Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (117)

Search Parameters:
Keywords = Bovine tuberculosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2395 KiB  
Review
B Cell and Antibody Responses in Bovine Tuberculosis
by Laura Inés Klepp, Federico Carlos Blanco, María Mercedes Bigi, Cristina Lourdes Vázquez, Elizabeth Andrea García, Julia Sabio y García and Fabiana Bigi
Antibodies 2024, 13(4), 84; https://doi.org/10.3390/antib13040084 - 9 Oct 2024
Viewed by 446
Abstract
The development of vaccines and effective diagnostic methods for bovine tuberculosis requires an understanding of the immune response against its causative agent, Mycobacterium bovis. Although this disease is primarily investigated and diagnosed through the assessment of cell-mediated immunity, the role of B [...] Read more.
The development of vaccines and effective diagnostic methods for bovine tuberculosis requires an understanding of the immune response against its causative agent, Mycobacterium bovis. Although this disease is primarily investigated and diagnosed through the assessment of cell-mediated immunity, the role of B cells and antibodies in bovine tuberculosis has been relatively undervalued and understudied. Current evidence indicates that circulating M. bovis-specific antibodies are not effective in controlling the disease. However, local humoral immune responses may contribute to either defence or pathology. Recent studies in animal models and cattle vaccine trials suggest a potential beneficial role of B cells in tuberculosis control. This review discusses the role of B cells and antibodies in bovine tuberculosis and explores antibody-based diagnostics for the disease, including traditional techniques, such as different ELISA, new platforms based on multiple antigens and point-of-care technologies. The high specificity and sensitivity values achieved by numerous antibody-based tests support their use as complementary tests for the diagnosis of bovine tuberculosis, especially for identifying infected animals that may be missed by the official tests. Full article
Show Figures

Figure 1

16 pages, 1713 KiB  
Article
Caprine Paratuberculosis Seroprevalence and Immune Response to Anti-Mycobacterium avium Subspecies paratuberculosis Vaccination on the Canary Islands, Spain
by Elena Plamenova Stefanova, Yania Paz-Sánchez, Óscar Quesada-Canales, María del Pino Quintana-Montesdeoca, Antonio Espinosa de los Monteros, Ana Sofía Ramírez, Antonio Fernández and Marisa Andrada
Vet. Sci. 2024, 11(9), 388; https://doi.org/10.3390/vetsci11090388 - 23 Aug 2024
Viewed by 878
Abstract
Paratuberculosis (PTB), caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic disease with economic impact on ruminant farming worldwide. The Canary Islands count with the fourth largest goat population in Spain and are “officially free” of bovine tuberculosis. Twelve farms were included [...] Read more.
Paratuberculosis (PTB), caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic disease with economic impact on ruminant farming worldwide. The Canary Islands count with the fourth largest goat population in Spain and are “officially free” of bovine tuberculosis. Twelve farms were included with 2774 serum samples tested by an enzyme-linked immunosorbent assay (ELISA) for detection of anti-MAP antibodies in two sessions. In the first session, an overall apparent prevalence of 18.4% (2.5% up to 61.1%) was obtained. Farms with prevalences (0–10%], (10–20%] and >20% were identified, with differences in seroconversion in the same prevalence group between farms and age ranges. Non-vaccinated (nV) and vaccinated (V) animals were included in the second sampling session. Higher levels of antibodies were detected in V animals older than 12 months, with considerable variations between age ranges and farms. Our results describe the current PTB status of the Canary Islands’ goat farming. Furthermore, new insights on the effect of the farm prevalence on seroconversion in V animals are provided, although further studies are needed to evaluate the multiple factors affecting the immune response to anti-MAP vaccination. Full article
(This article belongs to the Special Issue Immunological Assessment of Veterinary Infectious Diseases)
Show Figures

Figure 1

15 pages, 1979 KiB  
Article
Pathogen Detection in Early Phases of Experimental Bovine Tuberculosis
by Mitchell V. Palmer, Carly Kanipe, Soyoun Hwang, Tyler C. Thacker, Kimberly A. Lehman, Nicholas A. Ledesma, Kristophor K. Gustafson and Paola M. Boggiatto
Vet. Sci. 2024, 11(8), 357; https://doi.org/10.3390/vetsci11080357 - 7 Aug 2024
Viewed by 1171
Abstract
Bovine tuberculosis is caused by Mycobacterium bovis, a member of the M. tuberculosis complex of mycobacterial species that cause tuberculosis in humans and animals. Diagnosis of bovine tuberculosis has relied on examinations of cell-mediated immune responses to M. bovis proteins using tuberculin [...] Read more.
Bovine tuberculosis is caused by Mycobacterium bovis, a member of the M. tuberculosis complex of mycobacterial species that cause tuberculosis in humans and animals. Diagnosis of bovine tuberculosis has relied on examinations of cell-mediated immune responses to M. bovis proteins using tuberculin skin testing and/or interferon gamma release assays. Even when using these methods, disease detection during the earliest phases of infection has been difficult, allowing a window for cattle-to-cattle transmission to occur within a herd. Alternative means of diagnosis could include methods to detect M. bovis or M. bovis DNA in bodily fluids such as nasal secretions, saliva, or blood. During the first 8 weeks after experimental aerosol infection of 18 calves, M. bovis DNA was detected in nasal swabs from a small number of calves 5, 6, and 8 weeks after infection and in samples of saliva at 1, 7, and 8 weeks after infection. However, at no time could culturable M. bovis be recovered from nasal swabs or saliva. M. bovis DNA was not found in blood samples collected weekly and examined by real-time PCR. Interferon gamma release assays demonstrated successful infection of all calves, while examination of humoral responses using a commercial ELISA identified a low number of infected animals at weeks 4–8 after infection. Examination of disease severity through gross lesion scoring did not correlate with shedding in nasal secretions or saliva, and calves with positive antibody ELISA results did not have more severe disease than other calves. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
Show Figures

Figure 1

8 pages, 685 KiB  
Communication
Risk-Based Targeting of Animals for Ancillary Testing during a Bovine Tuberculosis Breakdown Is Associated with a Reduced Time to Test Failure: Indirect Evidence of Mycobacterium bovis Exposure?
by Andrew W. Byrne and Damien Barrett
Pathogens 2024, 13(7), 606; https://doi.org/10.3390/pathogens13070606 - 22 Jul 2024
Viewed by 753
Abstract
Bovine tuberculosis (bTB) continues to have significant economic and veterinary health impacts on cattle herds where the disease remains endemic. The continual tailoring of policies to address such maintenance requires an in-depth analysis of national data, underpinning new control strategies. In Ireland, when [...] Read more.
Bovine tuberculosis (bTB) continues to have significant economic and veterinary health impacts on cattle herds where the disease remains endemic. The continual tailoring of policies to address such maintenance requires an in-depth analysis of national data, underpinning new control strategies. In Ireland, when outbreaks occur, ancillary testing of herd mates deemed to be at the highest risk of exposure to reactors is undertaken using the interferon gamma (GIF) test. This highest risk cohort was hypothesised to be of a higher future risk despite this ancillary testing. We used a dataset from Ireland to model bovine test failure to the comparative tuberculin skin test using a survival analysis (observations: 39,248). Our primary exposure of interest was whether an animal that tested negative had a GIF test after the disclosure of infection within a herd during a bTB breakdown. There was evidence that animals with a negative GIF test during a breakdown had an increased risk of failing a test relative to other animals from the same herds without this exposure. The time to failure was 48.8% (95%CI: 38.3–57.5%) shorter for the exposed group relative to the unexposed group during a two-year follow-up period (2019–2022; time ratio: 0.51; 95%CI: 0.43–0.62; p < 0.001). The results from this study suggest that animals who were GIF-tested, having been deemed to have a higher risk of exposure, subsequently had shorter time-to-test failure periods. The absolute numbers of failure are small (only 2.5% of animals go on to fail during 2-year follow-up). Importantly, however, a high proportion of these high-risk herds included in the dataset failed at least one test at the follow-up (21/54 herds), impacting breakdown duration or recurrence. Such risk-informed targeting of animals could be utilised in future control policies, though further research is warranted. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Figure 1

10 pages, 607 KiB  
Article
First Insight into the Whole Genome Sequencing Whole Variations in Mycobacterium bovis from Cattle in Morocco
by Mohammed Khoulane, Siham Fellahi, Slimane Khayi, Mohammed Bouslikhane, Hassan Lakhdissi and Jaouad Berrada
Microorganisms 2024, 12(7), 1316; https://doi.org/10.3390/microorganisms12071316 - 27 Jun 2024
Viewed by 790
Abstract
Six cattle heads which tested positive against bovine tuberculosis (bTB) in Morocco were investigated to confirm the disease and to determine the source(s) of infection. Polymerase Chain Reaction (PCR) was directly performed on tissue samples collected from slaughtered animals. All investigated animals tested [...] Read more.
Six cattle heads which tested positive against bovine tuberculosis (bTB) in Morocco were investigated to confirm the disease and to determine the source(s) of infection. Polymerase Chain Reaction (PCR) was directly performed on tissue samples collected from slaughtered animals. All investigated animals tested positive to PCR for the Mycobacterium bovis sub-type. Bacteriological isolation was conducted according to the technique recommended by WOAH for the cultivation of the Mycobacterium tuberculosis Complex (MBTC). Whole genome sequencing (WGS) was carried out on six mycobacterial isolates and the phylogenic tree was constructed. The six Moroccan isolates fit with clades II, III, IV, V and VII and were confirmed to belong to the clonal complexes Eu2, Unknown 2 and 7 as well as to sublineages La1.7.1, La1.2 and La1.8.2. The significant Single Nucleotide Polymorphism (SNPs) ranged from 84 to 117 between the isolates and the reference M. bovis strain and from 17 to 212 between the six isolates. Considering the high resolution of WGS, these results suggests that the source of infection of the bTB could be linked to imported animals as five of the investigated reactor animals were imported a few months prior. WGS can be a useful component to the Moroccan strategy to control bTB. Full article
(This article belongs to the Special Issue Understanding of the Microbiome at the Genome Level)
Show Figures

Figure 1

20 pages, 1913 KiB  
Article
Genome-Wide Association Study Reveals Quantitative Trait Loci and Candidate Genes Associated with High Interferon-gamma Production in Holstein Cattle Naturally Infected with Mycobacterium Bovis
by Gerard Badia-Bringué, María Canive, Patricia Vázquez, Joseba M. Garrido, Almudena Fernández, Ramón A. Juste, José Antonio Jiménez, Oscar González-Recio and Marta Alonso-Hearn
Int. J. Mol. Sci. 2024, 25(11), 6165; https://doi.org/10.3390/ijms25116165 - 3 Jun 2024
Viewed by 683
Abstract
Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on [...] Read more.
Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNɣ) and its use in bovine selective breeding programs have not been explored. In the current study, IFNɣ production was measured using a specific IFNɣ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNɣ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNɣ in response to Mb. Full article
(This article belongs to the Special Issue Role of Mutations and Polymorphisms in Various Diseases)
Show Figures

Figure 1

15 pages, 341 KiB  
Review
Unveiling Safety Concerns in Brazilian Artisanal Cheeses: A Call for Enhanced Ripening Protocols and Microbiological Assessments
by Tatiane Mendonça Nogueira Carneiro de Albuquerque, Gabriela Zampieri Campos, Loredana d’Ovidio, Uelinton Manoel Pinto, Paulo José do Amaral Sobral and Julia Arantes Galvão
Foods 2024, 13(11), 1644; https://doi.org/10.3390/foods13111644 - 24 May 2024
Cited by 1 | Viewed by 1130
Abstract
Brazilian artisanal cheeses have recently gained significant commercial prominence and consumer favor, primarily due to their distinctive sensory attributes and cultural and historical appeal. Many of these cheeses are made with raw milk and undergo a relatively short ripening period, sometimes ranging from [...] Read more.
Brazilian artisanal cheeses have recently gained significant commercial prominence and consumer favor, primarily due to their distinctive sensory attributes and cultural and historical appeal. Many of these cheeses are made with raw milk and undergo a relatively short ripening period, sometimes ranging from 4 to 8 days, though it is usually shorter than the period stated by law. Moreover, there is insufficient evidence regarding the efficacy of a short ripening period in reducing certain zoonotic foodborne pathogens, such as Brucella spp., Coxiella burnetiid, and Mycobacterium bovis (as part of the Mycobacterium tuberculosis complex). Additionally, a literature analysis revealed that the usual ripening conditions of Brazilian artisanal cheeses made with raw milk may be inefficient in reducing the levels of some hazardous bacterial, including Brucella spp., Listeria monocytogenes, coagulase-positive Staphylococcus, Salmonella, and Coxiella burnetti, to the acceptable limits established by law, thus failing to ensure product safety for all cheese types. Moreover, the assessment of the microbiological safety for this type of cheese should be broader and should also consider zoonotic pathogens commonly found in bovine herds. Finally, a standardized protocol for evaluating the effectiveness of cheese ripening must be established by considering its peculiarities. Full article
10 pages, 1745 KiB  
Article
High-Performance Detection of Mycobacterium bovis in Milk Using Recombinase-Aided Amplification–Clustered Regularly Interspaced Short Palindromic Repeat–Cas13a–Lateral Flow Detection
by Jieru Wang, Nan Wang, Lei Xu, Xiaoyu Zeng, Junsheng Cheng, Xiaoqian Zhang, Yinghui Zhang, Dongdong Yin, Jiaojiao Gou, Xiaocheng Pan and Xiaojie Zhu
Foods 2024, 13(11), 1601; https://doi.org/10.3390/foods13111601 - 21 May 2024
Viewed by 1028
Abstract
Mycobacterium bovis (M. bovis), the microorganism responsible for bovine tuberculosis (bTB), is transferred to people by the ingestion of unpasteurized milk and unprocessed fermented milk products obtained from animals with the infection. The identification of M. bovis in milk samples is [...] Read more.
Mycobacterium bovis (M. bovis), the microorganism responsible for bovine tuberculosis (bTB), is transferred to people by the ingestion of unpasteurized milk and unprocessed fermented milk products obtained from animals with the infection. The identification of M. bovis in milk samples is of the utmost importance to successfully prevent zoonotic diseases and maintain food safety. This study presents a comprehensive description of a highly efficient molecular test utilizing recombinase-aided amplification (RPA)–clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) 13a–lateral flow detection (LFD) for M. bovis detection. In contrast to ELISA, RPA–CRISPR–Cas13a–LFD exhibited greater accuracy and sensitivity in the detection of M. bovis in milk, presenting a detection limit of 2 × 100 copies/μL within a 2 h time frame. The two tests exhibited a moderate level of agreement, as shown by a kappa value of 0.452 (95%CI: 0.287–0.617, p < 0.001). RPA–CRISPR–Cas13a–LFD holds significant potential as a robust platform for pathogen detection in complex samples, thereby enabling the more dependable regulation of food safety examination, epidemiology research, and medical diagnosis. Full article
Show Figures

Figure 1

19 pages, 4804 KiB  
Article
Mapping Bovine Tuberculosis in Colombia, 2001–2019
by D. Katterine Bonilla-Aldana, S. Daniela Jiménez-Diaz, Carlos Lozada-Riascos, Kenneth Silva-Cajaleon and Alfonso J. Rodríguez-Morales
Vet. Sci. 2024, 11(5), 220; https://doi.org/10.3390/vetsci11050220 - 15 May 2024
Viewed by 2515
Abstract
Introduction: Bovine tuberculosis is a zoonotic disease of significant impact, particularly in countries where a pastoral economy is predominant. Despite its importance, few studies have analysed the disease’s behaviour in Colombia, and none have developed maps using geographic information systems (GIS) to characterise [...] Read more.
Introduction: Bovine tuberculosis is a zoonotic disease of significant impact, particularly in countries where a pastoral economy is predominant. Despite its importance, few studies have analysed the disease’s behaviour in Colombia, and none have developed maps using geographic information systems (GIS) to characterise it; as such, we developed this study to describe the temporal–spatial distribution of bovine tuberculosis in Colombia over a period of 19 years. Methods: A retrospective cross-sectional descriptive study, based on reports by the Colombian Agricultural Institute (ICA), surveillance of tuberculosis on cattle farms in Colombia from 2001 to 2019 was carried out. The data were converted into databases using Microsoft Access 365®, and multiple epidemiological maps were generated with the QGIS® version 3.36 software coupled to shape files of all the country’s departments. Results: During the study period, 5273 bovine tuberculosis cases were identified in multiple different departments of Colombia (with a mean of 278 cases/year). Regarding its temporal distribution, the number of cases varied from a maximum of 903 cases (17.12% of the total) in 2015 to a minimum of 0 between 2001 and 2004 and between 2017 and 2019 (between 2005 and 2016, the minimum was 46 cases, 0.87%). Conclusions: GIS are essential for understanding the temporospatial behaviour of zoonotic diseases in Colombia, as is the case for bovine tuberculosis, with its potential implications for the Human and One Health approaches. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
Show Figures

Figure 1

12 pages, 3453 KiB  
Article
The Establishment of a Novel γ-Interferon In Vitro Release Assay for the Differentiation of Mycobacterial Bovis-Infected and BCG-Vaccinated Cattle
by Yuhao Zhao, Wentao Fei, Li Yang, Zhijie Xiang, Xi Chen, Yingyu Chen, Changmin Hu, Jianguo Chen and Aizhen Guo
Vet. Sci. 2024, 11(5), 198; https://doi.org/10.3390/vetsci11050198 - 30 Apr 2024
Viewed by 2306
Abstract
BCG vaccination is increasingly reconsidered in the effective prevention of bovine tuberculosis (bTB). However, the primary challenge in BCG vaccination for cattle is the lack of a technique for differentiating between infected and vaccinated animals (DIVA). This study aimed to establish a novel [...] Read more.
BCG vaccination is increasingly reconsidered in the effective prevention of bovine tuberculosis (bTB). However, the primary challenge in BCG vaccination for cattle is the lack of a technique for differentiating between infected and vaccinated animals (DIVA). This study aimed to establish a novel DIVA diagnostic test based on an interferon-gamma in vitro release assay (IGRA). The plasmid encoding three differential antigens (Rv3872, CFP-10, and ESAT-6) absent in BCG genes but present in virulent M. bovis was previously constructed. Thus, a recombinant protein called RCE (Rv3872, CFP-10, and ESAT-6) was expressed, and an RCE-based DIVA IGRA (RCE-IGRA) was established. The RCE concentration was optimized at 4 μg/mL by evaluating 97 cattle (74 of which were bTB-positive, and 23 were negative) using a commercial IGRA bTB diagnostic kit. Further, 84 cattle were tested in parallel with the RCE-IGRA and commercial PPD-based IGRA (PPD-IGRA), and the results showed a high correlation with a kappa value of 0.83. The study included BCG-vaccinated calves (n = 6), bTB-positive cattle (n = 6), and bTB-negative non-vaccinated calves (n = 6). After 3 months post-vaccination, PPD-IGRA generated positive results in both vaccinated and infected calves. However, RCE-IGRA developed positive results in infected calves but negative results in vaccinated calves. In conclusion, this DIVA method has broad prospects in differentiating BCG vaccination from natural infection to prevent bTB. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

17 pages, 1096 KiB  
Article
An ELISA Using Synthetic Mycolic Acid-Based Antigens with DIVA Potential for Diagnosing Johne’s Disease in Cattle
by Paul S. Mason, Thomas Holder, Natasha Robinson, Brendan Smith, Rwoa’a T. Hameed, Juma’a R. Al Dulayymi, Valerie Hughes, Karen Stevenson, Gareth J. Jones, H. Martin Vordermeier, Shawn Mc Kenna and Mark S. Baird
Animals 2024, 14(6), 848; https://doi.org/10.3390/ani14060848 - 9 Mar 2024
Cited by 1 | Viewed by 1778
Abstract
The problem: Ante-mortem diagnosis of Johne’s disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), is normally achieved through faecal culture, PCR, or serological tests, but agreement as to which samples are positive for Johne’s disease is often poor and sensitivities are low, particularly [...] Read more.
The problem: Ante-mortem diagnosis of Johne’s disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), is normally achieved through faecal culture, PCR, or serological tests, but agreement as to which samples are positive for Johne’s disease is often poor and sensitivities are low, particularly in early-stage infections. The potential solution: Mycobacterial cells contain very complex characteristic mixtures of mycolic acid derivatives that elicit antibodies during infection; this has been used to detect infections in humans. Here, we explore its application in providing an assay differentiating infected from vaccinated animals (DIVA assay) for Johne’s disease in cattle. Method: Antibody responses to different classes of mycolic acid derivatives were measured using ELISA for serum from cattle positive for MAP by both faecal PCR and commercial serum ELISA, or just by PCR, and from animals from herds with no history of Johne’s disease, bovine tuberculosis reactors, BCG-vaccinated, BCG-vaccinated and M. bovis-infected, and Gudair-vaccinated animals. Results: The best-performing antigens, ZAM295 and ST123—the latter a molecule present in the cells of MAP but not of Mycobacterium bovis—achieved a sensitivity of 75% and 62.5%, respectively, for serum from animals positive by both faecal PCR and a commercial MAP serum ELISA, at a specificity of 94% compared to 80 no-history negatives. Combining the results of separate assays with two antigens (ST123 and JRRR121) increased the sensitivity/specificity to 75/97.5%. At the same cut-offs, animals vaccinated with Gudair or BCG vaccines and bTB reactors showed a similar specificity. The specificity in BCG-vaccinated but M. bovis-infected animals dropped to 85%. Combining the results of two antigens gave a sensitivity/specificity of 37.5/97.5% for the full set of 80 PCR-positive samples, detecting 30 positives compared 16 for IDEXX. Conclusion: Serum ELISA using synthetic lipids distinguishes effectively between MAP-negative cattle samples and those positive by both PCR and a commercial MAP serodiagnostic, without interference by Gudair or BCG vaccination. It identified almost twice as many PCR positives as the commercial serodiagnostic, offering the possibility of earlier detection of infection. Full article
Show Figures

Figure 1

14 pages, 1853 KiB  
Communication
Comparative Study of Mycobacterium bovis and Mycobacterium avium subsp. paratuberculosis In Vitro Infection in Bovine Bone Marrow Derived Macrophages: Preliminary Results
by Benedetta Amato, Dorotea Ippolito, Maria Vitale, Rosa Alduina, Paola Galluzzo, Elisabetta Gerace, Flavia Pruiti Ciarello, Michele Fiasconaro, Vincenza Cannella and Vincenzo Di Marco Lo Presti
Microorganisms 2024, 12(2), 407; https://doi.org/10.3390/microorganisms12020407 - 17 Feb 2024
Viewed by 1408
Abstract
Bovine tuberculosis and paratuberculosis are endemic in many areas worldwide. This work aims to study cytokines production and gene expression profiles of bovine macrophages infected with Mycobacterium bovis and Mycobacterium paratuberculosis subsp. avium (MAP) strains to identify potential diagnostic biomarkers. Bovine bone marrow [...] Read more.
Bovine tuberculosis and paratuberculosis are endemic in many areas worldwide. This work aims to study cytokines production and gene expression profiles of bovine macrophages infected with Mycobacterium bovis and Mycobacterium paratuberculosis subsp. avium (MAP) strains to identify potential diagnostic biomarkers. Bovine bone marrow stem cells were differentiated into macrophages and subsequently infected in vitro with different spoligotypes of M. bovis and MAP field strains (as single infections and coinfections), using different multiplicity of infection. Supernatant and cell pellets were collected 24 h, 48 h, and one week post-infection. Preliminarily, gene expression on cell pellets of IL-1β, IL-2, INFγ, IL-6, IL-10, IL-12, and TNFα was assessed by qRT-PCR one week p.i. Subsequently, IL-1β and IL-6 were measured by ELISA and qRT-PCR to investigated their production retrospectively 24 h and 48 h p.i. A variability in macrophages response related to the concentration of mycobacteria, the coinfection with MAP, and M. bovis spoligotypes was identified. An early and constant IL-6 increase was observed in the M. bovis infection. A lower increase in IL-1β was also detected at the highest concentration of the two M. bovis spoligotypes one week post-infection. IL-6 and IL-1 β production was reduced and differently expressed in the MAP infection. IL-6 appeared to be the earliest cytokines produced by bovine macrophages infected with M. bovis. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

13 pages, 477 KiB  
Article
Detecting Closer to Care: Combining Phage and LAMP to Detect Tuberculosis, Bovine TB and Johne’s Disease
by Christopher G. Shield, Alexandra E. M. Bartlett, Pranabashis Haldar and Benjamin M. C. Swift
Appl. Microbiol. 2024, 4(1), 341-353; https://doi.org/10.3390/applmicrobiol4010023 - 1 Feb 2024
Viewed by 1329
Abstract
Mycobacterial diseases impact millions in the human and veterinary fields each year. Their diagnosis is long and laborious, often only sensitive in the late stages of disease. This has created an unmet need for new diagnostics that are effective in the earlier stages [...] Read more.
Mycobacterial diseases impact millions in the human and veterinary fields each year. Their diagnosis is long and laborious, often only sensitive in the late stages of disease. This has created an unmet need for new diagnostics that are effective in the earlier stages of infection and are quick and easy to perform. This study details the optimization of LAMP assays for the detection of M. tuberculosis, M. bovis and M. avium subsp. paratuberculosis combined with phage-mediated lysis to meet the needs of a novel diagnostic—termed phage-LAMP. The optimized phage-LAMP assay had a limit of detection of less than 10 mycobacteria per ml and no cross-reaction was seen between assays. The phage-LAMP method was then tested on a small number of clinical blood samples from suspected TB patients and herds suspected of Johne’s disease. The phage-LAMP assay could detect viable Mycobacterium tuberculosis and M. avium subsp. paratuberculosis in these samples. Full article
Show Figures

Figure 1

12 pages, 802 KiB  
Article
Vaccination of White-Tailed Deer with Mycobacterium bovis Bacillus Calmette–Guérin (BCG): Effect of Mycobacterium avium ssp. paratuberculosis Infection
by Mitchell V. Palmer, Carly Kanipe, Kimberly A. Lehman, Tyler C. Thacker, Ellie J. Putz and Paola M. Boggiatto
Microorganisms 2023, 11(10), 2488; https://doi.org/10.3390/microorganisms11102488 - 4 Oct 2023
Viewed by 1386
Abstract
In many parts of the world, bovine tuberculosis eradication efforts are hampered by wildlife reservoirs of Mycobacterium bovis, which serve as a constant source of M. bovis for nearby cattle. The human tuberculosis vaccine, M. bovis BCG has been investigated for use [...] Read more.
In many parts of the world, bovine tuberculosis eradication efforts are hampered by wildlife reservoirs of Mycobacterium bovis, which serve as a constant source of M. bovis for nearby cattle. The human tuberculosis vaccine, M. bovis BCG has been investigated for use in several wildlife species, including deer. In the US, white-tailed deer in Michigan have been the source of infection for over 82 cattle herds since M. bovis was discovered in free-ranging deer in 1995. The efficacy of BCG may be influenced by many factors, including prior exposure or infection with non-tuberculous mycobacteria, that is, species other than members of the M. tuberculosis complex. M. avium subspecies paratuberculosis (Map) infection is not uncommon in ruminants such as deer. Using natural exposure to Map and experimental infection with M. bovis, we demonstrate that Map infection increased BCG vaccine efficacy as measured by lesion severity scores. Full article
(This article belongs to the Special Issue Mycobacterial Tuberculosis Pathogenesis and Vaccine Development)
Show Figures

Figure 1

13 pages, 1511 KiB  
Article
A Transcriptional Analysis of Cattle Immune Cells Reveals a Central Role of Type 1 Interferon in the In Vitro Innate Immune Response against Mycobacterium bovis
by Federico Carlos Blanco, María Mercedes Bigi, Elizabeth Andrea García, María Teresa Elola, Cristina Lourdes Vázquez and Fabiana Bigi
Pathogens 2023, 12(9), 1159; https://doi.org/10.3390/pathogens12091159 - 14 Sep 2023
Cited by 1 | Viewed by 1542
Abstract
Bovine tuberculosis is a chronic infectious disease primarily caused by Mycobacterium bovis, a bacterium that affects cattle and other mammals, including humans. Despite the availability of vast research about the immune response mechanisms of human tuberculosis caused by Mycobacterium tuberculosis, the [...] Read more.
Bovine tuberculosis is a chronic infectious disease primarily caused by Mycobacterium bovis, a bacterium that affects cattle and other mammals, including humans. Despite the availability of vast research about the immune response mechanisms of human tuberculosis caused by Mycobacterium tuberculosis, the knowledge of bovine tuberculosis’s immunology, particularly regarding the innate immune response, still remains scarce. In this study, we compared the transcriptome of cell cultures containing lymphocytes and M. bovis infected-macrophages with two strains of variable virulence, the virulent Mb04-303 strain and the attenuated Mb534. To that end, we infected bovine macrophages at a multiplicity of infection of one, and co-cultured the infections with autologous lymphocytes. RNA obtained from the co-cultures was sequenced to identify differentially expressed gene pathways by using the database Reactome. The RNA-seq analysis showed that the Mb04-303 infection upregulated the type 1 interferon signalling pathway, while it downregulated the KEAP1-NFE2L2 pathway. According to the literature, this last pathway is involved in the activation of antioxidant genes and inflammasome. In addition, the macrophages infected with Mb04-303 recruited more Galectin 8 than those infected with Mb534. This result indicates that Mb04-303 induced higher phagosome membrane damage, with the possible concomitant release of bacterial compounds into the cytoplasm that activates the type I signalling pathway. Altogether, Mb04-303 repressed the antioxidant and anti-inflammatory responses, likely impairing interleukin-1β activation, and trigged the canonical type 1 interferon signalling. Although these responses led to the control of bacterial replication during early infection, the virulent strain eventually managed to establish a successful infection. Full article
(This article belongs to the Special Issue Biology of Mycobacterial Pathogens)
Show Figures

Figure 1

Back to TopTop