PAMBE), demonstrating tunable emissions across the visible spectrum by varying the indium concentration. We significantly reduced the defect density and enhanced the crystalline quality by using an intermediate cubic GaN buffer layer. We not only developed a heterostructure with four GaN/InGaN/GaN quantum wells, achieving violet, blue, yellow, and red emissions, but also highlighted the immense potential of cubic InGaN films for high-efficiency light-emitting diodes and photovoltaic devices. Achieving better p-type doping levels is crucial for realizing diodes with excellent performance, and our findings will pave the way for this advancement. Full article
(This article belongs to the Special Issue Reviews of Crystal Engineering)
Show Figures

Figure 1

27 pages, 7922 KiB  
Article
Method of Determining New Locations for Electric Vehicle Charging Stations Using GIS Tools
by Piotr Soczówka, Michał Lasota, Piotr Franke and Renata Żochowska
Energies 2024, 17(18), 4546; https://doi.org/10.3390/en17184546 - 10 Sep 2024
Viewed by 474
Abstract
The growing awareness of environmental issues, climate policies, and rapidly developing technologies is contributing to the increasing number of battery electric vehicles (BEVs) around the world. A key requirement for their widespread implementation is providing a charging infrastructure that allows users to operate [...] Read more.
The growing awareness of environmental issues, climate policies, and rapidly developing technologies is contributing to the increasing number of battery electric vehicles (BEVs) around the world. A key requirement for their widespread implementation is providing a charging infrastructure that allows users to operate these vehicles comfortably. Lack of access to charging stations can be a major barrier to the development of electromobility in a given area. Therefore, each additional charging infrastructure can support a change in the structure of the vehicle fleet. One of the key challenges facing this transformation is the selection of suitable locations for charging stations. It is necessary to ensure that they are uniformly distributed so that range anxiety for EV users is reduced and equal access to charging infrastructure is provided to all residents. One of the most important stakeholders in this market is local authorities. Therefore, the objective of this research was to develop a method of determining optimal locations for electric vehicle charging stations (EVCSs) from the perspective of local authorities that also takes into account equal access to the charging infrastructure for all residents, which seems to be a unique approach to this problem. We used commonly available spatial data as input to enable the method to be applied on a larger scale and over an urban area. We carried out our research using a case study: the city of Gliwice in Poland. The city area was divided into hexagonal basic fields, for which potentials for locations of new charging stations were calculated. The analysis was carried out using the geographic information system (GIS) QGIS (ver. 3.34). Full article
Show Figures

Figure 1

25 pages, 2418 KiB  
Article
Brain and Serum Membrane Vesicle (Exosome) Profiles in Experimental Alcohol-Related Brain Degeneration: Forging the Path to Non-Invasive Liquid Biopsy Diagnostics
by Suzanne M. De La Monte, Yiwen Yang and Ming Tong
J. Mol. Pathol. 2024, 5(3), 360-384; https://doi.org/10.3390/jmp5030025 - 10 Sep 2024
Viewed by 258
Abstract
Background: Alcohol-related brain degeneration (ARBD) is associated with cognitive–motor impairments that can progress to disability and dementia. White matter (WM) is prominently targeted in ARBD due to chronic neurotoxic and degenerative effects on oligodendrocytes and myelin. Early detection and monitoring of WM pathology [...] Read more.
Background: Alcohol-related brain degeneration (ARBD) is associated with cognitive–motor impairments that can progress to disability and dementia. White matter (WM) is prominently targeted in ARBD due to chronic neurotoxic and degenerative effects on oligodendrocytes and myelin. Early detection and monitoring of WM pathology in ARBD could lead to therapeutic interventions. Objective: This study examines the potential utility of a non-invasive strategy for detecting WM ARBD using exosomes isolated from serum. Comparative analyses were made with paired tissue (Tx) and membrane vesicles (MVs) from the temporal lobe (TL). Methods: Long Evans rats were fed for 8 weeks with isocaloric liquid diets containing 37% or 0% caloric ethanol (n = 8/group). TL-Tx, TL-MVs, and serum exosomes (S-EVs) were used to examine ethanol’s effects on oligodendrocyte glycoprotein, astrocyte, and oxidative stress markers. Results: Ethanol significantly decreased the TL-Tx expression of platelet-derived growth factor receptor alpha (PDGFRA), 2′,3′-cyclic nucleotide 3′ phosphodiesterase (CNPase), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), glial fibrillary acidic protein (GFAP), and 8-OHdG, whereas in the TL-MVs, ethanol increased CNPase, PDGFRA, and 8-OHdG, but decreased MOG and GFAP concordantly with TL-Tx. Ethanol modulated the S-EV expression by reducing PLP, nestin, GFAP, and 4-hydroxynonenal (HNE). Conclusion: Chronic ethanol exposures differentially alter the expression of oligodendrocyte/myelin, astrocyte, and oxidative stress markers in the brain, brain MVs, and S-EVs. However, directionally concordant effects across all three compartments were limited. Future studies should advance these efforts by characterizing the relationship between ABRD and molecular pathological changes in brain WM-specific exosomes in serum. Full article
Show Figures

Figure 1

26 pages, 2075 KiB  
Review
On-Board Chargers for Electric Vehicles: A Comprehensive Performance and Efficiency Review
by Abrar Rasool Dar, Ahteshamul Haque, Mohammed Ali Khan, Varaha Satya Bharath Kurukuru and Shabana Mehfuz
Energies 2024, 17(18), 4534; https://doi.org/10.3390/en17184534 - 10 Sep 2024
Viewed by 619
Abstract
The transportation industry is experiencing a switch towards electrification. Availability of electric vehicle (EV) charging infrastructure is very critical for broader acceptance of EVs. The increasing use of OBCs, due to their cost-effectiveness and ease of installation, necessitates addressing key challenges. These include [...] Read more.
The transportation industry is experiencing a switch towards electrification. Availability of electric vehicle (EV) charging infrastructure is very critical for broader acceptance of EVs. The increasing use of OBCs, due to their cost-effectiveness and ease of installation, necessitates addressing key challenges. These include achieving high efficiency and power density to overcome space limitations and reduce charging times. Additionally, the growing interest in bidirectional power flow, allowing EVs to supply power back to the grid, highlights the importance of innovative OBC solutions. This review article provides a thorough analysis of the current advancements, challenges, and prospects in EV on-board charger technology. It aims to offer a comprehensive review of OBC architectures, components, technologies, and emerging trends, guiding future research and development. Addressing these challenges is essential to enhance the efficiency, reliability, and integration of OBCs within the broader EV ecosystem. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

48 pages, 11785 KiB  
Review
State-of-the-Art Electric Vehicle Modeling: Architectures, Control, and Regulations
by Hossam M. Hussein, Ahmed M. Ibrahim, Rawan A. Taha, S. M. Sajjad Hossain Rafin, Mahmoud S. Abdelrahman, Ibtissam Kharchouf and Osama A. Mohammed
Electronics 2024, 13(17), 3578; https://doi.org/10.3390/electronics13173578 - 9 Sep 2024
Viewed by 589
Abstract
The global reliance on electric vehicles (EVs) has been rapidly increasing due to the excessive use of fossil fuels and the resultant CO2 emissions. Moreover, EVs facilitate using alternative energy sources, such as energy storage systems (ESSs) and renewable energy sources (RESs), [...] Read more.
The global reliance on electric vehicles (EVs) has been rapidly increasing due to the excessive use of fossil fuels and the resultant CO2 emissions. Moreover, EVs facilitate using alternative energy sources, such as energy storage systems (ESSs) and renewable energy sources (RESs), promoting mobility while reducing dependence on fossil fuels. However, this trend is accompanied by multiple challenges related to EVs’ traction systems, storage capacity, chemistry, charging infrastructure, and techniques. Additionally, the requisite energy management technologies and the standards and regulations needed to facilitate the expansion of the EV market present further complexities. This paper provides a comprehensive and up-to-date review of the state of the art concerning EV-related components, including energy storage systems, electric motors, charging topologies, and control techniques. Furthermore, the paper explores each sector’s commonly used standards and codes. Through this extensive review, the paper aims to advance knowledge in the field and support the ongoing development and implementation of EV technologies. Full article
(This article belongs to the Special Issue Featured Review Papers in Electrical and Autonomous Vehicles)
Show Figures

Figure 1

14 pages, 2129 KiB  
Review
Exploring the Impact of Exercise-Derived Extracellular Vesicles in Cancer Biology
by Monica Silvestri, Elisa Grazioli, Guglielmo Duranti, Paolo Sgrò and Ivan Dimauro
Biology 2024, 13(9), 701; https://doi.org/10.3390/biology13090701 - 6 Sep 2024
Viewed by 866
Abstract
Cancer remains a major challenge in medicine, prompting exploration of innovative therapies. Recent studies suggest that exercise-derived extracellular vesicles (EVs) may offer potential anti-cancer benefits. These small, membrane-bound particles, including exosomes, carry bioactive molecules such as proteins and RNA that mediate intercellular communication. [...] Read more.
Cancer remains a major challenge in medicine, prompting exploration of innovative therapies. Recent studies suggest that exercise-derived extracellular vesicles (EVs) may offer potential anti-cancer benefits. These small, membrane-bound particles, including exosomes, carry bioactive molecules such as proteins and RNA that mediate intercellular communication. Exercise has been shown to increase EV secretion, influencing physiological processes like tissue repair, inflammation, and metabolism. Notably, preclinical studies have demonstrated that exercise-derived EVs can inhibit tumor growth, reduce metastasis, and enhance treatment response. For instance, in a study using animal models, exercise-derived EVs were shown to suppress tumor proliferation in breast and colon cancers. Another study reported that these EVs reduced metastatic potential by decreasing the migration and invasion of cancer cells. Additionally, exercise-induced EVs have been found to enhance the effectiveness of chemotherapy by sensitizing tumor cells to treatment. This review highlights the emerging role of exercise-derived circulating biomolecules, particularly EVs, in cancer biology. It discusses the mechanisms through which EVs impact cancer progression, the challenges in translating preclinical findings to clinical practice, and future research directions. Although research in this area is still limited, current findings suggest that EVs could play a crucial role in spreading molecules that promote better health in cancer patients. Understanding these EV profiles could lead to future therapies, such as exercise mimetics or targeted drugs, to treat cancer. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

13 pages, 5749 KiB  
Brief Report
Schistosoma japonicum sja-let-7 Inhibits the Growth of Hepatocellular Carcinoma Cells via Cross-Species Regulation of Col1α2
by Haoran Zhong, Bowen Dong, Danlin Zhu, Zhiqiang Fu, Jinming Liu, Guiquan Guan and Yamei Jin
Genes 2024, 15(9), 1165; https://doi.org/10.3390/genes15091165 - 4 Sep 2024
Viewed by 433
Abstract
Liver fibrosis, a critical precursor to hepatocellular carcinoma (HCC), results from chronic liver injury and significantly contributes to HCC progression. Schistosomiasis, a neglected tropical disease, is known to cause liver fibrosis; however, this process can be modulated by schistosome-derived miRNAs. Previous studies from [...] Read more.
Liver fibrosis, a critical precursor to hepatocellular carcinoma (HCC), results from chronic liver injury and significantly contributes to HCC progression. Schistosomiasis, a neglected tropical disease, is known to cause liver fibrosis; however, this process can be modulated by schistosome-derived miRNAs. Previous studies from our laboratory have demonstrated that Schistosoma japonicum extracellular vesicles (EVs) deliver sja-let-7 to hepatic stellate cells, leading to the inhibition of Col1α2 expression and alleviation of liver fibrosis. Given the well-documented antifibrotic and antiproliferative properties of the let-7 miRNA family, this study aims to preliminarily investigate the effects of the sja-let-7/Col1α2 axis on BALB/c mice and HCC cell line SNU387, providing a basis for the potential application of parasite-derived molecules in HCC therapy. In the present study, schistosome-induced fibrosis datasets were analyzed to identify the role of Col1α2 in extracellular matrix organization. Pan-cancer analysis revealed that Col1α2 is upregulated in various cancers, including HCC, with significant associations with immune cell infiltration and clinical parameters, highlighting its diagnostic importance. Functional assays demonstrated that transfection with sja-let-7 mimics significantly reduced Col1α2 expression, inhibited HCC cell proliferation, migration, and colony formation. These findings suggest that sja-let-7, by targeting Col1α2, has the potential to serve as a therapeutic agent in HCC treatment. This study indicates the pivotal role of Col1α2 in liver fibrosis and HCC, and the promising therapeutic application of helminth-derived miRNAs. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 7963 KiB  
Article
Enhanced Second-Order RC Equivalent Circuit Model with Hybrid Offline–Online Parameter Identification for Accurate SoC Estimation in Electric Vehicles under Varying Temperature Conditions
by Hao Zhou, Qiaoling He, Yichuan Li, Yangjun Wang, Dongsheng Wang and Yongliang Xie
Energies 2024, 17(17), 4397; https://doi.org/10.3390/en17174397 - 2 Sep 2024
Viewed by 641
Abstract
Accurate estimation of State-of-Charge (SoC) is essential for ensuring the safe and efficient operation of electric vehicles (EVs). Currently, second-order RC equivalent circuit models do not account for the influence of battery charging and discharging states on battery parameters. Additionally, offline parameter identification [...] Read more.
Accurate estimation of State-of-Charge (SoC) is essential for ensuring the safe and efficient operation of electric vehicles (EVs). Currently, second-order RC equivalent circuit models do not account for the influence of battery charging and discharging states on battery parameters. Additionally, offline parameter identification becomes inaccurate as the battery ages. Online identification requires real-time parameter updates during the SoC estimation process, which increases the computational complexity and reduces the computational efficiency of real vehicle Battery Management System (BMS) chips. To address these issues, this paper proposes a SoC estimation method that combines online and offline identification based on an optimized second-order RC equivalent circuit model, which distinguishes it from existing methods in the field. On the basis of the traditional second-order RC model, the Ohmic resistance (R0), polarization resistance (R1), polarization capacitance (C1), diffusion resistance (R2), and diffusion capacitance (C2) during the charging and discharging processes are discussed separately. R0, which does not change frequently, is identified offline, while R1, R2, C1, and C2, which dynamically change with time and current, are identified online. To thoroughly verify the feasibility of the proposed method, we construct an SoC estimation test bench, which allows us to adjust the battery’s surface temperature in real time using a temperature control chamber. Experimental validation under Federal Urban Driving Schedule (FUDS) (−10 °C to 45 °C, 80% battery capacity) and Dynamic Stress Test (DST) (−10 °C to 45 °C, 8% battery capacity) conditions demonstrate that our method improves SoC estimation accuracy by 16.28% under FUDS and 28.2% under DST compared to the improved GRU-based transfer learning method, while maintaining system SoC estimation efficiency. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

42 pages, 6747 KiB  
Article
Integrated Home Energy Management with Hybrid Backup Storage and Vehicle-to-Home Systems for Enhanced Resilience, Efficiency, and Energy Independence in Green Buildings
by Liu Pai, Tomonobu Senjyu and M. H. Elkholy
Appl. Sci. 2024, 14(17), 7747; https://doi.org/10.3390/app14177747 - 2 Sep 2024
Viewed by 749
Abstract
This study presents an innovative home energy management system (HEMS) that incorporates PV, WTs, and hybrid backup storage systems, including a hydrogen storage system (HSS), a battery energy storage system (BESS), and electric vehicles (EVs) with vehicle-to-home (V2H) technology. The research, conducted in [...] Read more.
This study presents an innovative home energy management system (HEMS) that incorporates PV, WTs, and hybrid backup storage systems, including a hydrogen storage system (HSS), a battery energy storage system (BESS), and electric vehicles (EVs) with vehicle-to-home (V2H) technology. The research, conducted in Liaoning Province, China, evaluates the performance of the HEMS under various demand response (DR) scenarios, aiming to enhance resilience, efficiency, and energy independence in green buildings. Four DR scenarios were analyzed: No DR, 20% DR, 30% DR, and 40% DR. The findings indicate that implementing DR programs significantly reduces peak load and operating costs. The 40% DR scenario achieved the lowest cumulative operating cost of $749.09, reflecting a 2.34% reduction compared with the $767.07 cost in the No DR scenario. The integration of backup systems, particularly batteries and fuel cells (FCs), effectively managed energy supply, ensuring continuous power availability. The system maintained a low loss of power supply probability (LPSP), indicating high reliability. Advanced optimization techniques, particularly the reptile search algorithm (RSA), are crucial in enhancing system performance and efficiency. These results underscore the potential of hybrid backup storage systems with V2H technology to enhance energy independence and sustainability in residential energy management. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

20 pages, 6988 KiB  
Article
Mitigating Voltage Drop and Excessive Step-Voltage Regulator Tap Operation in Distribution Networks Due to Electric Vehicle Fast Charging
by Oscar Mauricio Hernández-Gómez, João Paulo Abreu Vieira, Jonathan Muñoz Tabora and Luiz Eduardo Sales e Silva
Energies 2024, 17(17), 4378; https://doi.org/10.3390/en17174378 - 1 Sep 2024
Viewed by 575
Abstract
Electric vehicles (EVs) are transforming the transportation sector, driven by the rapid expansion of charging infrastructure, including fast-charging stations (FCSs), significantly reducing charging time compared to standard charging stations. Despite the advantages of faster charging, the substantial power demand of EVs poses significant [...] Read more.
Electric vehicles (EVs) are transforming the transportation sector, driven by the rapid expansion of charging infrastructure, including fast-charging stations (FCSs), significantly reducing charging time compared to standard charging stations. Despite the advantages of faster charging, the substantial power demand of EVs poses significant technical challenges for distribution networks. In particular, the existing literature has a research gap regarding how FCSs may impact or interact with step-voltage regulators’ (SVRs) tap operations. In this study, we characterize and evaluate the effects of fast recharging at varying penetration levels (PLs) on SVRs’ tap operations using probabilistic simulations and sensitivity analysis. To address these challenges, we propose a local and innovative application of the Volt/Var control on EV fast charging. The proposed application aims to inject reactive power into the network, depending on the FCS’s nominal active power, when the bus voltage connected to the FCS exceeds a minimum value. Our research on an actual feeder in northern Brazil reveals that reducing the active power supplied to the vehicle or oversizing the charging station power converters is unnecessary. Furthermore, our strategy reduces the probability of undervoltage violations and minimizes SVR tap changes, mitigating EVs’ impact on voltage quality. Full article
Show Figures

Figure 1

Back to TopTop