Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (202)

Search Parameters:
Keywords = AP2/ERF transcription factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7230 KiB  
Article
Novel SNPs Linked to Blast Resistance Genes Identified in Pearl Millet Through Genome-Wide Association Models
by Swati Singh, Ganesan Prakash, Sandeep Nanjundappa, Renuka Malipatil, Prerana Kalita, Tara C. Satyavathi and Nepolean Thirunavukkarasu
Int. J. Mol. Sci. 2024, 25(22), 12048; https://doi.org/10.3390/ijms252212048 - 9 Nov 2024
Viewed by 500
Abstract
Foliar blast, caused by Pyricularia grisea, poses a major challenge to pearl millet (Pennisetum glaucum (L.) R. Br) production, leading to severe yield losses, particularly in rainfed ecologies. This study aimed to elucidate the genetic basis of blast resistance through a [...] Read more.
Foliar blast, caused by Pyricularia grisea, poses a major challenge to pearl millet (Pennisetum glaucum (L.) R. Br) production, leading to severe yield losses, particularly in rainfed ecologies. This study aimed to elucidate the genetic basis of blast resistance through a genome-wide association study (GWAS) involving 281 diverse pearl millet inbreds. GWAS panel was phenotyped for blast resistance against three distinct isolates of P. grisea collected from Delhi, Gujarat, and Rajasthan locations, revealing a significant variability with 16.7% of the inbreds showing high resistance. Bayesian information and linkage disequilibrium iteratively nested keyway (BLINK) and Multi-Locus Mixed Model (MLMM) models using transformed means identified 68 significant SNPs linked to resistance, with hotspots for resistance-related genes on chromosomes 1, 2, and 6. These regions harbor genes involved in defense mechanisms, including immune response, stress tolerance, signal transduction, transcription regulation, and pathogen defense. Genes, namely 14-3-3-like proteins RGA2, RGA4, hypersensitive-induced response proteins, NHL3, NBS-LRR, LRR-RLK, LRRNT_2, and various transcription factors such as AP2/ERF and WRKY, played a crucial role in the stress-responsive pathways. Analyses of transporter proteins, redox processes, and structural proteins revealed additional mechanisms contributing to blast resistance. This study offers valuable insights into the complex genetic architecture of blast resistance in pearl millet, offering a solid foundation for marker-assisted breeding programs and gene-editing experiments. Full article
(This article belongs to the Special Issue Molecular Research Progress of Cereal Crop Disease Resistance)
Show Figures

Figure 1

22 pages, 8176 KiB  
Article
Genome-Wide Analysis of HECT E3 Ligases Members in Phyllostachys edulis Provides Insights into the Role of PeHECT1 in Plant Abiotic Stress Response
by Xinru Xie, Songping Hu, Linxiu Liu, Huanhuan Pan, Hu Huang, Xun Cao, Guirong Qiao, Xiaojiao Han, Wenmin Qiu, Zhuchou Lu, Renying Zhuo and Jing Xu
Int. J. Mol. Sci. 2024, 25(22), 11896; https://doi.org/10.3390/ijms252211896 - 5 Nov 2024
Viewed by 375
Abstract
Homology to E6-AP Carboxy Terminus (HECT) E3 ubiquitin ligases play pivotal roles in plant growth, development, and responses to abiotic stresses. However, the function of HECT genes in Phyllostachys edulis (P. edulis) remains largely uninvestigated. In this study, a comprehensive genome-wide [...] Read more.
Homology to E6-AP Carboxy Terminus (HECT) E3 ubiquitin ligases play pivotal roles in plant growth, development, and responses to abiotic stresses. However, the function of HECT genes in Phyllostachys edulis (P. edulis) remains largely uninvestigated. In this study, a comprehensive genome-wide analysis of the HECT E3 ubiquitin ligases gene family in P. edulis was conducted, aiming to elucidate its evolutionary relationships and gene expansion. Analysis of gene structure, conserved motifs and domains, and synteny genome regions were performed. Furthermore, cis-elements in HECT gene promoters that respond to plant hormones and environmental stresses were identified and corroborated by expression data from diverse abiotic stress conditions and hormone treatments. Based on the co-expression network of PeHECTs under cold and dehydration stresses, PeHECT1 was identified as a key candidate gene associated with abiotic stress tolerance. Overexpression of PeHECT1 in tobacco leaves significantly upregulated genes related to reactive oxygen species (ROS) detoxification and polyamine biosynthesis. Yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase (dual-LUC) assays suggested that the transcription factor ETHYLENE RESPONSE FACTOR 3 (PeERF3) bound to the dehydration-responsive element (DRE) of the promoter of PeHECT1 and activated its transcription activity. Phylogenetic analysis indicated that PeHECT1 in P. edulis exhibited a close association with the diploid herbaceous bamboo Olyra latifolia, followed by the divergence of rice and bamboo. In summary, this study enhances our comprehensive understanding of the HECT E3 ubiquitin ligases gene family in P. edulis and highlights the potential role of PeHECT1 in plant abiotic stress response. Full article
(This article belongs to the Special Issue Plant Resistance to Biotic and Abiotic Stresses)
Show Figures

Figure 1

27 pages, 11777 KiB  
Article
Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens
by Hongyi Zhang, Yingnan Wang, Binjie Ma, Xiangqi Bu, Zhenhua Dang and Yingchun Wang
Int. J. Mol. Sci. 2024, 25(22), 11891; https://doi.org/10.3390/ijms252211891 - 5 Nov 2024
Viewed by 489
Abstract
Krascheninnikovia arborescens, an endemic shrub in China, thrives in desertification-prone environments due to its robust biomass, hairy leaves, and extensive root system. It is vital for ecological restoration and serves as a valuable forage plant. This study explored the molecular mechanisms underlying K. [...] Read more.
Krascheninnikovia arborescens, an endemic shrub in China, thrives in desertification-prone environments due to its robust biomass, hairy leaves, and extensive root system. It is vital for ecological restoration and serves as a valuable forage plant. This study explored the molecular mechanisms underlying K. arborescens’ adaptation to desert conditions, focusing on its physiological, biochemical, and transcriptomic responses to drought, salt, and alkali stresses. The results revealed that the three stresses have significant impacts on the photosynthetic, antioxidant, and ion balance systems of the plants, with the alkali stress inducing the most pronounced changes and differential gene expression. The clustering and functional enrichment analyses of differentially expressed genes (DEGs) highlighted the enrichment of the induced genes in pathways related to plant hormone signaling, phenylpropanoid biosynthesis, and transcription factors following stress treatments. In these pathways, the synthesis and signal transduction of abscisic acid (ABA) and ethylene, as well as the flavonoid and lignin synthesis pathways, and transcription factors such as MYB, AP2/ERF, bHLH, NAC, and WRKY responded actively to the stress and played pivotal roles. Through the WGCNA analysis, 10 key modules were identified, with the yellow module demonstrating a high correlation with the ABA and anthocyanin contents, while the turquoise module was enriched in the majority of genes related to hormone and phenylpropanoid pathways. The analysis of hub genes in these modules highlighted the significant roles of the bHLH and MYB transcription factors. These findings could offer new insights into the molecular mechanisms that enable the adaptation of K. arborescens to desert environments, enhancing our understanding of how other desert plants adapt to harsh conditions. These insights are crucial for exploring and utilizing high-quality forage plant germplasm resources and ecological development, with the identified candidate genes serving as valuable targets for further research on stress-resistant genes. Full article
(This article belongs to the Special Issue Physiology and Molecular Biology of Plant Stress Tolerance)
Show Figures

Figure 1

17 pages, 6728 KiB  
Article
Transcriptome Profiling of Two Camellia japonica Cultivars with Different Heat Tolerance Reveals Heat Stress Response Mechanisms
by Yue Tan, Yinzhu Cao, Fenglian Mou, Bin Liu, Huafeng Wu, Shihui Zou, Lijiao Ai and Shunzhao Sui
Plants 2024, 13(21), 3089; https://doi.org/10.3390/plants13213089 - 2 Nov 2024
Viewed by 700
Abstract
Camellia (Camellia japonica) is a semi-shaded plant that is highly vulnerable to heat stress. To investigate the mechanisms underlying heat stress in C. japonica, two C. japonica cultivars, “Xiaotaohong” and “Zhuapolian”, which exhibit significant differences in heat tolerance, were selected [...] Read more.
Camellia (Camellia japonica) is a semi-shaded plant that is highly vulnerable to heat stress. To investigate the mechanisms underlying heat stress in C. japonica, two C. japonica cultivars, “Xiaotaohong” and “Zhuapolian”, which exhibit significant differences in heat tolerance, were selected from four common cultivars. The selection methods included phenotypic observations and physiological index detection, including relative electric conductivity (REC), malondialdehyde (MDA) content, superoxide dismutase (SOD) enzyme activity, relative water content (RWC), and chlorophyll content. RNA-seq analysis yielded 980 million reads and identified 68,455 differentially expressed genes (DEGs) in the two C. japonica cultivars during heat stress compared to the control samples. Totals of 12,565 and 16,046 DEGs were differentially expressed at 16 h and 32 h, respectively, in “Xiaotaohong” during heat stress. In “Zhuapolian”, 40,280 and 37,539 DEGs were found at 16 h and 32 h, respectively. KEGG enrichment analysis revealed that both cultivars were enriched in the “plant hormone signal transduction” and “circadian rhythm” pathways at two stages, indicating the critical role these pathways play in the heat stress response. The differences in the tolerance between the two cultivars are likely linked to pathways such as “plant hormone signal transduction”, “photosynthesis”, and “circadian rhythm”. Some members of heat shock proteins (HSPs) are associated with the heat stress response. It is speculated that transcription factor families contributing to the tolerance differences include AP2/ERF, C3H, bHLH, bZIP, and MYB-related with a small number of heat shock factors (HSFs) also induced by the stress. In conclusion, these results reveal the changes in the physiological indices and molecular networks of two C. japonica cultivars under heat stress. This study lays the foundation for the breeding of superior heat-resistant C. japonica cultivars and for further molecular research. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 6075 KiB  
Article
Identification of Target Gene and Interacting Protein of Two LaSCL6 Alternative Splicing Variants Provides Novel Insights into Larch Somatic Embryogenesis
by Qiao-Lu Zang, Zha-Long Ye, Li-Wang Qi and Wan-Feng Li
Plants 2024, 13(21), 3072; https://doi.org/10.3390/plants13213072 - 31 Oct 2024
Viewed by 428
Abstract
Somatic embryogenesis is valuable for clonal propagation and genetic improvement, and it also serves as an ideal system for studying plant development mechanisms. In Larix kaempferi, microRNA171 and its target gene L. kaempferi SCARECROW-LIKE6 (LaSCL6), which has two alternative splicing variants, [...] Read more.
Somatic embryogenesis is valuable for clonal propagation and genetic improvement, and it also serves as an ideal system for studying plant development mechanisms. In Larix kaempferi, microRNA171 and its target gene L. kaempferi SCARECROW-LIKE6 (LaSCL6), which has two alternative splicing variants, can regulate somatic embryogenesis; however, the underlying molecular mechanism is still unknown. In this study, we overexpressed these two LaSCL6 variants in Oryza sativa and Arabidopsis thaliana and then used the RNA-Seq method to screen genes from O. sativa and A. thaliana, whose expression patterns are related to those of LaSCL6 variants. The screened genes were then used to search L. kaempferi proteins to identify the candidate target genes of LaSCL6. After yeast one-hybrid and dual- luciferase transcriptional activity assays, cytochrome P450, family 89, subfamily A, polypeptide 5 (CYP89A5), and wall-associated receptor kinase-like 20 (WAKL20) were confirmed to be the target genes of LaSCL6-var1; in addition, WAKL20 and UDP-glycosyltransferase 85A3 (UGT85A3) were confirmed to be the target genes of LaSCL6-var2. Moreover, APETALA2-like protein 2, a transcription factor from the AP2/ERF family, was shown to interact with LaSCL6-var1 and LaSCL6-var2. Taken together, our results suggest a regulatory network of miR171-LaSCL6. The findings presented here not only provide novel insights into the regulation of the miR171-LaSCL6 module but also explain the mechanism underlying larch somatic embryogenesis and other biological processes. Full article
(This article belongs to the Special Issue Molecular Biology and Bioinformatics of Forest Trees)
Show Figures

Figure 1

17 pages, 3119 KiB  
Article
Transcription Factors Are Involved in Wizened Bud Occurrence During the Growing Season in the Pyrus pyrifolia Cultivar ‘Sucui 1’
by Hui Li, Jialiang Kan, Chunxiao Liu, Qingsong Yang, Jing Lin and Xiaogang Li
Epigenomes 2024, 8(4), 40; https://doi.org/10.3390/epigenomes8040040 - 25 Oct 2024
Viewed by 401
Abstract
Background: Flowers are important plant organs, and their development is correlated with yield in woody fruit trees. For Pyrus pyrifolia cultivar ‘Sucui 1’, the research on how DNA methylation accurately regulates the expression of TFs and affects the specific regulatory mechanism of flower [...] Read more.
Background: Flowers are important plant organs, and their development is correlated with yield in woody fruit trees. For Pyrus pyrifolia cultivar ‘Sucui 1’, the research on how DNA methylation accurately regulates the expression of TFs and affects the specific regulatory mechanism of flower bud wizening will help reduce wizened buds. Methods: Here, the DNA methylomes and transcriptomes of two types of flower buds from the Pyrus pyrifolia cultivar ‘Sucui 1’ were compared. Results: 320 differentially expressed transcription factors (TFs), in 43 families, were obtained from the wizened bud transcriptome versus the normal bud transcriptome. Most were members of the AP2/ERF, bHLH, C2H2, CO-like, MADS, MYB, and WRKY families, which are involved in flower development. As a whole, the methylation level of TFs in the ‘Sucui 1’ genome increased once flower bud wizening occurred. A cytosine methylation analysis revealed that the methylation levels of the same gene regions in TFs from two kinds of buds were similar. However, differentially methylated regions were found in gene promoter sequences. The combined whole-genome bisulfite sequencing and RNA-Seq analyses revealed 162 TF genes (including 164 differentially methylated regions) with both differential expression and methylation differences between the two flower bud types. Among them, 126 were classified as mCHH-type methylation genes. Furthermore, the transcriptional down regulation of PpbHLH40, PpERF4, PpERF061, PpLHW, PpMADS6, PpZF-HD11, and PpZFP90 was accompanied by increased DNA methylation. However, PpbHLH130, PpERF011, and PpMYB308 displayed the opposite trend. The expression changes for these TFs were negatively correlated with their methylation states. Conclusions: Overall, our results offer initial experimental evidence of a correlation between DNA methylation and TF transcription in P. pyrifolia in response to bud wizening. This enriched our understanding of epigenetic modulations in woody trees during flower development. Full article
(This article belongs to the Collection Epigenetic Control in Plants)
Show Figures

Figure 1

21 pages, 5318 KiB  
Article
Identification of AP2/ERF Transcription Factors and Characterization of AP2/ERF Genes Related to Low-Temperature Stress Response and Fruit Development in Luffa
by Jianting Liu, Haifeng Zhong, Chengjuan Cao, Yuqian Wang, Qianrong Zhang, Qingfang Wen, Haisheng Zhu and Zuliang Li
Agronomy 2024, 14(11), 2509; https://doi.org/10.3390/agronomy14112509 - 25 Oct 2024
Viewed by 422
Abstract
Plant-specific APETALA2/Ethylene-Responsive Factor (AP2/ERF) transcription factors are involved in the regulation of genes associated with the growth and developmental processes of numerous plants. Although AP2/ERF proteins from other species have been intensively studied, no studies have been reported on the AP2/ERF family of [...] Read more.
Plant-specific APETALA2/Ethylene-Responsive Factor (AP2/ERF) transcription factors are involved in the regulation of genes associated with the growth and developmental processes of numerous plants. Although AP2/ERF proteins from other species have been intensively studied, no studies have been reported on the AP2/ERF family of Luffa cylindrica, an important vegetable of the cucurbit family, and one of the most popular vegetables in the world. In this study, 133 genes (315–6696 bp) encoding LcAP2/ERF proteins with complete AP2/ERF domains were identified according to the luffa P93075 genome. These LcAP2/ERF genes were subsequently classified and analyzed for their gene structures, chromosomal distribution locations, promoter cis-acting elements, conserved structural domains of encoded proteins, and responses to abiotic stresses. The LcAP2/ERF genes were identified and divided into five phylogenetic groups (AP2, DREBs, ERFs, RAV, and soloists). These genes were unevenly distributed across 13 chromosomes. An analysis of gene structures indicated the LcAP2/ERF genes contained 0–11 introns (average of 4.4). Additionally, 16 motifs were identified in the LcAP2/ERF proteins that were conserved across different phylogenetic groups. Moreover, 11 cis-acting elements associated with response to the environment were analyzed in a 2000 bp region upstream of the LcAP2/ERF gene promoters. A transcriptome analysis involving RNA-seq data revealed tissue-specific LcAP2/ERF expression profiles and the diversity in LcAP2/ERF expression. The effects of low-temperature stress on LcAP2/ERF expression were determined. Furthermore, fruit-development-related and low-temperature-induced expressional changes were verified by RT-qPCR analyses of 14 differentially expressed LcAP2/ERF genes in luffa. Our findings will help clarify the evolution of the luffa AP2/ERF family, while also providing valuable insights for future studies on AP2/ERF functions. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 11799 KiB  
Article
Phylogenomic Analysis and Functional Characterization of the APETALA2/Ethylene-Responsive Factor Transcription Factor Across Solanaceae
by Fan Yang, Songxue Han, Yangxin Zhang, Xiangxiang Chen, Wenxian Gai and Tao Zhao
Int. J. Mol. Sci. 2024, 25(20), 11247; https://doi.org/10.3390/ijms252011247 - 19 Oct 2024
Viewed by 541
Abstract
The AP2/ERF family constitutes one of the largest groups of transcription factors in the Solanaceae. AP2/ERF contributes to various plant biological processes, including growth, development, and responses to various stresses. The origins and functional diversification of AP2/ERF within the Solanaceae family remain poorly [...] Read more.
The AP2/ERF family constitutes one of the largest groups of transcription factors in the Solanaceae. AP2/ERF contributes to various plant biological processes, including growth, development, and responses to various stresses. The origins and functional diversification of AP2/ERF within the Solanaceae family remain poorly understood, primarily because of the complex interactions between whole-genome duplications (WGDs) and tandem duplications. In this study, a total of 1282 AP2/ERF proteins are identified from 7 Solanaceae genomes. The amplification of AP2/ERF genes was driven not only by WGDs but also by the presence of clusters of tandem duplicated genes. The conservation of synteny across different chromosomes provides compelling evidence for the impact of the WGD event on the distribution pattern of AP2/ERF genes. Distinct expression patterns suggest that the multiple copies of AP2/ERF genes evolved in different functional directions, catalyzing the diversification of roles among the duplicated genes, which was of great significance for the adaptability of Solanaceae. Gene silencing and overexpression assays suggest that ERF-1 members’ role in regulating the timing of floral initiation in C. annuum. Our findings provide insights into the genomic origins, duplication events, and function divergence of the Solanaceae AP2/ERF. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Figure 1

19 pages, 15466 KiB  
Article
Transcriptomic Analysis Reveals the Mechanism of Color Formation in the Peel of an Evergreen Pomegranate Cultivar ‘Danruo No.1’ During Fruit Development
by Xiaowen Wang, Chengkun Yang, Wencan Zhu, Zhongrui Weng, Feili Li, Yuanwen Teng, Kaibing Zhou, Minjie Qian and Qin Deng
Plants 2024, 13(20), 2903; https://doi.org/10.3390/plants13202903 - 17 Oct 2024
Viewed by 556
Abstract
Pomegranate (Punica granatum L.) is an ancient fruit crop that has been cultivated worldwide and is known for its attractive appearance and functional metabolites. Fruit color is an important index of fruit quality, but the color formation pattern in the peel of [...] Read more.
Pomegranate (Punica granatum L.) is an ancient fruit crop that has been cultivated worldwide and is known for its attractive appearance and functional metabolites. Fruit color is an important index of fruit quality, but the color formation pattern in the peel of evergreen pomegranate and the relevant molecular mechanism is still unknown. In this study, the contents of pigments including anthocyanins, carotenoids, and chlorophyll in the peel of ‘Danruo No. 1’ pomegranate fruit during three developmental stages were measured, and RNA-seq was conducted to screen key genes regulating fruit color formation. The results show that pomegranate fruit turned from green to red during development, with a dramatic increase in a* value, indicating redness and anthocyanins concentration, and a decrease of chlorophyll content. Moreover, carotenoids exhibited a decrease–increase accumulation pattern. Through RNA-seq, totals of 30, 18, and 17 structural genes related to anthocyanin biosynthesis, carotenoid biosynthesis and chlorophyll metabolism were identified from differentially expressed genes (DEGs), respectively. Transcription factors (TFs) such as MYB, bHLH, WRKY and AP2/ERF were identified as key candidates regulating pigment metabolism by K-means analysis and weighted gene co-expression network analysis (WGCNA). The results provide an insight into the theory of peel color formation in evergreen pomegranate fruit. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Plant Genomics)
Show Figures

Figure 1

19 pages, 8261 KiB  
Article
The Critical Role of Phenylpropanoid Biosynthesis Pathway in Lily Resistance Against Gray Mold
by Qi Cui, Xinran Li, Shanshan Hu, Dongfeng Yang, Ann Abozeid, Zongqi Yang, Junhao Jiang, Ziming Ren, Danqing Li, Dongze Li, Liqun Zheng and Anhua Qin
Int. J. Mol. Sci. 2024, 25(20), 11068; https://doi.org/10.3390/ijms252011068 - 15 Oct 2024
Viewed by 605
Abstract
Gray mold caused by Botrytis elliptica is one of the most determinative factors of lily growth and has become a major threat to lily productivity. However, the nature of the lily B. elliptica interaction remains largely unknown. Here, comparative transcriptomic and metabolomic were [...] Read more.
Gray mold caused by Botrytis elliptica is one of the most determinative factors of lily growth and has become a major threat to lily productivity. However, the nature of the lily B. elliptica interaction remains largely unknown. Here, comparative transcriptomic and metabolomic were used to investigate the defense responses of resistant (‘Sorbonne’) and susceptible (‘Tresor’) lily cultivars to B. elliptica infection at 24 hpi. In total, 1326 metabolites were identified in ‘Sorbonne’ and ‘Tresor’ after infection, including a large number of phenylpropanoids. Specifically, the accumulation of four phenylpropanes, including eriodictyol, hesperetin, ferulic acid, and sinapyl alcohol, was significantly upregulated in the B. elliptica-infected ‘Sorbonne’ compared with the infected ‘Tresor’, and these phenylpropanes could significantly inhibit B. elliptica growth. At the transcript level, higher expression levels of F3′M, COMT, and CAD led to a higher content of resistance-related phenylpropanes (eriodictyol, ferulic acid, and sinapyl alcohol) in ‘Sorbonne’ following B. elliptica infection. It can be assumed that these phenylpropanes cause the resistance difference between ‘Sorbonne’ and ‘Tresor’, and could be the potential marker metabolites for gray mold resistance in the lily. Further transcriptional regulatory network analysis suggested that members of the AP2/ERF, WRKY, Trihelix, and MADS-M-type families positively regulated the biosynthesis of resistance-related phenylpropanes. Additionally, the expression patterns of genes involved in phenylpropanoid biosynthesis were confirmed using qRT-PCR. Therefore, we speculate that the degree of gray mold resistance in the lily is closely related to the contents of phenylpropanes and the transcript levels of the genes in the phenylpropanoid biosynthesis pathway. Our results not only improve our understanding of the lily’s resistance mechanisms against B. elliptica, but also facilitate the genetic improvement of lily cultivars with gray mold resistance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 3157 KiB  
Article
Transcriptome Profiling Revealed ABA Signaling Pathway-Related Genes and Major Transcription Factors Involved in the Response to Water Shock and Rehydration in Ginkgo biloba
by Meiling Ming, Juan Zhang, Jing Tang, Jiamin Zhang, Fangfang Fu and Fuliang Cao
Forests 2024, 15(10), 1690; https://doi.org/10.3390/f15101690 - 25 Sep 2024
Viewed by 511
Abstract
To assess the regulatory mechanisms involved in the transcriptomic response of Ginkgo biloba to water shock and rehydration, ginkgo seedlings were subjected to dehydration for 0, 3, 6, 12, and 24 h, followed by rehydration for 12 h (Re12 h). A total of [...] Read more.
To assess the regulatory mechanisms involved in the transcriptomic response of Ginkgo biloba to water shock and rehydration, ginkgo seedlings were subjected to dehydration for 0, 3, 6, 12, and 24 h, followed by rehydration for 12 h (Re12 h). A total of 1388, 1802, 2267, 2667, and 3352 genes were upregulated, whereas 1604, 1839, 1934, 2435, and 3035 genes were downregulated, at 3, 6, 12, 24, and Re12 h, respectively, compared to 0 h. Two KEGG pathways—the plant pathogen interaction pathway and mitogen-activated protein kinase (MAPK) signaling pathway—were enriched under water shock but not under rehydration. Moreover, plant hormone signal transduction was enriched under both water shock and rehydration. Differentially expressed genes (DEGs) involved in the ABA signaling pathway (PYR/PYLs, PP2Cs, and SnRK2s) and major differentially expressed transcription factors (MYB, bHLH, AP2/ERF, NAC, WRKY, and bZIP TFs) were identified. qRT-PCR analysis further revealed GbWRKY3 as a negative regulator of the water shock response in G. biloba. The subcellular localization results revealed GbWRKY3 as a nuclear protein. These phenotype-related DEGs, pathways, and TFs provide valuable insight into the water shock and rehydration response in G. biloba. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 3076 KiB  
Article
Transcriptome Profiling Identifies Plant Hormone Signaling Pathway-Related Genes and Transcription Factors in the Drought and Re-Watering Response of Ginkgo biloba
by Meiling Ming, Juan Zhang, Jiamin Zhang, Jing Tang, Fangfang Fu and Fuliang Cao
Plants 2024, 13(19), 2685; https://doi.org/10.3390/plants13192685 - 25 Sep 2024
Viewed by 785
Abstract
Ginkgo biloba, usually referred to as a “living fossil,” is widely planted in many countries because of its medicinal value and beautiful appearance. Owing to ginkgo’s high resistance to drought stress, ginkgo seedlings can even survive withholding water for several days without [...] Read more.
Ginkgo biloba, usually referred to as a “living fossil,” is widely planted in many countries because of its medicinal value and beautiful appearance. Owing to ginkgo’s high resistance to drought stress, ginkgo seedlings can even survive withholding water for several days without exhibiting leaf wilting and desiccation. To assess the physiological and transcriptomic mechanisms involved in the drought stress and re-watering responses of Ginkgo biloba, ginkgo seedlings were subjected to drought treatment for 15 d (D_15 d) and 22 d (D_22 d) until they had severely wilted, followed by re-watering for 3 d (D_Re3 d) to restore normal growth. Variations in physiological characteristics (relative water content, malondialdehyde (MDA) content, stomatal aperture, and antioxidant enzyme activity) during drought and re-watering were assessed. In total, 1692, 2031, and 1038 differentially expressed genes (DEGs) were upregulated, while 1691, 2820, and 1910 were downregulated in D_15 d, D_22 d, and D_Re3 d, respectively, relative to the control. Three pathways, namely, plant hormone signal transduction, plant–pathogen interaction, and the plant MAPK signaling pathway, were enriched during drought stress and re-watering. The DEGs involved in plant hormone signal transduction pathways (those of IAA, CTK, GA, ABA, ETH, BR, SA, and JA) and the major differentially expressed transcription factors (TFs; MYB, bHLH, AP2/ERF, NAC, WRKY, and bZIP) were identified. Quantitative real-time PCR revealed six TFs as positive or negative regulators of drought stress response. These phenotype-related physiological characteristics, DEGs, pathways, and TFs provide valuable insights into the drought stress and re-watering responses in G. biloba. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 6990 KiB  
Article
Multi-Omics Analyses Uncover the Mechanism Underlying Polyploidization-Enhanced Steviol Glycosides Biosynthesis in Stevia rebaudiana
by Juan Liu, Jiaxue Wang, Mingjia Chen, Wenna Meng, Anping Ding, Miao Chen, Rongping Ding, Mingpu Tan and Zengxu Xiang
Plants 2024, 13(18), 2542; https://doi.org/10.3390/plants13182542 - 10 Sep 2024
Viewed by 1022
Abstract
Stevia rebaudiana (Bertoni) is a valuable sweetener plant whose sweetness primarily derives from steviol glycosides (SGs), especially rebaudioside A (RA). Polyploidization has the potential to enhance the content of active ingredients in medicinal plants, making this strategy a promising avenue for genetic improvement. [...] Read more.
Stevia rebaudiana (Bertoni) is a valuable sweetener plant whose sweetness primarily derives from steviol glycosides (SGs), especially rebaudioside A (RA). Polyploidization has the potential to enhance the content of active ingredients in medicinal plants, making this strategy a promising avenue for genetic improvement. However, the underlying regulatory mechanisms that contribute to the fluctuating SGs content between autotetraploid and diploid stevia remain unclear. In this study, we employed metabolic analysis to identify 916 differentially accumulated metabolites (DAMs), with the majority, specifically terpenoids, flavonoids, and lipids, exhibiting upregulation due to polyploidization. Notably, the content of stevia’s signature metabolite SGs (including RA, steviolbioside, and rebaudioside C), along with their precursor steviol, increased significantly after polyploidization. Furthermore, a comprehensive analysis of the transcriptome and metabolome revealed that the majority of differentially expressed genes (DEGs) involved in the SG-synthesis pathway (ent-KAH, ent-KS1, UGT73E1, UGT74G1, UGT76G1, UGT85C2, and UGT91D2) were upregulated in autotetraploid stevia, and these DEGs exhibited a positive correlation with the polyploidization-enhanced SGs. Additionally, multi-omics network analysis indicated that several transcription factor families (such as five NACs, four WRKYs, three MYBs, eight bHLHs, and three AP2/ERFs), various transporter genes (four ABC transporters, three triose-phosphate transporters, and two sugar efflux transporters for intercellular exchange), as well as microorganisms (including Ceratobasidium and Flavobacterium) were positively correlated with the accumulation of RA and steviol. Overall, our results indicate the presence of a regulatory circuit orchestrated by polyploidization, which recruits beneficial rhizosphere microbes and modulates the expression of genes associated with SG biosynthesis, ultimately enhancing the SG content in stevia. This finding will provide new insights for promoting the propagation and industrial development of stevia. Full article
Show Figures

Figure 1

14 pages, 3382 KiB  
Article
Characterization of the Regulatory Network under Waterlogging Stress in Soybean Roots via Transcriptome Analysis
by Yo-Han Yoo, Seung-Yeon Cho, Inhye Lee, Namgeol Kim, Seuk-Ki Lee, Kwang-Soo Cho, Eun Young Kim, Ki-Hong Jung and Woo-Jong Hong
Plants 2024, 13(18), 2538; https://doi.org/10.3390/plants13182538 - 10 Sep 2024
Viewed by 797
Abstract
Flooding stress caused by climate change is a serious threat to crop productivity. To enhance our understanding of flooding stress in soybean, we analyzed the transcriptome of the roots of soybean plants after waterlogging treatment for 10 days at the V2 growth stage. [...] Read more.
Flooding stress caused by climate change is a serious threat to crop productivity. To enhance our understanding of flooding stress in soybean, we analyzed the transcriptome of the roots of soybean plants after waterlogging treatment for 10 days at the V2 growth stage. Through RNA sequencing analysis, 870 upregulated and 1129 downregulated differentially expressed genes (DEGs) were identified and characterized using Gene Ontology (GO) and MapMan software (version 3.6.0RC1). In the functional classification analysis, “alcohol biosynthetic process” was the most significantly enriched GO term in downregulated DEGs, and phytohormone-related genes such as ABA, cytokinin, and gibberellin were upregulated. Among the transcription factors (TFs) in DEGs, AP2/ERFs were the most abundant. Furthermore, our DEGs encompassed eight soybean orthologs from Arabidopsis and rice, such as 1-aminocyclopropane-1-carboxylate oxidase. Along with a co-functional network consisting of the TF and orthologs, the expression changes of those genes were tested in a waterlogging-resistant cultivar, PI567343. These findings contribute to the identification of candidate genes for waterlogging tolerance in soybean, which can enhance our understanding of waterlogging tolerance. Full article
Show Figures

Figure 1

27 pages, 1667 KiB  
Review
Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress
by Muhammad Aizaz, Lubna, Rahmatullah Jan, Sajjad Asaf, Saqib Bilal, Kyung-Min Kim and Ahmed AL-Harrasi
Biology 2024, 13(9), 673; https://doi.org/10.3390/biology13090673 - 29 Aug 2024
Viewed by 1848
Abstract
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological [...] Read more.
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological drought. Determining how transcriptional factors (TFs) and hormone networks are regulated in plants in response to salt stress is necessary for developing crops that tolerate salt. This study investigates the complex mechanisms of several significant TF families that influence plant responses to salt stress, involving AP2/ERF, bZIP, NAC, MYB, and WRKY. It demonstrates how these transcription factors (TFs) help plants respond to the detrimental effects of salinity by modulating gene expression through mechanisms including hormone signaling, osmotic stress pathway activation, and ion homeostasis. Additionally, it explores the hormonal imbalances triggered by salt stress, which entail complex interactions among phytohormones like jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) within the hormonal regulatory networks. This review highlights the regulatory role of key transcription factors in salt-stress response, and their interaction with plant hormones is crucial for developing genome-edited crops that can enhance agricultural sustainability and address global food security challenges. Full article
Show Figures

Figure 1

Back to TopTop