Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = ATX-LPA axis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2764 KiB  
Review
Autotaxin–Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications
by Carmelo Laface, Angela Dalia Ricci, Simona Vallarelli, Carmela Ostuni, Alessandro Rizzo, Francesca Ambrogio, Matteo Centonze, Annalisa Schirizzi, Giampiero De Leonardis, Rosalba D’Alessandro, Claudio Lotesoriere and Gianluigi Giannelli
Int. J. Mol. Sci. 2024, 25(14), 7737; https://doi.org/10.3390/ijms25147737 - 15 Jul 2024
Viewed by 781
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various [...] Read more.
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1–6). The ATX–LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX–LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment. Full article
(This article belongs to the Special Issue Molecular Mechanism of Anti-cancer Drugs)
Show Figures

Figure 1

15 pages, 3623 KiB  
Article
Hypoxia Increases ATX Expression by Histone Crotonylation in a HIF-2α-Dependent Manner
by Mengxia Qu, Yang Long, Yuqin Wang, Nan Yin, Xiaotian Zhang and Junjie Zhang
Int. J. Mol. Sci. 2023, 24(8), 7031; https://doi.org/10.3390/ijms24087031 - 11 Apr 2023
Cited by 6 | Viewed by 2459
Abstract
Autotaxin (ATX), the key enzyme that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC), is involved in tumorigenesis through the ATX-LPA axis and is regarded as a valuable target in tumor therapy. Hypoxia is a major feature of solid tumors and contributes to tumor [...] Read more.
Autotaxin (ATX), the key enzyme that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC), is involved in tumorigenesis through the ATX-LPA axis and is regarded as a valuable target in tumor therapy. Hypoxia is a major feature of solid tumors and contributes to tumor development with striking alterations in the gene expression profile. Here, we show that hypoxia induces ATX expression in a hypoxia-inducible factor (HIF) 2α-dependent fashion in human colon cancer SW480 cells. HIF-2α is directly bound to specific hypoxia response elements (HREs) in the ATX promoter. Under hypoxic conditions, knockout or inhibition of ATX suppressed the migration of SW480 cells, which could be rescued by the addition of LPA, suggesting that the induction of ATX during hypoxia promotes cancer cell migration through the ATX-LPA axis. Further studies showed that ATX expression was induced by HIF-2α through recruiting p300/CBP, which led to crotonylation but not acetylation of histone H3 in the ATX promoter region during hypoxia. Moreover, elevation of cellular histone crotonylation levels could induce ATX expression under normoxic conditions. In conclusion, our findings reveal that ATX is induced in SW480 cells during hypoxia by histone crotonylation in a HIF-2α-dependent manner, while as a novel mechanism of ATX expression regulation, the upregulation of ATX expression by histone crotonylation is not confined to hypoxia. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3632 KiB  
Article
Endothelial Specific Deletion of Autotaxin Improves Stroke Outcomes
by Susmita Bhattarai, Utsab Subedi, Shrivats Manikandan, Sudha Sharma, Papori Sharma, Chloe Miller, Md Shenuarin Bhuiyan, Srivatsan Kidambi, Vassilis Aidinis, Hong Sun, Sumitra Miriyala and Manikandan Panchatcharam
Cited by 6 | Viewed by 2360
Abstract
Autotaxin (ATX) is an extracellular secretory enzyme (lysophospholipase D) that catalyzes the hydrolysis of lysophosphatidyl choline to lysophosphatidic acid (LPA). The ATX–LPA axis is a well-known pathological mediator of liver fibrosis, metastasis in cancer, pulmonary fibrosis, atherosclerosis, and neurodegenerative diseases. Additionally, it is [...] Read more.
Autotaxin (ATX) is an extracellular secretory enzyme (lysophospholipase D) that catalyzes the hydrolysis of lysophosphatidyl choline to lysophosphatidic acid (LPA). The ATX–LPA axis is a well-known pathological mediator of liver fibrosis, metastasis in cancer, pulmonary fibrosis, atherosclerosis, and neurodegenerative diseases. Additionally, it is believed that LPA may cause vascular permeability. In ischemic stroke, vascular permeability leading to hemorrhagic transformation is a major limitation for therapies and an obstacle to stroke management. Therefore, in this study, we generated an endothelial-specific ATX deletion in mice (ERT2 ATX−/−) to observe stroke outcomes in a mouse stroke model to analyze the role of endothelial ATX. The AR2 probe and Evans Blue staining were used to perform the ATX activity and vascular permeability assays, respectively. Laser speckle imaging was used to observe the cerebral blood flow following stroke. In this study, we observed that stroke outcomes were alleviated with the endothelial deletion of ATX. Permeability and infarct volume were reduced in ERT2 ATX−/− mice compared to ischemia–reperfusion (I/R)-only mice. In addition, the cerebral blood flow was retained in ERT2 ATX−/− compared to I/R mice. The outcomes in the stroke model are alleviated due to the limited LPA concentration, reduced ATX concentration, and ATX activity in ERT2 ATX−/− mice. This study suggests that endothelial-specific ATX leads to increased LPA in the brain vasculature following ischemic–reperfusion and ultimately disrupts vascular permeability, resulting in adverse stroke outcomes. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

18 pages, 6249 KiB  
Article
The Autotaxin-LPA Axis Emerges as a Novel Regulator of Smooth Muscle Cell Phenotypic Modulation during Intimal Hyperplasia
by Utsab Subedi, Shrivats Manikandan, Susmita Bhattarai, Papori Sharma, Sudha Sharma, Hong Sun, Sumitra Miriyala and Manikandan Panchatcharam
Int. J. Mol. Sci. 2023, 24(3), 2913; https://doi.org/10.3390/ijms24032913 - 2 Feb 2023
Cited by 1 | Viewed by 2084
Abstract
Neointimal hyperplasia is characterized by a loss of the contractile phenotype of vascular smooth muscle cells (VSMCs). Our group has recently shown that VSMC proliferation and migration are mediated by lysophosphatidic acid (LPA) during restenosis, but the role of autotaxin (ATX; lysophospholipase D), [...] Read more.
Neointimal hyperplasia is characterized by a loss of the contractile phenotype of vascular smooth muscle cells (VSMCs). Our group has recently shown that VSMC proliferation and migration are mediated by lysophosphatidic acid (LPA) during restenosis, but the role of autotaxin (ATX; lysophospholipase D), which produces LPA, remains unclear. Endothelial denudation of the mouse carotid artery was performed to induce neointimal hyperplasia, and the extent of damage caused by the ATX-LPA axis was assessed in VSMCs. We observed the upregulation of ATX activity (p < 0.0002) in the injured carotid artery using an AR2 probe fluorescence assay. Further, the tissue carotid LPA levels were elevated 2.7-fold in carotid vessels, augmenting neointimal hyperplasia. We used an electrical cell–substrate impedance sensor (ECIS) to measure VSMC proliferation and migration. Treatment with an ATX inhibitor (PF8380) or LPA receptor inhibitor (Ki16425) attenuated VSMC proliferation (extracellular signal-regulated kinases) activity and migration in response to recombinant ATX. Indeed, PF8380 treatment rescued the aggravated post-wire injury neointima formation of carotid arteries. The upregulation of ATX following vessel injury leads to LPA production in VSMCs, favoring restenosis. Our observations suggest that inhibition of the ATX-LPA axis could be therapeutically targeted in restenosis to minimize VSMC phenotypic modulation and inflammation after vascular injury. Full article
(This article belongs to the Special Issue Lipids and Cardiovascular Disease)
Show Figures

Figure 1

16 pages, 4138 KiB  
Article
ATX-LPA-Dependent Nuclear Translocation of Endonuclease G in Respiratory Epithelial Cells: A New Mode Action for DNA Damage Induced by Crystalline Silica Particles
by Huiyuan Zheng, Ulla Stenius and Johan Högberg
Cancers 2023, 15(3), 865; https://doi.org/10.3390/cancers15030865 - 30 Jan 2023
Viewed by 1768
Abstract
Crystalline silica particles (CSi) are an established human carcinogen, but it is not clear how these particles cause necessary mutations. A well-established scenario includes inflammation caused by retained particles in the bronchioles, activated macrophages, and reactive oxygen species (ROS) that cause DNA damage. [...] Read more.
Crystalline silica particles (CSi) are an established human carcinogen, but it is not clear how these particles cause necessary mutations. A well-established scenario includes inflammation caused by retained particles in the bronchioles, activated macrophages, and reactive oxygen species (ROS) that cause DNA damage. In previous studies, we showed that CSi in contact with the plasma membrane of human bronchial epithelium induced double strand breaks within minutes. A signaling pathway implicating the ATX-LPA axis, Rac1, NLRP3, and mitochondrial depolarization upstream of DSB formation was delineated. In this paper, we provide in vitro and in vivo evidence that this signaling pathway triggers endonuclease G (EndoG) translocation from the mitochondria to the nucleus. The DNA damage is documented as γH2AX and p53BP1 nuclear foci, strand breaks in the Comet assay, and as micronuclei. In addition, the DNA damage is induced by low doses of CSi that do not induce apoptosis. By inhibiting the ATX-LPA axis or by EndoG knockdown, we prevent EndoG translocation and DSB formation. Our data indicate that CSi in low doses induces DSBs by sub-apoptotic activation of EndoG, adding CSi to a list of carcinogens that may induce mutations via sub-apoptotic and “minority MOMP” effects. This is the first report linking the ATX-LPA axis to this type of carcinogenic effect. Full article
Show Figures

Figure 1

16 pages, 9838 KiB  
Review
Designing Dual Inhibitors of Autotaxin-LPAR GPCR Axis
by Souvik Banerjee, Suechin Lee, Derek D. Norman and Gabor J. Tigyi
Molecules 2022, 27(17), 5487; https://doi.org/10.3390/molecules27175487 - 26 Aug 2022
Cited by 8 | Viewed by 3910
Abstract
The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous [...] Read more.
The ATX-LPA-LPAR1 signaling pathway plays a universal role in stimulating diverse cellular responses, including cell proliferation, migration, survival, and invasion in almost every cell type. The ATX-LPAR1 axis is linked to several metabolic and inflammatory diseases including cancer, fibrosis, and rheumatoid arthritis. Numerous selective ATX or LPAR1 inhibitors have been developed and so far, their clinical efficacy has only been evaluated in idiopathic pulmonary fibrosis. None of the ATX and LPAR1 inhibitors have advanced to clinical trials for cancer and rheumatoid arthritis. Nonetheless, several research groups, including ours, have shown considerable benefit of simultaneous ATX and LPAR1 inhibition through combination therapy. Recent research suggests that dual-targeting therapies are superior to combination therapies that use two selective inhibitors. However, limited reports are available on ATX-LPAR1 dual inhibitors, potentially due to co-expression of multiple different LPARs with close structural similarities at the same target. In this review, we discuss rational design and future directions of dual ATX-LPAR1 inhibitors. Full article
Show Figures

Figure 1

8 pages, 408 KiB  
Brief Report
Autotaxin Activity in Chronic Subdural Hematoma: A Prospective Clinical Study
by Theodosis Kalamatianos, Evangelos Drosos, Christiana Magkrioti, Ioanna Nikitopoulou, Christos Koutsarnakis, Anastasia Kotanidou, George P. Paraskevas, Vassilis Aidinis and George Stranjalis
Diagnostics 2022, 12(8), 1865; https://doi.org/10.3390/diagnostics12081865 - 2 Aug 2022
Viewed by 1661
Abstract
Autotaxin (ATX) is the ectoenzyme producing the bulk of lysophosphatidic acid (LPA) in circulation. ATX and LPA-mediated signaling (the ATX-LPA axis) play critical roles in the vascular and nervous system development. In adults, this axis contributes to diverse processes, including coagulation, inflammation, fibroproliferation [...] Read more.
Autotaxin (ATX) is the ectoenzyme producing the bulk of lysophosphatidic acid (LPA) in circulation. ATX and LPA-mediated signaling (the ATX-LPA axis) play critical roles in the vascular and nervous system development. In adults, this axis contributes to diverse processes, including coagulation, inflammation, fibroproliferation and angiogenesis under physiological and/or pathophysiological conditions. Given evidence implicating several of these processes in chronic subdural hematoma (CSDH) pathogenesis and development, we assessed ATX activity in CSDH patients. Twenty-eight patients were recruited. Blood and hematoma fluid were collected. Enzymatic assays were used to establish serum and hematoma ATX activity. Enzyme-linked immunosorbent assays were used to establish hematoma beta trace (BT) levels, a cerebrospinal fluid (CSF) marker, in a hematoma. ATX activity was nearly three folds higher in hematoma compared to serum (P < 0.001). There was no significant correlation between BT levels and ATX activity in a hematoma. The present results show, for the first time, that ATX is catalytically active in the hematoma fluid of CSDH patients. Moreover, our findings of significantly elevated ATX activity in hematoma compared to serum, implicate the ATX-LPA axis in CSDH pathophysiology. The CSF origin of ATX could not be inferred with the present results. Additional research is warranted to establish the significance of the ATX-LPA axis in CSDH and its potential as a biomarker and/or therapeutic target. Full article
(This article belongs to the Special Issue Chronic Subdural Hematoma)
Show Figures

Figure 1

10 pages, 1831 KiB  
Article
Autotaxin Has a Negative Role in Systemic Inflammation
by Ioanna Nikitopoulou, Aggeliki Katsifa, Paraskevi Kanellopoulou, Edison Jahaj, Alice G. Vassiliou, Zafeiria Mastora, Ioanna Dimopoulou, Stylianos E. Orfanos, Vassilis Aidinis and Anastasia Kotanidou
Int. J. Mol. Sci. 2022, 23(14), 7920; https://doi.org/10.3390/ijms23147920 - 18 Jul 2022
Cited by 6 | Viewed by 1831
Abstract
The pathogenesis of sepsis involves complex interactions and a systemic inflammatory response leading eventually to multiorgan failure. Autotaxin (ATX, ENPP2) is a secreted glycoprotein largely responsible for the extracellular production of lysophosphatidic acid (LPA), which exerts multiple effects in almost all cell types [...] Read more.
The pathogenesis of sepsis involves complex interactions and a systemic inflammatory response leading eventually to multiorgan failure. Autotaxin (ATX, ENPP2) is a secreted glycoprotein largely responsible for the extracellular production of lysophosphatidic acid (LPA), which exerts multiple effects in almost all cell types through its at least six G-protein-coupled LPA receptors (LPARs). Here, we investigated a possible role of the ATX/LPA axis in sepsis in an animal model of endotoxemia as well as in septic patients. Mice with 50% reduced serum ATX levels showed improved survival upon lipopolysaccharide (LPS) stimulation compared to their littermate controls. Similarly, mice bearing the inducible inactivation of ATX and presenting with >70% decreased ATX levels were even more protected against LPS-induced endotoxemia; however, no significant effects were observed upon the chronic and systemic transgenic overexpression of ATX. Moreover, the genetic deletion of LPA receptors 1 and 2 did not significantly affect the severity of the modelled disease, suggesting that alternative receptors may mediate LPA effects upon sepsis. In translation, ATX levels were found to be elevated in the sera of critically ill patients with sepsis in comparison with their baseline levels upon ICU admission. Therefore, the results indicate a role for ATX in LPS-induced sepsis and suggest possible therapeutic benefits of pharmacologically targeting ATX in severe, systemic inflammatory disorders. Full article
Show Figures

Figure 1

15 pages, 2897 KiB  
Article
The ATX–LPA Axis Regulates Vascular Permeability during Cerebral Ischemic-Reperfusion
by Susmita Bhattarai, Sudha Sharma, Utsab Subedi, Hosne Ara, Alika Shum, Murov Milena, Md. Shenuarin Bhuiyan, Srivatsan Kidambi, Hong Sun, Sumitra Miriyala and Manikandan Panchatcharam
Int. J. Mol. Sci. 2022, 23(8), 4138; https://doi.org/10.3390/ijms23084138 - 8 Apr 2022
Cited by 9 | Viewed by 2734
Abstract
Endothelial permeability is a major complication that must be addressed during stroke treatment. Study of the mechanisms underlying blood–brain barrier (BBB) disruption and management of the hypoxic stress-induced permeability of the endothelium following reperfusion are both urgently needed for stroke management. Lysophosphatidic acid [...] Read more.
Endothelial permeability is a major complication that must be addressed during stroke treatment. Study of the mechanisms underlying blood–brain barrier (BBB) disruption and management of the hypoxic stress-induced permeability of the endothelium following reperfusion are both urgently needed for stroke management. Lysophosphatidic acid (LPA), a bioactive lipid essential for basic cellular functions, causes unfavorable outcomes during stroke progression. LPA-producing enzyme autotaxin (ATX) is regulated in ischemic stroke. We used an electrical cell-substrate impedance sensor (ECIS) to measure endothelial permeability. Mitochondrial bioenergetics were obtained using a Seahorse analyzer. AR-2 probe fluorescence assay was used to measure ATX activity. LPA increased endothelial permeability and reduced junctional protein expression in mouse brain microvascular endothelial cells (MBMEC). LPA receptor inhibitors Ki16425 and AM095 attenuated the LPA-induced changes in the endothelial permeability and junctional proteins. LPA significantly diminished mitochondrial function in MBMEC. ATX was upregulated (p < 0.05) in brain microvascular endothelial cells under hypoxic reperfusion. ATX activity and permeability were attenuated with the use of an ATX inhibitor in a mouse stroke model. The upregulation of ATX with hypoxic reperfusion leads to LPA production in brain endothelial cells favoring permeability. Inhibition of the ATX–LPA–LPAR axis could be therapeutically targeted in stroke to achieve better outcomes. Full article
(This article belongs to the Special Issue Lipids and Cardiovascular Disease)
Show Figures

Graphical abstract

16 pages, 9491 KiB  
Review
Autotaxin/Lysophosphatidic Acid Axis: From Bone Biology to Bone Disorders
by Candide Alioli, Léa Demesmay, Olivier Peyruchaud and Irma Machuca-Gayet
Int. J. Mol. Sci. 2022, 23(7), 3427; https://doi.org/10.3390/ijms23073427 - 22 Mar 2022
Cited by 7 | Viewed by 2660
Abstract
Lysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by [...] Read more.
Lysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by autotaxin (ATX), a secreted enzyme with lysophospholipase D activity that converts lysophosphatidylcholine (LPC) into active LPA. Beyond its enzymatic activity, ATX serves as a docking molecule facilitating the efficient delivery of LPA to its specific cell surface receptors. Thus, LPA effects are the result of local production by ATX in a given tissue or cell type. As a consequence, the ATX/LPA axis should be considered as an entity to better understand their roles in physiology and pathophysiology and to propose novel therapeutic strategies. Herein, we provide not only an extensive overview of the relevance of the ATX/LPA axis in bone cell commitment and differentiation, skeletal development, and bone disorders, but also discuss new working hypotheses emerging from the interplay of ATX/LPA with well-established signaling pathways regulating bone mass. Full article
(This article belongs to the Special Issue Bone and Cartilage Biology)
Show Figures

Figure 1

16 pages, 1595 KiB  
Article
Phospholipase A1 Member A Activates Fibroblast-like Synoviocytes through the Autotaxin-Lysophosphatidic Acid Receptor Axis
by Yang Zhao, Stephan Hasse, Myriam Vaillancourt, Chenqi Zhao, Lynn Davis, Eric Boilard, Paul Fortin, John Di Battista, Patrice E. Poubelle and Sylvain G. Bourgoin
Int. J. Mol. Sci. 2021, 22(23), 12685; https://doi.org/10.3390/ijms222312685 - 24 Nov 2021
Cited by 4 | Viewed by 2707
Abstract
Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, [...] Read more.
Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis. Full article
Show Figures

Figure 1

13 pages, 2649 KiB  
Article
Autotaxin May Have Lysophosphatidic Acid-Unrelated Effects on Three-Dimension (3D) Cultured Human Trabecular Meshwork (HTM) Cells
by Megumi Watanabe, Masato Furuhashi, Yuri Tsugeno, Yosuke Ida, Fumihito Hikage and Hiroshi Ohguro
Int. J. Mol. Sci. 2021, 22(21), 12039; https://doi.org/10.3390/ijms222112039 - 7 Nov 2021
Cited by 1 | Viewed by 1631
Abstract
Purpose: The objective of the current study was to evaluate the effects of the autotaxin (ATX)–lysophosphatidic acid (LPA) signaling axis on the human trabecular meshwork (HTM) in two-dimensional (2D) and three-dimensional (3D) cultures of HTM cells. Methods: The effects were characterized by transendothelial [...] Read more.
Purpose: The objective of the current study was to evaluate the effects of the autotaxin (ATX)–lysophosphatidic acid (LPA) signaling axis on the human trabecular meshwork (HTM) in two-dimensional (2D) and three-dimensional (3D) cultures of HTM cells. Methods: The effects were characterized by transendothelial electrical resistance (TEER) and FITC-dextran permeability (2D), measurements of size and stiffness (3D), and the expression of several genes, including extracellular matrix (ECM) molecules, their modulators, and endoplasmic reticulum (ER) stress-related factors. Results: A one-day exposure to 200 nM LPA induced significant down-sizing effects of the 3D HTM spheroids, and these effects were enhanced slightly on longer exposure. The TEER and FITC-dextran permeability data indicate that LPA induced an increase in the barrier function of the 2D HTM monolayers. A one-day exposure to a 2 mg/L solution of ATX also resulted in a significant decrease in the sizes of the 3D HTM spheroids, and an increase in stiffness was also observed. The gene expression of several ECMs, their regulators and ER-stress related factors by the 3D HTM spheroids were altered by both ATX and LPA, but in different manners. Conclusions: The findings presented herein suggest that ATX may have additional roles in the human TM, in addition to the ATX–LPA signaling axis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 1687 KiB  
Article
Increased Autotaxin Levels in Severe COVID-19, Correlating with IL-6 Levels, Endothelial Dysfunction Biomarkers, and Impaired Functions of Dendritic Cells
by Ioanna Nikitopoulou, Dionysios Fanidis, Konstantinos Ntatsoulis, Panagiotis Moulos, George Mpekoulis, Maria Evangelidou, Alice G. Vassiliou, Vasiliki Dimakopoulou, Edison Jahaj, Stamatios Tsipilis, Stylianos E. Orfanos, Ioanna Dimopoulou, Emmanouil Angelakis, Karolina Akinosoglou, Niki Vassilaki, Argyrios Tzouvelekis, Anastasia Kotanidou and Vassilis Aidinis
Int. J. Mol. Sci. 2021, 22(18), 10006; https://doi.org/10.3390/ijms221810006 - 16 Sep 2021
Cited by 21 | Viewed by 3688
Abstract
Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, [...] Read more.
Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19. Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels, as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19. Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its pharmacological targeting might represent an additional therapeutic option, both during and after hospitalization. Full article
Show Figures

Figure 1

15 pages, 716 KiB  
Article
Plasma Concentrations of Lysophosphatidic Acid and Autotaxin in Abstinent Patients with Alcohol Use Disorder and Comorbid Liver Disease
by María Flores-López, Nuria García-Marchena, Francisco Javier Pavon, Estrella Lara, Oscar Porras-Perales, Pedro Araos, Nerea Requena-Ocaña, Sandra Torres-Galván, M. Carmen Mañas-Padilla, Gabriel Rubio, Juan Suárez, Luis J. Santín, Fernando Rodríguez de Fonseca, Estela Castilla-Ortega, María I. García-Fernández and Antonia Serrano
Biomedicines 2021, 9(9), 1207; https://doi.org/10.3390/biomedicines9091207 - 13 Sep 2021
Cited by 5 | Viewed by 2578
Abstract
Lysophosphatidic acid (LPA) is an endogenous lysophospholipid and a bioactive lipid that is synthesized by the enzyme autotaxin (ATX). The ATX–LPA axis has been associated with cognitive dysfunction and inflammatory diseases, mainly in a range of nonalcoholic liver diseases. Recently, preclinical and clinical [...] Read more.
Lysophosphatidic acid (LPA) is an endogenous lysophospholipid and a bioactive lipid that is synthesized by the enzyme autotaxin (ATX). The ATX–LPA axis has been associated with cognitive dysfunction and inflammatory diseases, mainly in a range of nonalcoholic liver diseases. Recently, preclinical and clinical evidence has suggested a role of LPA signaling in alcohol use disorder (AUD) and AUD-related cognitive function. However, the ATX–LPA axis has not been sufficiently investigated in alcoholic liver diseases. An exploratory study was conducted in 136 participants, 66 abstinent patients with AUD seeking treatment for alcohol (alcohol group), and 70 healthy control subjects (control group). The alcohol group was divided according to the presence of comorbid liver diseases (i.e., fatty liver/steatosis, alcoholic steatohepatitis, or cirrhosis). All participants were clinically evaluated, and plasma concentrations of total LPA and ATX were measured using enzyme-linked immunosorbent assays. Data were primarily analyzed using analysis of covariance (ANCOVA) while controlling for age, body mass index, and sex. Logistic regression models were created to assess the association of the ATX–LPA axis and AUD or liver disease. LPA and ATX were log10-transformed to fit the assumptions of parametric testing.The main results were as follows: total LPA and ATX concentrations were dysregulated in the alcohol group, and patients with AUD had significantly lower LPA (F(1,131) = 10.677, p = 0.001) and higher ATX (F(1,131) = 8.327, p = 0.005) concentrations than control subjects; patients with AUD and liver disease had significantly higher ATX concentrations (post hoc test, p < 0.05) than patients with AUD but not liver disease; significant correlations between AUD-related variables and concentrations of LPA and ATX were only found in the non-liver disease subgroup (the duration of alcohol abstinence with LPA and ATX (r = +0.33, p < 0.05); and the severity of AUD with ATX (rho = −0.33, p < 0.05)); and a logistic regression model with LPA, ATX, and AUD-related variables showed an excellent discriminative power (area under the curve (AUC) = 0.915, p < 0.001) for distinguishing patients with AUD and comorbid liver disease. In conclusion, our data show that the ATX–LPA axis is dysregulated in AUD and suggest this lipid signaling, in combination with relevant AUD-related variables, as a reliable biomarker of alcoholic liver diseases. Full article
(This article belongs to the Special Issue Biological Aspects of Drug Addiction)
Show Figures

Figure 1

15 pages, 826 KiB  
Review
Autotaxin-LPA-LPP3 Axis in Energy Metabolism and Metabolic Disease
by Anu Jose and Petra C. Kienesberger
Int. J. Mol. Sci. 2021, 22(17), 9575; https://doi.org/10.3390/ijms22179575 - 3 Sep 2021
Cited by 13 | Viewed by 6628
Abstract
Besides serving as a structural membrane component and intermediate of the glycerolipid metabolism, lysophosphatidic acid (LPA) has a prominent role as a signaling molecule through its binding to LPA receptors at the cell surface. Extracellular LPA is primarily produced from lysophosphatidylcholine (LPC) through [...] Read more.
Besides serving as a structural membrane component and intermediate of the glycerolipid metabolism, lysophosphatidic acid (LPA) has a prominent role as a signaling molecule through its binding to LPA receptors at the cell surface. Extracellular LPA is primarily produced from lysophosphatidylcholine (LPC) through the activity of secreted lysophospholipase D, autotaxin (ATX). The degradation of extracellular LPA to monoacylglycerol is mediated by lipid phosphate phosphatases (LPPs) at the cell membrane. This review summarizes and interprets current literature on the role of the ATX-LPA-LPP3 axis in the regulation of energy homeostasis, insulin function, and adiposity at baseline and under conditions of obesity. We also discuss how the ATX-LPA-LPP3 axis influences obesity-related metabolic complications, including insulin resistance, fatty liver disease, and cardiomyopathy. Full article
Show Figures

Figure 1

Back to TopTop