Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,013)

Search Parameters:
Keywords = COL genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4133 KiB  
Article
Comparative Transcriptome Analysis of Bovine, Porcine, and Sheep Muscle Using Interpretable Machine Learning Models
by Yaqiang Guo, Shuai Li, Rigela Na, Lili Guo, Chenxi Huo, Lin Zhu, Caixia Shi, Risu Na, Mingjuan Gu and Wenguang Zhang
Animals 2024, 14(20), 2947; https://doi.org/10.3390/ani14202947 (registering DOI) - 12 Oct 2024
Viewed by 230
Abstract
The growth and development of muscle tissue play a pivotal role in the economic value and quality of meat in agricultural animals, garnering close attention from breeders and researchers. The quality and palatability of muscle tissue directly determine the market competitiveness of meat [...] Read more.
The growth and development of muscle tissue play a pivotal role in the economic value and quality of meat in agricultural animals, garnering close attention from breeders and researchers. The quality and palatability of muscle tissue directly determine the market competitiveness of meat products and the satisfaction of consumers. Therefore, a profound understanding and management of muscle growth is essential for enhancing the overall economic efficiency and product quality of the meat industry. Despite this, systematic research on muscle development-related genes across different species still needs to be improved. This study addresses this gap through extensive cross-species muscle transcriptome analysis, combined with interpretable machine learning models. Utilizing a comprehensive dataset of 275 publicly available transcriptomes derived from porcine, bovine, and ovine muscle tissues, encompassing samples from ten distinct muscle types such as the semimembranosus and longissimus dorsi, this study analyzes 113 porcine (n = 113), 94 bovine (n = 94), and 68 ovine (n = 68) specimens. We employed nine machine learning models, such as Support Vector Classifier (SVC) and Support Vector Machine (SVM). Applying the SHapley Additive exPlanations (SHAP) method, we analyzed the muscle transcriptome data of cattle, pigs, and sheep. The optimal model, adaptive boosting (AdaBoost), identified key genes potentially influencing muscle growth and development across the three species, termed SHAP genes. Among these, 41 genes (including NANOG, ADAMTS8, LHX3, and TLR9) were consistently expressed in all three species, designated as homologous genes. Specific candidate genes for cattle included SLC47A1, IGSF1, IRF4, EIF3F, CGAS, ZSWIM9, RROB1, and ABHD18; for pigs, DRP2 and COL12A1; and for sheep, only COL10A1. Through the analysis of SHAP genes utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, relevant pathways such as ether lipid metabolism, cortisol synthesis and secretion, and calcium signaling pathways have been identified, revealing their pivotal roles in muscle growth and development. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

13 pages, 2514 KiB  
Article
IL-11 Expression in Systemic Sclerosis Is Dependent on Caspase-1 Activity but Does Not Increase Collagen Deposition
by Caya M. McFalls, Lianne M. Connolly, Alfred G. Fustakgi and Carol M. Artlett
Rheumato 2024, 4(4), 163-175; https://doi.org/10.3390/rheumato4040013 (registering DOI) - 12 Oct 2024
Viewed by 258
Abstract
Background: Interleukin-11 (IL-11) is increased in patients with systemic sclerosis (SSc) and is thought to play a role in fibrosis. Many studies have reported decreased fibrosis when IL-11 is blocked, but few have examined factors that induce IL-11 expression. Because fibrosis has been [...] Read more.
Background: Interleukin-11 (IL-11) is increased in patients with systemic sclerosis (SSc) and is thought to play a role in fibrosis. Many studies have reported decreased fibrosis when IL-11 is blocked, but few have examined factors that induce IL-11 expression. Because fibrosis has been linked to activated inflammasomes driving caspase-1 maturation and the secretion of IL-1β, we set out to determine if IL-11 expression was dependent on caspase-1 activity. Methods: Primary lung fibroblast cell lines derived from patients with SSc, IPF (fibrotic control), and healthy individuals were cultured at low passage. Gene expression for IL-11 and the IL-11 receptor (IL-11Rα1) was analyzed using qPCR and normalized to the control, and collagen production was measured using Sirius Red. Results: SSc and IPF fibroblasts expressed significantly more IL-11 transcripts than normal cells (3.35-fold and 9.97-fold more, p = 0.0396 and p = 0.0023, respectively). IL-11Rα1 was expressed 2.32-fold and 2.27-fold more in SSc and IPF (p = 0.0004 and p = 0.0032, respectively) than in normal cells. In SSc fibroblasts, inhibition of caspase-1 with YVAD decreased IL-11 expression by 49.59% (p = 0.0016) but did not affect IL-11Rα1 expression (p > 0.05). IL-11 expression was increased 2.97-fold with TGF-β1 (p = 0.0030) and 22.24-fold with IL-1β (p < 0.0001), while the expression of IL-11Rα1 was not induced with these two cytokines. LPS increased IL-11 expression in normal fibroblasts 1.52-fold (p = 0.0042), which was abolished with YVAD (p < 0.0001). IL-11Rα1 gene transcripts were also increased with LPS 1.50-fold (p = 0.0132), but YVAD did not inhibit this expression. In these studies, we were unable to detect IL-11 protein nor were we able to induce COL1A1 expression or increase the total amount of collagen secreted by fibroblasts with human recombinant IL-11. Conclusions: IL-11 and its receptor, IL-11Rα1, are both elevated in fibrosis. IL-11 expression is dependent on inflammasome activation of caspase-1 and the downstream cytokines TGF-β1 and IL-1β, while IL-11Rα1 was only dependent on NF-kB. Full article
Show Figures

Figure 1

14 pages, 2854 KiB  
Article
Serotype Distribution and Antimicrobial Resistance of Salmonella Isolates from Poultry Sources in China
by Chu Wang, Xianwen Wang, Juyuan Hao, He Kong, Liyuan Zhao, Mingzhen Li, Ming Zou and Gang Liu
Antibiotics 2024, 13(10), 959; https://doi.org/10.3390/antibiotics13100959 - 11 Oct 2024
Viewed by 310
Abstract
Background: Salmonella is an important zoonotic pathogen, of which poultry products are important reservoirs. This study analyzed the prevalence, antimicrobial resistance, and characterization of Salmonella from broiler and laying hen sources in China. Methods: A total of 138 (12.27%) strains of Salmonella were [...] Read more.
Background: Salmonella is an important zoonotic pathogen, of which poultry products are important reservoirs. This study analyzed the prevalence, antimicrobial resistance, and characterization of Salmonella from broiler and laying hen sources in China. Methods: A total of 138 (12.27%) strains of Salmonella were isolated from 1125 samples from broiler slaughterhouses (20.66%, 44/213), broiler farms (18.21%, 55/302), and laying hen farms (6.39%, 39/610). Multiplex PCR was used to identify the serotypes. Antibiotic susceptibility testing to a set of 21 antibiotics was performed and all strains were screened by PCR for 24 selected antimicrobial resistance genes (ARGs). In addition, 24 strains of Salmonella were screened out by whole-genome sequencing together with 65 released Salmonella genomes to evaluate phylogenetic characteristics, multilocus sequence typing (MLST), and plasmid carriage percentages. Results: A total of 11 different serotypes were identified, with the dominance of S. Enteritidis (43/138, 31.16%), S. Newport (30/138, 21.74%), and S. Indiana (19/138, 13.77%). The results showed that S. Enteritidis (34.34%, 34/99) and S. Newport (51.28%, 20/39) were the dominant serotypes of isolates from broilers and laying hens, respectively. The 138 isolates showed the highest resistance to sulfisoxazole (SXZ, 100%), nalidixic acid (NAL, 54.35%), tetracycline (TET, 47.83%), streptomycin (STR, 39.86%), ampicillin (AMP, 39.13%), and chloramphenicol (CHL, 30.43%), while all the strains were sensitive to both tigacycline (TIG) and colistin (COL). A total of 45.65% (63/138) of the isolates were multidrug-resistant (MDR) strains, and most of them (61/63, 96.83%) were from broiler sources. The results of PCR assays revealed that 63.77% of the isolates were carrying the quinolone resistance gene qnrD, followed by gyrB (58.70%) and the trimethoprim resistance gene dfrA12 (52.17%). Moreover, a total of thirty-four ARGs, eighty-nine virulence genes, and eight plasmid replicons were detected in the twenty-four screened Salmonella strains, among which S. Indiana was detected to carry the most ARGs and the fewest plasmid replicons and virulence genes compared to the other serotypes. Conclusions: This study revealed a high percentage of multidrug-resistant Salmonella from poultry sources, stressing the importance of continuous monitoring of Salmonella serotypes and antimicrobial resistance in the poultry chain, and emergency strategies should be implemented to address this problem. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Animals)
Show Figures

Figure 1

18 pages, 3426 KiB  
Article
Effect of Gossypol on Gene Expression in Swine Granulosa Cells
by Min-Wook Hong, Hun Kim, So-Young Choi, Neelesh Sharma and Sung-Jin Lee
Toxins 2024, 16(10), 436; https://doi.org/10.3390/toxins16100436 - 10 Oct 2024
Viewed by 291
Abstract
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and [...] Read more.
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and 12.5 µM) for 72 h, in vitro. The analysis revealed significant changes in the expression of numerous genes in the GP-treated groups. A Gene Ontology analysis highlighted that the differentially expressed genes (DEGs) primarily pertained to processes such as the mitotic cell cycle, chromosome organization, centromeric region, and protein binding. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated distinct impacts on various pathways in response to different GP concentrations. Specifically, in the GP6.25 group, pathways related to the cycle oocyte meiosis, progesterone-mediated oocyte maturation, and p53 signaling were prominently affected. Meanwhile, in the GP12.5 group, pathways associated with PI3K-Akt signaling, focal adhesion, HIF-1 signaling, cell cycle, and ECM–receptor interaction showed significant alterations. Notably, genes linked to female reproductive function (CDK1, CCNB1, CPEB1, MMP3), cellular component organization (BIRC5, CYP1A1, TGFB3, COL1A2), and oxidation–reduction processes (PRDX6, MGST1, SOD3) exhibited differential expression in GP-treated groups. These findings offer valuable insights into the changes in GC gene expression in pigs exposed to GP. Full article
Show Figures

Figure 1

19 pages, 2287 KiB  
Article
Genomic Characterization of 16S rRNA Methyltransferase-Producing Enterobacterales Reveals the Emergence of Klebsiella pneumoniae ST6260 Harboring rmtF, rmtB, blaNDM-5, blaOXA-232 and blaSFO-1 Genes in a Cancer Hospital in Bulgaria
by Stefana Sabtcheva, Ivan Stoikov, Sylvia Georgieva, Deyan Donchev, Yordan Hodzhev, Elina Dobreva, Iva Christova and Ivan N. Ivanov
Antibiotics 2024, 13(10), 950; https://doi.org/10.3390/antibiotics13100950 - 10 Oct 2024
Viewed by 402
Abstract
Background: Acquired 16S rRNA methyltransferases (16S-RMTases) confer high-level resistance to aminoglycosides and are often associated with β-lactam and quinolone resistance determinants. Methods: Using PCR, whole-genome sequencing and conjugation experiments, we conducted a retrospective genomic surveillance study of 16S-RMTase-producing Enterobacterales, collected between 2006 [...] Read more.
Background: Acquired 16S rRNA methyltransferases (16S-RMTases) confer high-level resistance to aminoglycosides and are often associated with β-lactam and quinolone resistance determinants. Methods: Using PCR, whole-genome sequencing and conjugation experiments, we conducted a retrospective genomic surveillance study of 16S-RMTase-producing Enterobacterales, collected between 2006 and 2023, to explore transmission dynamics of methyltransferase and associated antibiotic resistance genes. Results: Among the 10,731 consecutive isolates, 150 (1.4%) from 13 species carried armA (92.7%), rmtB (4.7%), and rmtF + rmtB (2.7%) methyltransferase genes. The coexistence of extended-spectrum β-lactamase (blaCTX-M-3/15, blaSHV-12, blaSFO-1), carbapenemase (blaNDM-1/5, blaVIM-1/4/86, blaOXA-48), acquired AmpC (blaCMY-2/4/99, blaDHA-1, blaAAC-1), and plasmid-mediated quinolone resistance (qnrB, qnrS, aac(6′)-Ib-cr) genes within these isolates was also detected. Methyltransferase genes were carried by different plasmids (IncL/M, IncA/C, IncR, IncFIB, and IncFII), suggesting diverse origins and sources of acquisition. armA was co-transferred with blaCTX-M-3/15, blaNDM-1, blaVIM-4/86, blaOXA-48, blaCMY-4, aac(6′)-Ib-cr, qnrB, and qnrS, while rmtF1 was co-transferred with blaSFO-1, highlighting the multidrug-resistant nature of these plasmids. Long-read sequencing of ST6260 K. pneumoniae isolates revealed a novel resistance association, with rmtB1 and blaNDM-5 on the chromosome, blaOXA-232 on a conjugative ColKP3 plasmid, and rmtF1 with blaSFO-1 on self-transmissible IncFIB and IncFII plasmids. Conclusions: The genetic plasticity of plasmids carrying methyltransferase genes suggests their potential to acquire additional resistance genes, turning 16S-RMTase-producing Enterobacterales into a persistent public health threat. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

17 pages, 3752 KiB  
Article
Extracorporeal Magnetotransduction Therapy as a New Form of Electromagnetic Wave Therapy: From Gene Upregulation to Accelerated Matrix Mineralization in Bone Healing
by Lennart Gerdesmeyer, Jutta Tübel, Andreas Obermeier, Norbert Harrasser, Claudio Glowalla, Rüdiger von Eisenhart-Rothe and Rainer Burgkart
Biomedicines 2024, 12(10), 2269; https://doi.org/10.3390/biomedicines12102269 - 7 Oct 2024
Viewed by 660
Abstract
Background: Electromagnetic field therapy is gaining attention for its potential in treating bone disorders, with Extracorporeal Magnetotransduction Therapy (EMTT) emerging as an innovative approach. EMTT offers a higher oscillation frequency and magnetic field strength compared to traditional Pulsed Electromagnetic Field (PEMF) therapy, showing [...] Read more.
Background: Electromagnetic field therapy is gaining attention for its potential in treating bone disorders, with Extracorporeal Magnetotransduction Therapy (EMTT) emerging as an innovative approach. EMTT offers a higher oscillation frequency and magnetic field strength compared to traditional Pulsed Electromagnetic Field (PEMF) therapy, showing promise in enhancing fracture healing and non-union recovery. However, the mechanisms underlying these effects remain unclear. Results: This study demonstrates that EMTT significantly enhances osteoblast bone formation at multiple levels, from gene expression to extracellular matrix mineralization. Key osteoblastogenesis regulators, including SP7 and RUNX2, and bone-related genes such as COL1A1, ALPL, and BGLAP, were upregulated, with expression levels surpassing those of the control group by over sevenfold (p < 0.001). Enhanced collagen synthesis and mineralization were confirmed by von Kossa and Alizarin Red staining, indicating increased calcium and phosphate deposition. Additionally, calcium imaging revealed heightened calcium influx, suggesting a cellular mechanism for EMTT’s osteogenic effects. Importantly, EMTT did not compromise cell viability, as confirmed by live/dead staining and WST-1 assays. Conclusion: This study is the first to show that EMTT can enhance all phases of osteoblastogenesis and improve the production of critical mineralization components, offering potential clinical applications in accelerating fracture healing, treating osteonecrosis, and enhancing implant osseointegration. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

16 pages, 2771 KiB  
Article
Inductive Effect of Exogenous Abscisic Acid on the Weed-Suppressive Activity of Allelopathic and Non-Allelopathic Rice Accessions at the Root Level
by Jiayu Li, Ting Wang, Yuhui Fan, Shuyu Chen, Xinyi Ye, Yanping Wang and Chen Cheng
Agronomy 2024, 14(10), 2297; https://doi.org/10.3390/agronomy14102297 - 6 Oct 2024
Viewed by 430
Abstract
Rice allelopathy is a natural method of weed control that is regarded as an eco-friendly practice in agroecology. The root growth of allelopathic rice at the seedling stage plays an important role in its weed control. Our study characterizes a plant hormone that [...] Read more.
Rice allelopathy is a natural method of weed control that is regarded as an eco-friendly practice in agroecology. The root growth of allelopathic rice at the seedling stage plays an important role in its weed control. Our study characterizes a plant hormone that promotes root growth, abscisic acid (ABA), to explore its role in the induction of rice allelopathy. Increasing the root morphology traits (root length, root tip number, and root biomass) in rice using different concentrations of exogenous ABA resulted in increased inhibitory ratios against barnyard grass (Echinochloa crus-galli), both in a hydroponic experiment and pot test. In particular, the relative proportion of induced allelopathy to total allelopathy in non-allelopathic rice Lemont (Le) was higher than that in allelopathic rice PI31277 (PI). The total content of phenolic acid, which is an important allelochemical in rice, as previously reported, was significantly elevated in the root exudates of both PI and LE. The gene expression levels of OsPAL, OsC4H, and OsCOL related to phenolic acid synthesis were also up-regulated, with a higher regulatory fold in PI. ABA also increased the expression of OsKSL4 and CYP75B4 involved in the biosynthesis of momilactone B and tricin. Moreover, low concentrations of exogenous ABA mainly positively regulate the expression of OsIAA11, an AUX/IAA transcription factor gene, in the root of PI and Le. These findings suggest that the application of ABA could significantly enhance the weed-suppressive activity of both rice cultivars through regulating root growth and the synthesis of allelochemicals secreted by rice roots, providing an option for the improvement of rice allelopathy through chemical induction. Full article
Show Figures

Figure 1

20 pages, 8398 KiB  
Article
Genome-Wide Analysis of Potato CCT Family Genes and Its Response to Auxin Substances
by Xiongjie Huang, Jingtian Yang, Yiting Bai, Lei Liu, Fang Liu, Qi Cui, Yuan Liu, Youjun Chen, Wenlu Zhang, Juan Li, Shengyan Zhang and Chen Chen
Agronomy 2024, 14(10), 2298; https://doi.org/10.3390/agronomy14102298 (registering DOI) - 6 Oct 2024
Viewed by 402
Abstract
The control of flowering time plays an important role in the growth and development of potato tubers. The CCT (CO, COL and TOC1) gene family is involved in the flowering process of plants. In this study, a total of 32 [...] Read more.
The control of flowering time plays an important role in the growth and development of potato tubers. The CCT (CO, COL and TOC1) gene family is involved in the flowering process of plants. In this study, a total of 32 StCCT family genes were identified and further classified into five subfamilies, including COL (17 members), PRR (4 members), ZIM (3 members), ASML2 (6 members) and TCR1 (2 members), based on their phylogenetic relationship. An analysis of the gene structure, motif compositions and conserved domain provided support for this classification. The StCCT genes were unevenly distributed on 12 chromosomes of the potato plant. In total, six gene duplication events were observed, which played a crucial role in the expansion of the StCCT family genes in the potato. The expression profiles exhibited diverse expression patterns of the StCCT genes in six tissues (leaf, shoot, root, tuber, stolon, and flower), StCCT32 is only expressed in flowers, while StCCT19 and StCCT8 are highly expressed in flowers and tubers, respectively. The StCCT genes exhibit different expression patterns in response to IAA and TIBA treatments at different concentrations across three tissues (leaf, stem, and tuber). After IAA and TIBA treatments, it was found that the expression level of StCCT7 was low in leaves and stems but significantly increased in tubers. Collectively, this study provided valuable information for the further study of potato formation and development and provided candidate genes for molecular breeding in the potato. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 4163 KiB  
Article
Canola Oil Ameliorates Obesity by Suppressing Lipogenesis and Reprogramming the Gut Microbiota in Mice via the AMPK Pathway
by Jing Gao, Li Ma, Jie Yin, Tiejun Li, Yulong Yin and Yongzhong Chen
Nutrients 2024, 16(19), 3379; https://doi.org/10.3390/nu16193379 - 4 Oct 2024
Viewed by 519
Abstract
Background: obesity is a worldwide problem that seriously endangers human health. Canola oil (Col) has been reported to regulate hepatic steatosis by influencing oxidative stress and lipid metabolism in Kunming mice. However, whether Col exhibits an anti-obesity effect by altering the gut microbiota [...] Read more.
Background: obesity is a worldwide problem that seriously endangers human health. Canola oil (Col) has been reported to regulate hepatic steatosis by influencing oxidative stress and lipid metabolism in Kunming mice. However, whether Col exhibits an anti-obesity effect by altering the gut microbiota remains unknown. Methods: in this study, we observed that a high-fat diet increased lipogenesis and gut microbiota disorder in C57BL/6J male mice, while the administration of Col suppressed lipogenesis and improved gut microbiota disorder. Results: the results show that Col markedly reduced the final body weight and subcutaneous adipose tissue of C57BL/6J male mice fed a high-fat diet (HFD) after 6 weeks of administration. However, although Col did not effectively increase the serum concentration of HDL, we found that treatment with Col notably inhibited the low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TGs) in HFD mice. Furthermore, Col ameliorated obesity in the liver compared to mice that were only fed a high-fat diet. We also found that Col significantly inhibited the relative expression of sterol regulatory element binding protein (SREBP1/2), peroxisome proliferator-activated receptor γ (PPARγ), and insulin-induced genes (Insig1/2) that proved to be closely associated with lipogenesis in HFD mice. In addition, the concentration of acetic acid was significantly increased in Col-treatment HFD mice. Further, we noted that Col contributed to the reprogramming of the intestinal microbiota. The relative abundances of Akkermansia, Dubosiella, and Alistipes were enhanced under treatment with Col in HFD mice. The results also imply that Col markedly elevated the phosphorylation level of the AMP-activated protein kinase (AMPK) pathway in HFD mice. Conclusions: the results of our study show that Col ameliorates obesity and suppresses lipogenesis in HFD mice. The underlying mechanisms are possibly associated with the reprogramming of the gut microbiota, in particular, the acetic acid-mediated increased expression of Alistipes via the AMPK signaling pathway. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

13 pages, 9196 KiB  
Article
Sera from Rheumatoid Arthritis Patients Induce Oxidative Stress and Pro-Angiogenic and Profibrotic Phenotypes in Human Endothelial Cells
by Roberta Giordo, Anna Maria Posadino, Paola Maccioccu, Giampiero Capobianco, Angelo Zinellu, Gian Luca Erre and Gianfranco Pintus
J. Clin. Med. 2024, 13(19), 5913; https://doi.org/10.3390/jcm13195913 - 3 Oct 2024
Viewed by 377
Abstract
Background: Rheumatoid arthritis (RA) is a long-term autoimmune condition marked by persistent inflammation of the joints and various systemic complications, including endothelial dysfunction, atherosclerosis, and pulmonary fibrosis. Oxidative stress is a key contributor to the pathogenesis of RA, potentially exacerbating vascular damage and [...] Read more.
Background: Rheumatoid arthritis (RA) is a long-term autoimmune condition marked by persistent inflammation of the joints and various systemic complications, including endothelial dysfunction, atherosclerosis, and pulmonary fibrosis. Oxidative stress is a key contributor to the pathogenesis of RA, potentially exacerbating vascular damage and promoting pro-angiogenic and profibrotic processes. Objective: This study aims to investigate the effects of sera from RA patients on human umbilical vein endothelial cells (HUVECs), focusing on the induction of oxidative stress, endothelial cell proliferation, migration, and collagen type I synthesis. Methods: Twenty-eight serum samples were collected from RA patients and healthy donors (HDs). HUVECs were exposed to these sera, and intracellular reactive oxygen species (ROS) levels were fluorescently detected using H2DCF-DA. Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell migration was evaluated through a scratch wound assay, and collagen type I synthesis was measured using a lentiviral vector expressing the green fluorescent protein (GFP) under the control of the human COL1A1 gene promoter. Results: Exposure to RA sera resulted in a significant increase in intracellular ROS levels in HUVECs compared to HD sera, indicating an elevated state of oxidative stress. RA sera also promoted endothelial cell proliferation and migration, suggesting a pro-angiogenic stimulus. Additionally, RA sera significantly increased collagen type I synthesis in HUVECs, implicating a potential role in profibrotic processes associated with RA. Conclusion: The results of this study emphasize the importance of circulating factors in RA sera in promoting oxidative stress, endothelial dysfunction, and pro-angiogenic and profibrotic phenotypes in endothelial cells. These processes may contribute to the vascular and fibrotic complications observed in RA, highlighting the necessity for additional research into focused therapeutic approaches to alleviate these effects. Full article
Show Figures

Figure 1

12 pages, 1378 KiB  
Article
Callose and Salicylic Acid Are Key Determinants of Strigolactone-Mediated Disease Resistance in Arabidopsis
by Xiaosheng Zhao, Qiuping Liu and Leitao Tan
Plants 2024, 13(19), 2766; https://doi.org/10.3390/plants13192766 - 2 Oct 2024
Viewed by 445
Abstract
Research has demonstrated that strigolactones (SLs) mediate plant disease resistance; however, the basal mechanism is unclear. Here, we provide key genetic evidence supporting how SLs mediate plant disease resistance. Exogenous application of the SL analog, rac-GR24, increased Arabidopsis thaliana resistance to virulent [...] Read more.
Research has demonstrated that strigolactones (SLs) mediate plant disease resistance; however, the basal mechanism is unclear. Here, we provide key genetic evidence supporting how SLs mediate plant disease resistance. Exogenous application of the SL analog, rac-GR24, increased Arabidopsis thaliana resistance to virulent Pseudomonas syringae. SL-biosynthetic mutants and overexpression lines of more axillary growth 1 (MAX1, an SL-biosynthetic gene) enhanced and reduced bacterial susceptibility, respectively. In addition, rac-GR24 promoted bacterial pattern flg22-induced callose deposition and hydrogen peroxide production. SL-biosynthetic mutants displayed reduced callose deposition but not hydrogen peroxide production under flg22 treatment. Moreover, rac-GR24 did not affect avirulent effector-induced cell death between Col-0 and SL-biosynthetic mutants. Furthermore, rac-GR24 increased the free salicylic acid (SA) content and significantly promoted the expression of pathogenesis-related gene 1 related to SA signaling. Importantly, rac-GR24- and MAX1-induced bacterial resistance disappeared completely in Arabidopsis plants lacking both callose synthase and SA. Taken together, our data revealed that callose and SA are two important determinants in SL-mediated plant disease resistance, at least in Arabidopsis. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 6667 KiB  
Article
Impact of Polydeoxyribonucleotides on the Morphology, Viability, and Osteogenic Differentiation of Gingiva-Derived Stem Cell Spheroids
by Heera Lee, Somyeong Hwa, Sunga Cho, Ju-Hwan Kim, Hye-Jung Song, Youngkyung Ko and Jun-Beom Park
Medicina 2024, 60(10), 1610; https://doi.org/10.3390/medicina60101610 - 1 Oct 2024
Viewed by 561
Abstract
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic [...] Read more.
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic activity, stimulate angiogenesis, and promote tissue regeneration. In the field of dentistry, PDRN has shown potential in promoting periodontal healing and bone regeneration. This study aims to investigate the effects of PDRN on the morphology, survival, and osteogenic differentiation of gingiva-derived stem cell spheroids, with a focus on its potential applications in tissue engineering and regenerative dentistry. Materials and Methods: Gingiva-derived mesenchymal stem cells were cultured and formed into spheroids using microwells. The cells were treated with varying concentrations of PDRN (0, 25, 50, 75, and 100 μg/mL) and cultivated in osteogenic media. Cell morphology was observed over seven days using an inverted microscope, and viability was assessed with Live/Dead Kit assays and Cell Counting Kit-8. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity and calcium deposition. The expression levels of osteogenic markers RUNX2 and COL1A1 were quantified using real-time polymerase chain reaction. RNA sequencing was performed to assess the gene expression profiles related to osteogenesis. Results: The results demonstrated that PDRN treatment had no significant effect on spheroid diameter or cellular viability during the observation period. However, a PDRN concentration of 75 μg/mL significantly enhanced calcium deposition by Day 14, suggesting increased mineralization. RUNX2 and COL1A1 mRNA expression levels varied with PDRN concentration, with the highest RUNX2 expression observed at 25 μg/mL and the highest COL1A1 expression at 75 μg/mL. RNA sequencing further confirmed the upregulation of genes involved in osteogenic differentiation, with enhanced expression of RUNX2 and COL1A1 in PDRN-treated gingiva-derived stem cell spheroids. Conclusions: In summary, PDRN did not significantly affect the viability or morphology of gingiva-derived stem cell spheroids but influenced their osteogenic differentiation and mineralization in a concentration-dependent manner. These findings suggest that PDRN may play a role in promoting osteogenic processes in tissue engineering and regenerative dentistry applications, with specific effects observed at different concentrations. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

19 pages, 9389 KiB  
Article
Comprehensive Bioinformatics Analysis Reveals the Potential Role of the hsa_circ_0001081/miR-26b-5p Axis in Regulating COL15A1 and TRIB3 within Hypoxia-Induced miRNA/mRNA Networks in Glioblastoma Cells
by Bartosz Lenda, Marta Żebrowska-Nawrocka and Ewa Balcerczak
Biomedicines 2024, 12(10), 2236; https://doi.org/10.3390/biomedicines12102236 - 1 Oct 2024
Viewed by 400
Abstract
Background/Objectives: The intrinsic molecular heterogeneity of glioblastoma (GBM) is one of the main reasons for its resistance to conventional treatment. Mesenchymal GBM niches are associated with hypoxic signatures and a negative influence on patients’ prognosis. To date, competing endogenous RNA (ceRNA) networks have [...] Read more.
Background/Objectives: The intrinsic molecular heterogeneity of glioblastoma (GBM) is one of the main reasons for its resistance to conventional treatment. Mesenchymal GBM niches are associated with hypoxic signatures and a negative influence on patients’ prognosis. To date, competing endogenous RNA (ceRNA) networks have been shown to have a broad impact on the progression of various cancers. In this study, we decided to construct hypoxia-specific microRNA/ messengerRNA (miRNA/mRNA) networks with a putative circular RNA (circRNA) regulatory component using available bioinformatics tools. Methods: For ceRNA network construction, we combined publicly available data deposited in the Gene Expression Omnibus (GEO) and interaction pairs obtained from miRTarBase and circBank; a differential expression analysis of GBM cells was performed with limma and deseq2. For the gene ontology (GO) enrichment analysis, we utilized clusterProfiler; GBM molecular subtype analysis was performed in the Glioma Bio Discovery Portal (Glioma-BioDP). Results: We observed that miR-26b-5p, generally considered a tumor suppressor, was upregulated under hypoxic conditions in U-87 MG cells. Moreover, miR-26b-5p could potentially inhibit TRIB3, a gene associated with tumor proliferation. Protein-protein interaction (PPI) network and GO enrichment analyses identified a hypoxia-specific subcluster enriched in collagen-associated terms, with six genes highly expressed in the mesenchymal glioma group. This subcluster included hsa_circ_0001081/miR-26b-5p-affected COL15A1, a gene downregulated in hypoxic U-87 MG cells yet highly expressed in the mesenchymal GBM subtype. Conclusions: The interplay between miR-26b-5p, COL15A1, and TRIB3 suggests a complex regulatory mechanism that may influence the extracellular matrix composition and the mesenchymal transformation in GBM. However, the precise impact of the hsa_circ_0001081/miR-26b-5p axis on collagen-associated processes in hypoxia-induced GBM cells remains unclear and warrants further investigation. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis, Treatment and Prognosis of Glioblastoma)
Show Figures

Figure 1

15 pages, 2421 KiB  
Article
Clinical and Molecular Findings in Patients with Knobloch Syndrome 1: Case Series Report
by Tatyana Vasilyeva, Vitaly Kadyshev, Olga Khalanskaya, Svetlana Kuznetsova, Sofya Ionova, Andrey Marakhonov and Rena Zinchenko
Genes 2024, 15(10), 1295; https://doi.org/10.3390/genes15101295 - 1 Oct 2024
Viewed by 565
Abstract
Background/Objectives: Knobloch syndrome 1 (KS) is an autosomal recessive inherited ocular syndrome characterized by a combination of high myopia, vitreoretinal degeneration, and occipital encephalocele. KS is caused by biallelic pathogenic variants in the COL18A1 gene. Diagnosing KS can be challenging due to its [...] Read more.
Background/Objectives: Knobloch syndrome 1 (KS) is an autosomal recessive inherited ocular syndrome characterized by a combination of high myopia, vitreoretinal degeneration, and occipital encephalocele. KS is caused by biallelic pathogenic variants in the COL18A1 gene. Diagnosing KS can be challenging due to its clinical heterogeneity and the rarity of the syndrome. Methods: We conducted comprehensive clinical and instrumental ophthalmological examinations, whole-exome sequencing, Sanger sequencing, and segregation analysis to evaluate affected families. Results: Two patients presenting with high myopia, low visual acuity, chorioretinal atrophy, and occipital skin/skull defects were diagnosed with Knobloch syndrome 1 (KS). In Case 1, a 14-year-old boy, the COL18A1 variants identified were c.2673dup and c.3523_3524del in a compound heterozygous state. Case 2 involved a 3-year-old girl, the c.1637_1638dup and c.3523_3524del variants were identified in a compound heterozygous state. In Case 3, a retrospectively observed boy of 3 y.o. with KS, the variants c.929-2A>G and c.3523_3524del were defined earlier. Conclusions: We confirmed KS molecularly in two novel families. Additionally, in Case 3 of a retrospectively analyzed third family and in both novel cases, one of the biallelic causative variants was the same known 2bp deletion in exon 40 of the collagen XVIII gene. Cases 1 and 3 were characterized by connective tissue dysplasia features and a pathognomonic Knobloch triad. No neurological manifestations and no trends in the genotype–phenotype relationship were found. The heterogeneity of phenotype in the case series is likely to be the result of further factors and/or genetic background. Full article
Show Figures

Figure 1

14 pages, 4014 KiB  
Article
Unexpected and Synergistical Effects of All-Trans Retinoic Acid and TGF-β2 on Biological Aspects of 2D and 3D Cultured ARPE19 Cells
by Megumi Higashide, Megumi Watanabe, Tatsuya Sato, Toshifumi Ogawa, Araya Umetsu, Soma Suzuki, Masato Furuhashi, Hiroshi Ohguro and Nami Nishikiori
Biomedicines 2024, 12(10), 2228; https://doi.org/10.3390/biomedicines12102228 - 30 Sep 2024
Viewed by 336
Abstract
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance [...] Read more.
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance (TEER) and an extracellular flux assay (2D), measurement of levels of reactive oxygen species (ROS), gene expression analyses of COL1, αSMA, Zo-1, HIF1α, and PGC1α (2D), and physical property analyses (3D). Results: Under a normoxia condition, treatment with 100 nM ATRA substantially decreased barrier function regardless of the presence of 5 ng/mL TGF-β2 in 2D ARPE19 monolayer cells. Under a hypoxia condition, treatment with ATRA conversely increased barrier function, but the effect was masked by a marked increase in effects induced by TGF-β2. Although ATRA alone did not affect cellular metabolism and ROS levels in 2D ARPE cells, treatment with ATRA under a hypoxia condition did not affect ROS levels but shifted cellular metabolism from mitochondrial respiration to glycolysis. The changes of cellular metabolism and ROS levels were more pronounced with treatment of both ATRA and TGF-β2 independently of oxygen conditions. Changes in mRNA expressions of some of the above genes suggested the involvement of synergistical regulation of cellular functions by TGF-β2 and hypoxia. In 3D ARPE spheroids, the size was decreased and the stiffness was increased by either treatment with TGF-β2 or ATRA, but these changes were unexpectedly modulated by both ATRA and TGF-β2 treatment regardless of oxygen conditions. Conclusions: The findings reported herein indicate that TGF-β2 and hypoxia synergistically and differentially induce effects in 2D and 3D cultured ARPE19 cells and that their cellular properties are significantly altered by the presence of ATRA. Full article
(This article belongs to the Special Issue 3D Cell Culture Systems for Biomedical Research)
Show Figures

Figure 1

Back to TopTop