Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = APP mouse models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8935 KiB  
Article
Cognitive Effects of Simulated Galactic Cosmic Radiation Are Mediated by ApoE Status, Sex, and Environment in APP Knock-In Mice
by Laura Wieg, Jason C. Ciola, Caroline C. Wasén, Fidelia Gaba, Brianna R. Colletti, Maren K. Schroeder, Robert G. Hinshaw, Millicent N. Ekwudo, David M. Holtzman, Takashi Saito, Hiroki Sasaguri, Takaomi C. Saido, Laura M. Cox and Cynthia A. Lemere
Int. J. Mol. Sci. 2024, 25(17), 9379; https://doi.org/10.3390/ijms25179379 - 29 Aug 2024
Viewed by 785
Abstract
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer’s [...] Read more.
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer’s disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aβ in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer’s disease phenotypes. Full article
(This article belongs to the Special Issue Advanced Science in Alzheimer’s Disease)
Show Figures

Figure 1

16 pages, 1768 KiB  
Article
Hepatic Amyloid Beta-42-Metabolizing Proteins in Liver Steatosis and Metabolic Dysfunction-Associated Steatohepatitis
by Simon Gross, Lusine Danielyan, Christa Buechler, Marion Kubitza, Kathrin Klein, Matthias Schwab, Michael Melter and Thomas S. Weiss
Int. J. Mol. Sci. 2024, 25(16), 8768; https://doi.org/10.3390/ijms25168768 - 12 Aug 2024
Viewed by 801
Abstract
Amyloid beta (Aβ) plays a major role in the pathogenesis of Alzheimer’s disease and, more recently, has been shown to protect against liver fibrosis. Therefore, we studied Aβ-42 levels and the expression of genes involved in the generation, degradation, and transport of Aβ [...] Read more.
Amyloid beta (Aβ) plays a major role in the pathogenesis of Alzheimer’s disease and, more recently, has been shown to protect against liver fibrosis. Therefore, we studied Aβ-42 levels and the expression of genes involved in the generation, degradation, and transport of Aβ proteins in liver samples from patients at different stages of metabolic dysfunction-associated liver disease (MASLD) and under steatotic conditions in vitro/in vivo. Amyloid precursor protein (APP), key Aβ-metabolizing proteins, and Aβ-42 were analyzed using RT-PCR, Western blotting, Luminex analysis in steatotic in vitro and fatty liver mouse models, and TaqMan qRT-PCR analysis in hepatic samples from patients with MASLD. Hepatocytes loaded with palmitic acid induced APP, presenilin, and neprilysin (NEP) expression, which was reversed by oleic acid. Increased APP and NEP, decreased BACE1, and unchanged Aβ-42 protein levels were found in the steatotic mouse liver compared to the normal liver. Aβ-42 concentrations were low in MASLD samples of patients with moderate to severe fibrosis compared to the livers of patients with mild or no MASLD. Consistent with the reduced Aβ-42 levels, the mRNA expression of proteins involved in APP degradation (ADAM9/10/17, BACE2) and Aβ-42 cleavage (MMP2/7/9, ACE) was increased. In the steatotic liver, the expression of APP- and Aβ-metabolizing proteins is increased, most likely related to oxidative stress, but does not affect hepatic Aβ-42 levels. Consistent with our previous findings, low Aβ-42 levels in patients with liver fibrosis appear to be caused by the reduced production and enhanced non-amyloidogenic processing of APP. Full article
(This article belongs to the Special Issue Exploring Molecular Mechanisms of Liver Fibrosis)
Show Figures

Graphical abstract

13 pages, 3193 KiB  
Article
The Neuroprotective Effect of Neural Cell Adhesion Molecule L1 in the Hippocampus of Aged Alzheimer’s Disease Model Mice
by Miljana Aksic, Igor Jakovcevski, Mohammad I. K. Hamad, Vladimir Jakovljevic, Sanja Stankovic and Maja Vulovic
Biomedicines 2024, 12(8), 1726; https://doi.org/10.3390/biomedicines12081726 - 1 Aug 2024
Viewed by 751
Abstract
Alzheimer’s disease (AD) is a severe neurodegenerative disorder and the most common form of dementia, causing the loss of cognitive function. Our previous study has shown, using a doubly mutated mouse model of AD (APP/PS1), that the neural adhesion molecule L1 directly binds [...] Read more.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder and the most common form of dementia, causing the loss of cognitive function. Our previous study has shown, using a doubly mutated mouse model of AD (APP/PS1), that the neural adhesion molecule L1 directly binds amyloid peptides and decreases plaque load and gliosis when injected as an adeno-associated virus construct (AAV-L1) into APP/PS1 mice. In this study, we microinjected AAV-L1, using a Hamilton syringe, directly into the 3-month-old APP/PS1 mouse hippocampus and waited for a year until significant neurodegeneration developed. We stereologically counted the principal neurons and parvalbumin-positive interneurons in the hippocampus, estimated the density of inhibitory synapses around principal cells, and compared the AAV-L1 injection models with control injections of green fluorescent protein (AAV-GFP) and the wild-type hippocampus. Our results show that there is a significant loss of granule cells in the dentate gyrus of the APP/PS1 mice, which was improved by AAV-L1 injection, compared with the AAV-GFP controls (p < 0.05). There is also a generalized loss of parvalbumin-positive interneurons in the hippocampus of APP/PS1 mice, which is ameliorated by AAV-L1 injection, compared with the AAV-GFP controls (p < 0.05). Additionally, AAV-L1 injection promotes the survival of inhibitory synapses around the principal cells compared with AAV-GFP controls in all three hippocampal subfields (p < 0.01). Our results indicate that L1 promotes neuronal survival and protects the synapses in an AD mouse model, which could have therapeutic implications. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

21 pages, 2664 KiB  
Article
Early Inhibition of Phosphodiesterase 4B (PDE4B) Instills Cognitive Resilience in APPswe/PS1dE9 Mice
by Ben Rombaut, Melissa Schepers, Assia Tiane, Femke Mussen, Lisa Koole, Sofie Kessels, Chloë Trippaers, Ruben Jacobs, Kristiaan Wouters, Emily Willems, Lieve van Veggel, Philippos Koulousakis, Dorien Deluyker, Virginie Bito, Jos Prickaerts, Inez Wens, Bert Brône, Daniel L. A. van den Hove and Tim Vanmierlo
Cells 2024, 13(12), 1000; https://doi.org/10.3390/cells13121000 - 8 Jun 2024
Viewed by 1339
Abstract
Microglia activity can drive excessive synaptic loss during the prodromal phase of Alzheimer’s disease (AD) and is associated with lowered cyclic adenosine monophosphate (cAMP) due to cAMP phosphodiesterase 4B (PDE4B). This study aimed to investigate whether long-term inhibition of PDE4B by A33 (3 [...] Read more.
Microglia activity can drive excessive synaptic loss during the prodromal phase of Alzheimer’s disease (AD) and is associated with lowered cyclic adenosine monophosphate (cAMP) due to cAMP phosphodiesterase 4B (PDE4B). This study aimed to investigate whether long-term inhibition of PDE4B by A33 (3 mg/kg/day) can prevent synapse loss and its associated cognitive decline in APPswe/PS1dE9 mice. This model is characterized by a chimeric mouse/human APP with the Swedish mutation and human PSEN1 lacking exon 9 (dE9), both under the control of the mouse prion protein promoter. The effects on cognitive function of prolonged A33 treatment from 20 days to 4 months of age, was assessed at 7–8 months. PDE4B inhibition significantly improved both the working and spatial memory of APPswe/PSdE9 mice after treatment ended. At the cellular level, in vitro inhibition of PDE4B induced microglial filopodia formation, suggesting that regulation of PDE4B activity can counteract microglia activation. Further research is needed to investigate if this could prevent microglia from adopting their ‘disease-associated microglia (DAM)’ phenotype in vivo. These findings support the possibility that PDE4B is a potential target in combating AD pathology and that early intervention using A33 may be a promising treatment strategy for AD. Full article
Show Figures

Figure 1

32 pages, 6179 KiB  
Article
Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer’s Disease
by Martine B. Grenon, Maria-Tzousi Papavergi, Praveen Bathini, Martin Sadowski and Cynthia A. Lemere
Int. J. Mol. Sci. 2024, 25(11), 5754; https://doi.org/10.3390/ijms25115754 - 25 May 2024
Cited by 1 | Viewed by 1135
Abstract
Alzheimer’s disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein [...] Read more.
Alzheimer’s disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein ε4 allele carriers (APOE4) compared to non-carriers. To reflect patients most at risk for vascular complications of anti-Aβ immunotherapy, we selected an APPswe/PS1dE9 transgenic mouse model bearing the human APOE4 gene (APPPS1:E4) and compared it with the same APP/PS1 mouse model bearing the human APOE3 gene (APOE ε3 allele; APPPS1:E3). Using histological and biochemical analyses, we characterized mice at three ages: 8, 12, and 16 months. Female and male mice were assayed for general cerebral fibrillar and pyroglutamate (pGlu-3) Aβ deposition, cerebral amyloid angiopathy (CAA), microhemorrhages, apoE and cholesterol composition, astrocytes, microglia, inflammation, lysosomal dysfunction, and neuritic dystrophy. Amyloidosis, lipid deposition, and astrogliosis increased with age in APPPS1:E4 mice, while inflammation did not reveal significant changes with age. In general, APOE4 carriers showed elevated Aβ, apoE, reactive astrocytes, pro-inflammatory cytokines, microglial response, and neuritic dystrophy compared to APOE3 carriers at different ages. These results highlight the potential of the APPPS1:E4 mouse model as a valuable tool in investigating the vascular side effects associated with anti-amyloid immunotherapy. Full article
(This article belongs to the Special Issue Molecular Aspects of the Neurodegenerative Brain Diseases)
Show Figures

Figure 1

10 pages, 1328 KiB  
Article
Novel Experimental Mouse Model to Study the Pathogenesis and Therapy of Actinobacillus pleuropneumoniae Infection
by Duc-Thang Bui, Yi-San Lee, Tien-Fen Kuo, Zeng-Weng Chen and Wen-Chin Yang
Pathogens 2024, 13(5), 412; https://doi.org/10.3390/pathogens13050412 - 15 May 2024
Viewed by 1195
Abstract
Actinobacillus pleuropneumoniae (APP) is a major cause of lung infections in pigs. An experimental mouse has the edge over pigs pertaining to the ease of experimental operation, disease study and therapy, abundance of genetic resources, and cost. However, it is a challenge to [...] Read more.
Actinobacillus pleuropneumoniae (APP) is a major cause of lung infections in pigs. An experimental mouse has the edge over pigs pertaining to the ease of experimental operation, disease study and therapy, abundance of genetic resources, and cost. However, it is a challenge to introduce APP into a mouse lung due to the small respiratory tract of mice and bacterial host tropism. In this study, an effective airborne transmission of APP serovar 1 (APP1) was developed in mice for lung infection. Consequently, APP1 infected BALB/c mice and caused 60% death within three days of infection at the indicated condition. APP1 seemed to enter the lung and, in turn, spread to other organs of the mice over the first 5 days after infection. Accordingly, APP1 damaged the lung as evidenced by its morphological and histological examinations. Furthermore, ampicillin fully protected mice against APP1 as shown by their survival, clinical symptoms, body weight loss, APP1 count, and lung damages. Finally, the virulence of two extra APP strains, APP2 and APP5, in the model was compared based on the survival rate of mice. Collectively, this study successfully established a fast and reliable mouse model of APP which can benefit APP research and therapy. Such a model is a potentially useful model for airway bacterial infections. Full article
Show Figures

Graphical abstract

10 pages, 3742 KiB  
Article
Loss of Cholinergic and Monoaminergic Afferents in APPswe/PS1ΔE9 Transgenic Mouse Model of Cerebral Amyloidosis Preferentially Occurs Near Amyloid Plaques
by Michael K. Lee and Gang Chen
Int. J. Mol. Sci. 2024, 25(9), 5004; https://doi.org/10.3390/ijms25095004 - 3 May 2024
Viewed by 849
Abstract
Alzheimer’s disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the APPswe/PS1ΔE9 (APP/PS) transgenic mouse model. [...] Read more.
Alzheimer’s disease (AD) is characterized by a loss of neurons in the cortex and subcortical regions. Previously, we showed that the progressive degeneration of subcortical monoaminergic (MAergic) neurons seen in human AD is recapitulated in the APPswe/PS1ΔE9 (APP/PS) transgenic mouse model. Because degeneration of cholinergic (Ach) neurons is also a prominent feature of AD, we examined the integrity of the Ach system in the APP/PS model. The overall density of Ach fibers is reduced in APP/PS1 mice at 12 and 18 months of age but not at 4 months of age. Analysis of basal forebrain Ach neurons shows no loss of Ach neurons in the APP/PS model. Thus, since MAergic systems show overt cell loss at 18 months of age, the Ach system is less vulnerable to neurodegeneration in the APP/PS1 model. We also examined whether the proximity to Aβ deposition affected the degeneration of Ach and 5-HT afferents. We found that the areas closer to the edges of compact Aβ deposits exhibit a more severe loss of afferents than the areas that are more distal to Aβ deposits. Collectively, the results indicate that the APP/PS model recapitulates the degeneration of multiple subcortical neurotransmitter systems, including the Ach system. In addition, the results indicate that Aβ deposits cause global as well as local toxicity to subcortical afferents. Full article
(This article belongs to the Special Issue Alzheimer’s Disease: From Pathogenesis to Treatment)
Show Figures

Figure 1

20 pages, 11119 KiB  
Article
DEAD Box Helicase 24 Is Increased in the Brain in Alzheimer’s Disease and AppN-LF Mice and Influences Presymptomatic Pathology
by Michael Axenhus, Tosca Doeswijk, Per Nilsson, Anna Matton, Bengt Winblad, Lars Tjernberg and Sophia Schedin-Weiss
Int. J. Mol. Sci. 2024, 25(7), 3622; https://doi.org/10.3390/ijms25073622 - 23 Mar 2024
Viewed by 1228
Abstract
At the time of diagnosis, Alzheimer’s disease (AD) patients already suffer from significant neuronal loss. The identification of proteins that influence disease progression before the onset of symptoms is thus an essential part of the development of new effective drugs and biomarkers. Here, [...] Read more.
At the time of diagnosis, Alzheimer’s disease (AD) patients already suffer from significant neuronal loss. The identification of proteins that influence disease progression before the onset of symptoms is thus an essential part of the development of new effective drugs and biomarkers. Here, we used an unbiased 18O labelling proteomics approach to identify proteins showing altered levels in the AD brain. We studied the relationship between the protein with the highest increase in hippocampus, DEAD box Helicase 24 (DDX24), and AD pathology. We visualised DDX24 in the human brain and in a mouse model for Aβ42-induced AD pathology—AppNL-F—and studied the interaction between Aβ and DDX24 in primary neurons. Immunohistochemistry in the AD brain confirmed the increased levels and indicated an altered subcellular distribution of DDX24. Immunohistochemical studies in AppNL-F mice showed that the increase of DDX24 starts before amyloid pathology or memory impairment is observed. Immunocytochemistry in AppNL-F primary hippocampal neurons showed increased DDX24 intensity in the soma, nucleus and nucleolus. Furthermore, siRNA targeting of DDX24 in neurons decreased APP and Aβ42 levels, and the addition of Aβ42 to the medium reduced DDX24. In conclusion, we have identified DDX24 as a protein with a potential role in Aβ-induced AD pathology. Full article
Show Figures

Figure 1

14 pages, 8369 KiB  
Article
Chicoric Acid Ameliorated Beta-Amyloid Pathology and Enhanced Expression of Synaptic-Function-Related Markers via L1CAM in Alzheimer’s Disease Models
by Ruonan Wang, Shijia Kang, Zirui Zhao, Lingling Jin, Xiaolin Cui, Lili Chen, Melitta Schachner, Sheng Li, Yanjie Guo and Jie Zhao
Int. J. Mol. Sci. 2024, 25(6), 3408; https://doi.org/10.3390/ijms25063408 - 17 Mar 2024
Cited by 2 | Viewed by 1437
Abstract
Alzheimer’s disease (AD) is the most common progressive neurodegenerative disease. The accumulation of amyloid-beta (Aβ) plaques is a distinctive pathological feature of AD patients. The aims of this study were to evaluate the therapeutic effect of chicoric acid (CA) on AD models and [...] Read more.
Alzheimer’s disease (AD) is the most common progressive neurodegenerative disease. The accumulation of amyloid-beta (Aβ) plaques is a distinctive pathological feature of AD patients. The aims of this study were to evaluate the therapeutic effect of chicoric acid (CA) on AD models and to explore its underlying mechanisms. APPswe/Ind SH-SY5Y cells and 5xFAD mice were treated with CA. Soluble Aβ1–42 and Aβ plaque levels were analyzed by ELISA and immunohistochemistry, respectively. Transcriptome sequencing was used to compare the changes in hippocampal gene expression profiles among the 5xFAD mouse groups. The specific gene expression levels were quantified by qRT-PCR and Western blot analysis. It was found that CA treatment reduced the Aβ1–42 levels in the APPswe/Ind cells and 5xFAD mice. It also reduced the Aβ plaque levels as well as the APP and BACE1 levels. Transcriptome analysis showed that CA affected the synaptic-plasticity-related genes in the 5xFAD mice. The levels of L1CAM, PSD-95 and synaptophysin were increased in the APPswe/Ind SH-SY5Y cells and 5xFAD mice treated with CA, which could be inhibited by administering siRNA-L1CAM to the CA-treated APPswe/Ind SH-SY5Y cells. In summary, CA reduced Aβ levels and increased the expression levels of synaptic-function-related markers via L1CAM in AD models. Full article
Show Figures

Graphical abstract

26 pages, 6298 KiB  
Article
Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer’s Disease Mice via Transcriptomic and Cellular Analysis
by Young-Kook Kim, Danbi Jo, Archana Arjunan, Yeongseo Ryu, Yeong-Hwan Lim, Seo Yoon Choi, Hee Kyung Kim and Juhyun Song
Int. J. Mol. Sci. 2024, 25(5), 2567; https://doi.org/10.3390/ijms25052567 - 22 Feb 2024
Cited by 1 | Viewed by 1599
Abstract
Alzheimer’s disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. [...] Read more.
Alzheimer’s disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer’s disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer’s disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer’s disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

15 pages, 3778 KiB  
Article
The β-Secretase 1 Enzyme as a Novel Therapeutic Target for Prostate Cancer
by Hilal A. Rather, Sameh Almousa, Ashish Kumar, Mitu Sharma, Isabel Pennington, Susy Kim, Yixin Su, Yangen He, Abdollah R. Ghara, Kiran Kumar Solingapuram Sai, Nora M. Navone, Donald J. Vander Griend and Gagan Deep
Cancers 2024, 16(1), 10; https://doi.org/10.3390/cancers16010010 - 19 Dec 2023
Viewed by 1474
Abstract
Recent studies have demonstrated the association of APP and Aβ with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1’s usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in [...] Read more.
Recent studies have demonstrated the association of APP and Aβ with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1’s usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in human PCa tissue samples, patient-derived xenografts (PDX), human PCa xenograft tissue in nude mice, and transgenic adenocarcinoma of the mouse prostate (TRAMP) tissues by immunohistochemistry (IHC) analysis. Additionally, the downstream product of BACE1 activity, i.e., Aβ1-42 expression, was also observed in these PCa tissues by IHC as well as by PET imaging in TRAMP mice. Furthermore, BACE1 gene expression and activity was confirmed in several established PCa cell lines (LNCaP, C4-2B-enzalutamide sensitive [S], C4-2B-enzalutamide resistant [R], 22Rv1-S, 22Rv1-R, PC3, DU145, and TRAMP-C1) by real-time PCR and fluorometric assay, respectively. Treatment with a pharmacological inhibitor of BACE1 (MK-8931) strongly reduced the proliferation of PCa cells in in vitro and in vivo models, analyzed by multiple assays (MTT, clonogenic, and trypan blue exclusion assays and IHC). Cell cycle analyses revealed an increase in the sub-G1 population and a significant modulation in other cell cycle stages (G1/S/G2/M) following MK-8931 treatment. Most importantly, in vivo administration of MK-8931 intraperitoneal (30 mg/kg) strongly inhibited TRAMP-C1 allograft growth in immunocompetent C57BL/6 mice (approximately 81% decrease, p = 0.019). Furthermore, analysis of tumor tissue using the prostate cancer-specific pathway array revealed the alteration of several genes involved in PCa growth and progression including Forkhead O1 (FOXO1). All together, these findings suggest BACE1 as a novel therapeutic target in advanced PCa. Full article
(This article belongs to the Special Issue The Biological Mechanism of Cancer Proliferation and Metastasis)
Show Figures

Figure 1

19 pages, 7619 KiB  
Article
Ginkgo biloba Extract Drives Gut Flora and Microbial Metabolism Variation in a Mouse Model of Alzheimer’s Disease
by Ting Yu, Yueyang Xing, Qi Gao, Dandan Wang, Hongzhuan Chen, Hao Wang and Yongfang Zhang
Pharmaceutics 2023, 15(12), 2746; https://doi.org/10.3390/pharmaceutics15122746 - 8 Dec 2023
Cited by 1 | Viewed by 1782
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disease. Numerous investigations have demonstrated that medications that regulate the “brain–gut” axis can ameliorate disease symptoms of AD. Studies have shown that Ginkgo biloba extract (EGb) is involved in intestinal metabolism to meet the goal of [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative disease. Numerous investigations have demonstrated that medications that regulate the “brain–gut” axis can ameliorate disease symptoms of AD. Studies have shown that Ginkgo biloba extract (EGb) is involved in intestinal metabolism to meet the goal of illness treatment. EGb is currently utilized extensively in the clinical prevention and treatment of cardiovascular and cerebrovascular diseases. However, the regulatory effect of EGb on intestinal flora and its metabolites in AD pathology remains largely speculative. In this study, the Morris water maze test showed a significant improvement of spatial memory in the AD mouse model (APP/PS1 mice) after EGb treatment. We next confirmed the positive effects of EGb on the gut flora and metabolites of APP/PS1 mice and further showed that EGb treatment reshaped the disturbed gut microbiome, in particular by reducing the Firmicutes/Bacteroides ratio and increasing the abundance of Bacteroidetes, Uroviricota, Streptophyta, and Spirochaetes. Meanwhile, a non-targeted metabolomics analysis showed that EGb treatment significantly reversed the dysfunction of the microbial metabolic phenotype by altering Limosilactobacillus and Parvibacte, with 300 differential metabolites modulated (131 up-regulated, 169 down-regulated). Our findings highlight the significant regulatory impact of EGb on intestinal microflora and microbial metabolism in AD mice models and provide a potential therapeutic strategy for AD. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

13 pages, 2471 KiB  
Article
Plasma Exchange Reduces Aβ Levels in Plasma and Decreases Amyloid Plaques in the Brain in a Mouse Model of Alzheimer’s Disease
by Santiago Ramirez, Suelyn Koerich, Natalia Astudillo, Nicole De Gregorio, Rabab Al-Lahham, Tyler Allison, Natalia Pessoa Rocha, Fei Wang and Claudio Soto
Int. J. Mol. Sci. 2023, 24(23), 17087; https://doi.org/10.3390/ijms242317087 - 4 Dec 2023
Cited by 3 | Viewed by 1988
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, characterized by the abnormal accumulation of protein aggregates in the brain, known as neurofibrillary tangles and amyloid-β (Aβ) plaques. It is believed that an imbalance between cerebral and peripheral pools of Aβ may [...] Read more.
Alzheimer’s disease (AD) is the most common type of dementia, characterized by the abnormal accumulation of protein aggregates in the brain, known as neurofibrillary tangles and amyloid-β (Aβ) plaques. It is believed that an imbalance between cerebral and peripheral pools of Aβ may play a relevant role in the deposition of Aβ aggregates. Therefore, in this study, we aimed to evaluate the effect of the removal of Aβ from blood plasma on the accumulation of amyloid plaques in the brain. We performed monthly plasma exchange with a 5% mouse albumin solution in the APP/PS1 mouse model from 3 to 7 months old. At the endpoint, total Aβ levels were measured in the plasma, and soluble and insoluble brain fractions were analyzed using ELISA. Brains were also analyzed histologically for amyloid plaque burden, plaque size distributions, and gliosis. Our results showed a reduction in the levels of Aβ in the plasma and insoluble brain fractions. Interestingly, histological analysis showed a reduction in thioflavin-S (ThS) and amyloid immunoreactivity in the cortex and hippocampus, accompanied by a change in the size distribution of amyloid plaques, and a reduction in Iba1-positive cells. Our results provide preclinical evidence supporting the relevance of targeting Aβ in the periphery and reinforcing the potential use of plasma exchange as an alternative non-pharmacological strategy for slowing down AD pathogenesis. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

24 pages, 4446 KiB  
Article
The Effect of Fat Intake with Increased Omega-6-to-Omega-3 Polyunsaturated Fatty Acid Ratio in Animal Models of Early and Late Alzheimer’s Disease-like Pathogenesis
by Pablo Galeano, Marialuisa de Ceglia, Mauricio Mastrogiovanni, Lorenzo Campanelli, Dina Medina-Vera, Nicolás Campolo, Gisela V. Novack, Cristina Rosell-Valle, Juan Suárez, Adrián Aicardo, Karen Campuzano, Eduardo M. Castaño, Sonia Do Carmo, A. Claudio Cuello, Silvina Bartesaghi, Rafael Radi, Fernando Rodríguez de Fonseca and Laura Morelli
Int. J. Mol. Sci. 2023, 24(23), 17009; https://doi.org/10.3390/ijms242317009 - 30 Nov 2023
Cited by 1 | Viewed by 1905
Abstract
This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were [...] Read more.
This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively. In rats and mice, the HFD impaired reference memory in wild-type (WT) animals but did not worsen it in Tg, did not cause obesity, and did not increase triglycerides or glucose levels. Conversely, the HFD promoted stronger microglial activation in Tg vs. WT rats but had no effect on cerebral amyloid deposition. IFN-γ, IL-1β, and IL-6 plasma levels were increased in Tg rats, regardless of diet, while CXCL1 chemokine levels were increased in HFD-fed mice, regardless of genotype. Hippocampal 3-nitrotyrosine levels tended to increase in HFD-fed Tg rats but not in mice. Overall, an HFD with an elevated omega-6-to-omega-3 ratio as compared to the CD (25:1 vs. 8.4:1) did not aggravate the outcome of AD regardless of the stage of amyloid pathology, suggesting that many neurobiological processes relevant to AD are not directly dependent on PUFA intake. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

21 pages, 6567 KiB  
Article
A Nanostructured Protein Filtration Device for Possible Use in the Treatment of Alzheimer’s Disease—Concept and Feasibility after In Vivo Tests
by Thomas Gabriel Schreiner, Manuel Menéndez-González, Maricel Adam, Bogdan Ovidiu Popescu, Andrei Szilagyi, Gabriela Dumitrita Stanciu, Bogdan Ionel Tamba and Romeo Cristian Ciobanu
Bioengineering 2023, 10(11), 1303; https://doi.org/10.3390/bioengineering10111303 - 10 Nov 2023
Cited by 1 | Viewed by 1218
Abstract
Background: Alzheimer’s disease (AD), along with other neurodegenerative disorders, remains a challenge for clinicians, mainly because of the incomplete knowledge surrounding its etiology and inefficient therapeutic options. Considering the central role of amyloid beta (Aβ) in the onset and evolution of AD, Aβ-targeted [...] Read more.
Background: Alzheimer’s disease (AD), along with other neurodegenerative disorders, remains a challenge for clinicians, mainly because of the incomplete knowledge surrounding its etiology and inefficient therapeutic options. Considering the central role of amyloid beta (Aβ) in the onset and evolution of AD, Aβ-targeted therapies are among the most promising research directions. In the context of decreased Aβ elimination from the central nervous system in the AD patient, the authors propose a novel therapeutic approach based on the “Cerebrospinal Fluid Sink Therapeutic Strategy” presented in previous works. This article aims to demonstrate the laborious process of the development and testing of an effective nanoporous ceramic filter, which is the main component of an experimental device capable of filtrating Aβ from the cerebrospinal fluid in an AD mouse model. Methods: First, the authors present the main steps needed to create a functional filtrating nanoporous ceramic filter, which represents the central part of the experimental filtration device. This process included synthesis, functionalization, and quality control of the functionalization, which were performed via various spectroscopy methods and thermal analysis, selectivity measurements, and a biocompatibility assessment. Subsequently, the prototype was implanted in APP/PS1 mice for four weeks, then removed, and the nanoporous ceramic filter was tested for its filtration capacity and potential structural damages. Results: In applying the multi-step protocol, the authors developed a functional Aβ-selective filtration nanoporous ceramic filter that was used within the prototype. All animal models survived the implantation procedure and had no significant adverse effects during the 4-week trial period. Post-treatment analysis of the nanoporous ceramic filter showed significant protein loading, but no complete clogging of the pores. Conclusions: We demonstrated that a nanoporous ceramic filter-based system that filtrates Aβ from the cerebrospinal fluid is a feasible and safe treatment modality in the AD mouse model. The presented prototype has a functional lifespan of around four weeks, highlighting the need to develop advanced nanoporous ceramic filters with anti-biofouling properties to ensure the long-term action of this therapy. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

Back to TopTop