Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Journal = Vaccines
Section = Cellular/Molecular Immunology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4868 KiB  
Article
A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination
by Martina Severa, Daniela Ricci, Marilena Paola Etna, Marzia Facchini, Simona Puzelli, Giorgio Fedele, Egidio Iorio, Giada Cairo, Sara Castrechini, Valentina Ungari, Marco Iannetta, Pasqualina Leone, Mattea Chirico, Maria Elena Pisanu, Barbara Bottazzi, Livia Benedetti, Michela Sali, Remo Bartolomucci, Stefano Balducci, Cecilia Garlanda, Paola Stefanelli, Antonietta Spadea, Anna Teresa Palamara and Eliana Marina Cocciaadd Show full author list remove Hide full author list
Vaccines 2024, 12(9), 1050; https://doi.org/10.3390/vaccines12091050 - 13 Sep 2024
Viewed by 790
Abstract
In this pilot study, a multi-parametric analysis comparing immune responses in sera of adult healthy subjects (HS) or people with type 2 diabetes mellitus (T2D) undergoing the single or simultaneous administration of mRNA-based COVID-19 and cellular quadrivalent inactivated influenza vaccines was conducted. While [...] Read more.
In this pilot study, a multi-parametric analysis comparing immune responses in sera of adult healthy subjects (HS) or people with type 2 diabetes mellitus (T2D) undergoing the single or simultaneous administration of mRNA-based COVID-19 and cellular quadrivalent inactivated influenza vaccines was conducted. While SARS-CoV-2 antibodies remains comparable, influenza antibody titers and seroconversion were significantly higher upon simultaneous vaccination. Magnitude of anti-influenza humoral response closely correlated with an early innate immune signature, previously described for the COVID-19 vaccine, composed of IL-15, IL-6, TNF-α, IFN-γ, CXCL-10 and here extended also to acute-phase protein Pentraxin 3. People with T2D receiving simultaneous vaccination showed a protective response comparable to HS correlating with the early induction of IFN-γ/CXCL10 and a significant reduction of the circulating glucose level due to increased oxidation of glucose digestion and consumption. These data, although preliminary and in-need of validation in larger cohorts, might be exploited to optimize future vaccination in people with chronic disorders, including diabetes. Full article
(This article belongs to the Special Issue Humoral and Cellular Response after Vaccination)
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
The Protective Efficacy of a SARS-CoV-2 Vaccine Candidate B.1.351V against Several Variant Challenges in K18-hACE2 Mice
by Jie Yang, Huifen Fan, Anna Yang, Wenhui Wang, Xin Wan, Fengjie Lin, Dongsheng Yang, Jie Wu, Kaiwen Wang, Wei Li, Qian Cai, Lei You, Deqin Pang, Jia Lu, Changfu Guo, Jinrong Shi, Yan Sun, Xinguo Li, Kai Duan, Shuo Shen, Shengli Meng, Jing Guo and Zejun Wangadd Show full author list remove Hide full author list
Vaccines 2024, 12(7), 742; https://doi.org/10.3390/vaccines12070742 - 3 Jul 2024
Viewed by 867
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) with increased transmissibility and partial resistance to neutralization by antibodies has been observed globally. There is an urgent need for an effective vaccine to combat these variants. Our study demonstrated that the B.1.351 variant inactivated [...] Read more.
The emergence of SARS-CoV-2 variants of concern (VOCs) with increased transmissibility and partial resistance to neutralization by antibodies has been observed globally. There is an urgent need for an effective vaccine to combat these variants. Our study demonstrated that the B.1.351 variant inactivated vaccine candidate (B.1.351V) generated strong binding and neutralizing antibody responses in BALB/c mice against the B.1.351 virus and other SARS-CoV-2 variants after two doses within 28 days. Immunized K18-hACE2 mice also exhibited elevated levels of live virus-neutralizing antibodies against various SARS-CoV-2 viruses. Following infection with these viruses, K18-hACE2 mice displayed a stable body weight, a high survival rate, minimal virus copies in lung tissue, and no lung damage compared to the control group. These findings indicate that B.1.351V offered protection against infection with multiple SARS-CoV-2 variants in mice, providing insights for the development of a vaccine targeting SARS-CoV-2 VOCs for human use. Full article
(This article belongs to the Special Issue Novel Viral Vaccine and Molecular Immunology)
Show Figures

Figure 1

14 pages, 2178 KiB  
Article
Local Immune Activation and Age Impact on Humoral Immunity in Mice, with a Focus on IgG Sialylation
by Priti Gupta, Tibor Sághy, Miriam Bollmann, Tao Jin, Claes Ohlsson, Hans Carlsten, Carmen Corciulo and Cecilia Engdahl
Vaccines 2024, 12(5), 479; https://doi.org/10.3390/vaccines12050479 - 29 Apr 2024
Viewed by 1051
Abstract
Age alters the host’s susceptibility to immune induction. Humoral immunity with circulating antibodies, particularly immunoglobulin G (IgG), plays an essential role in immune response. IgG glycosylation in the fragment crystallizable (Fc) region, including sialylation, is important in regulating the effector function by interacting [...] Read more.
Age alters the host’s susceptibility to immune induction. Humoral immunity with circulating antibodies, particularly immunoglobulin G (IgG), plays an essential role in immune response. IgG glycosylation in the fragment crystallizable (Fc) region, including sialylation, is important in regulating the effector function by interacting with Fc gamma receptors (FcγRs). Glycosylation is fundamentally changed with age and inflammatory responses. We aimed to explore the regulation of humoral immunity by comparing responses to antigen-induced immune challenges in young and adult mice using a local antigen-induced arthritis mouse model. This study examines the differences in immune response between healthy and immune-challenged states across these groups. Our initial assessment of the arthritis model indicated that adult mice presented more severe knee swelling than their younger counterparts. In contrast, we found that neither histological assessment, bone mineral density, nor the number of osteoclasts differs. Our data revealed an age-associated but not immune challenge increase in total IgG; the only subtype affected by immune challenge was IgG1 and partially IgG3. Interestingly, the sialylation of IgG2b and IgG3 is affected by age and immune challenges but not stimulated further by immune challenges in adult mice. This suggests a shift in IgG towards a pro-inflammatory and potentially pathogenic state with age and inflammation. Full article
(This article belongs to the Special Issue Humoral and Cellular Response after Vaccination)
Show Figures

Figure 1

17 pages, 2105 KiB  
Article
Mapping IgA Epitope and Cross-Reactivity between Severe Acute Respiratory Syndrome-Associated Coronavirus 2 and DENV
by Salvatore G. De-Simone, Paloma Napoleão-Pêgo, Guilherme C. Lechuga, João P. R. S. Carvalho, Maria E. Monteiro, Carlos M. Morel and David W. Provance
Vaccines 2023, 11(12), 1749; https://doi.org/10.3390/vaccines11121749 - 24 Nov 2023
Cited by 3 | Viewed by 2032
Abstract
Background: The newly introduced COVID-19 vaccines have reduced disease severity and hospitalizations. However, they do not significantly prevent infection or transmission. In the same context, measuring IgM and IgG antibody levels is important, but it does not provide information about the status of [...] Read more.
Background: The newly introduced COVID-19 vaccines have reduced disease severity and hospitalizations. However, they do not significantly prevent infection or transmission. In the same context, measuring IgM and IgG antibody levels is important, but it does not provide information about the status of the mucosal immune response. This article describes a comprehensive mapping of IgA epitopes of the S protein, its cross-reactivity, and the development of an ELISA-peptide assay. Methods: IgA epitope mapping was conducted using SPOT synthesis and sera from RT-qPCR COVID-19-positive patients. Specific and cross-reacting epitopes were identified, and an evolutionary analysis from the early Wuhan strain to the Omicron variant was performed using bioinformatics tools and a microarray of peptides. The selected epitopes were chemically synthesized and evaluated using ELISA-IgA. Results: A total of 40 IgA epitopes were identified with 23 in S1 and 17 in the S2 subunit. Among these, at least 23 epitopes showed cross-reactivity with DENV and other organisms and 24 showed cross-reactivity with other associated coronaviruses. Three MAP4 polypeptides were validated by ELISA, demonstrating a sensitivity of 90–99.96% and a specificity of 100%. Among the six IgA-RBD epitopes, only the SC/18 epitope of the Omicron variants (BA.2 and BA.2.12.1) presented a single IgA epitope. Conclusions: This research unveiled the IgA epitome of the S protein and identified many epitopes that exhibit cross-reactivity with DENV and other coronaviruses. The S protein of variants from Wuhan to Omicron retains many conserved IgA epitopes except for one epitope (#SCov/18). The cross-reactivity with DENV suggests limitations in using the whole S protein or the S1/S2/RBD segment for IgA serological diagnostic tests for COVID-19. The expression of these identified specific epitopes as diagnostic biomarkers could facilitate monitoring mucosal immunity to COVID-19, potentially leading to more accurate diagnoses and alternative mucosal vaccines. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Influenza Virus and Coronavirus)
Show Figures

Graphical abstract

4 pages, 181 KiB  
Editorial
Immunity after Vaccination against COVID-19
by Leszek Tylicki
Vaccines 2023, 11(11), 1723; https://doi.org/10.3390/vaccines11111723 - 17 Nov 2023
Cited by 1 | Viewed by 1213
Abstract
The outbreak of the COVID-19 pandemic at the turn of 2019 and 2020 posed a substantial challenge for the world [...] Full article
(This article belongs to the Special Issue Cellular and Humoral Immunity after COVID-19 Vaccination)
20 pages, 1137 KiB  
Review
Trick-or-Trap: Extracellular Vesicles and Viral Transmission
by Juan-Vicente Bou, Shuhei Taguwa and Yoshiharu Matsuura
Vaccines 2023, 11(10), 1532; https://doi.org/10.3390/vaccines11101532 - 27 Sep 2023
Cited by 2 | Viewed by 1499
Abstract
Extracellular vesicles (EVs) are lipid membrane-enclosed particles produced by most cells, playing important roles in various biological processes. They have been shown to be involved in antiviral mechanisms such as transporting antiviral molecules, transmitting viral resistance, and participating in antigen presentation. While viral [...] Read more.
Extracellular vesicles (EVs) are lipid membrane-enclosed particles produced by most cells, playing important roles in various biological processes. They have been shown to be involved in antiviral mechanisms such as transporting antiviral molecules, transmitting viral resistance, and participating in antigen presentation. While viral transmission was traditionally thought to occur through independent viral particles, the process of viral infection is complex, with multiple barriers and challenges that viruses must overcome for successful infection. As a result, viruses exploit the intercellular communication pathways of EVs to facilitate cluster transmission, increasing their chances of infecting target cells. Viral vesicle transmission offers two significant advantages. Firstly, it enables the collective transmission of viral genomes, increasing the chances of infection and promoting interactions between viruses in subsequent generations. Secondly, the use of vesicles as vehicles for viral transmission provides protection to viral particles against environmental factors, while also expanding the cell tropism allowing viruses to reach cells in a receptor-independent manner. Understanding the role of EVs in viral transmission is crucial for comprehending virus evolution and developing innovative antiviral strategies, therapeutic interventions, and vaccine approaches. Full article
(This article belongs to the Section Cellular/Molecular Immunology)
Show Figures

Figure 1

16 pages, 1101 KiB  
Article
A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study
by Nicola Serra, Maria Andriolo, Ignazio Butera, Giovanni Mazzola, Consolato Maria Sergi, Teresa Maria Assunta Fasciana, Anna Giammanco, Maria Chiara Gagliano, Antonio Cascio and Paola Di Carlo
Vaccines 2023, 11(7), 1136; https://doi.org/10.3390/vaccines11071136 - 23 Jun 2023
Cited by 1 | Viewed by 1618
Abstract
Background: With SARS-CoV-2 antibody tests on the market, healthcare providers must be confident that they can use the results to provide actionable information to understand the characteristics and dynamics of the humoral response and antibodies (abs) in SARS-CoV-2-vaccinated patients. In this way, the [...] Read more.
Background: With SARS-CoV-2 antibody tests on the market, healthcare providers must be confident that they can use the results to provide actionable information to understand the characteristics and dynamics of the humoral response and antibodies (abs) in SARS-CoV-2-vaccinated patients. In this way, the study of the antibody responses of healthcare workers (HCWs), a population that is immunocompetent, adherent to vaccination, and continuously exposed to different virus variants, can help us understand immune protection and determine vaccine design goals. Methods: We retrospectively evaluated antibody responses via multiplex assays in a sample of 538 asymptomatic HCWs with a documented complete vaccination cycle of 3 doses of mRNA vaccination and no previous history of infection. Our sample was composed of 49.44% males and 50.56% females, with an age ranging from 21 to 71 years, and a mean age of 46.73 years. All of the HCWs’ sera were collected from April to July 2022 at the Sant’Elia Hospital of Caltanissetta to investigate the immunologic responses against anti-RBD, anti-S1, anti-S2, and anti-N IgG abs. Results: A significant difference in age between HCWs who were positive and negative for anti-N IgG was observed. For anti-S2 IgG, a significant difference between HCWs who were negative and positive compared to anti-N IgG was observed only for positive HCWs, with values including 10 (U/mL)–100 (U/mL); meanwhile, for anti-RBD IgG and anti-S1 IgG levels, there was only a significant difference observed for positive HCWs with diluted titers. For the negative values of anti-N IgG, among the titer dilution levels of anti-RBD, anti-S1, and anti-S2 IgG, the anti-S2 IgG levels were significantly lower than the anti-RBD and anti-S1 levels; in addition, the anti-S1 IgG levels were significantly lower than the anti-RBD IgG levels. For the anti-N IgG positive levels, only the anti-S2 IgG levels were significantly lower than the anti-RBD IgG and anti-S1 IgG levels. Finally, a logistic regression analysis showed that age and anti-S2 IgG were negative and positive predictors of anti-N IgG levels, respectively. The analysis between the vaccine type and mixed mRNA combination showed higher levels of antibodies in mixed vaccinated HCWs. This finding disappeared in the anti-N positive group. Conclusions: Most anti-N positive HCWs showed antibodies against the S2 domain and were young subjects. Therefore, the authors suggest that including the anti-SARS-CoV-2-S2 in antibody profiles can serve as a complementary testing approach to qRT-PCR for the early identification of asymptomatic infections in order to reduce the impact of potential new SARS-CoV-2 variants. Our serological investigation on the type of mRNA vaccine and mixed mRNA vaccines shows that future investigations on the serological responses in vaccinated asymptomatic patients exposed to previous infection or reinfection are warranted for updated vaccine boosters. Full article
(This article belongs to the Special Issue Cellular and Humoral Immunity after COVID-19 Vaccination)
Show Figures

Figure 1

12 pages, 1463 KiB  
Article
Humoral Response after SARS-CoV-2 Vaccination in Prostate Cancer Patients
by Agata Błaszczuk, Dominika Sikora, Jacek Kiś, Ewa Stępień, Bartłomiej Drop and Małgorzata Polz-Dacewicz
Vaccines 2023, 11(4), 770; https://doi.org/10.3390/vaccines11040770 - 30 Mar 2023
Viewed by 2371
Abstract
Cancer is an important public health problem. Prostate cancer is one of the most common cancers among men. In Poland, the incidence of this type of cancer is constantly growing. Considering the appearance of a new coronavirus in December 2019 (SARS-CoV-2) and the [...] Read more.
Cancer is an important public health problem. Prostate cancer is one of the most common cancers among men. In Poland, the incidence of this type of cancer is constantly growing. Considering the appearance of a new coronavirus in December 2019 (SARS-CoV-2) and the fact that oncology patients, including those with prostate cancer, are particularly vulnerable to infection, it is recommended to get vaccinated against COVID-19. In our study, we determined the level and prevalence of antibodies against SARS-CoV-2 IgG in patients with prostate cancer compared to the control group and whether the patients’ ages affected the level of antibodies. PCa patients and controls were divided into two age groups: 50–59 years and 60–70 years. We also analyzed the level of antibodies in patients belonging to the relevant risk groups for prostate cancer (the European Society of Urology risk group classification of prostate cancer). For the study, we used the Microblot-Array COVID-19 IgG test to detect antibodies against the three main SARS-CoV-2 antigens: NCP, RBD, and S2. Our results showed that prostate cancer patients had significantly lower levels of anti-SARS-CoV-2 IgG antibodies compared to controls. In addition, age also affected the decrease in the number of IgG antibodies. The level of antibodies in the intermediate/high-risk group was lower compared to the low-risk group. Full article
(This article belongs to the Special Issue Cellular and Humoral Immunity after COVID-19 Vaccination)
Show Figures

Figure 1

12 pages, 7409 KiB  
Article
In Silico Analysis of SARS-CoV-2 Spike Proteins of Different Field Variants
by Muhammad Haseeb, Afreenish Amir and Aamer Ikram
Vaccines 2023, 11(4), 736; https://doi.org/10.3390/vaccines11040736 - 27 Mar 2023
Cited by 2 | Viewed by 2112
Abstract
Coronaviruses belong to the group of RNA family of viruses that trigger diseases in birds, humans, and mammals, which can cause respiratory tract infections. The COVID-19 pandemic has badly affected every part of the world. Our study aimed to explore the genome of [...] Read more.
Coronaviruses belong to the group of RNA family of viruses that trigger diseases in birds, humans, and mammals, which can cause respiratory tract infections. The COVID-19 pandemic has badly affected every part of the world. Our study aimed to explore the genome of SARS-CoV-2, followed by in silico analysis of its proteins. Different nucleotide and protein variants of SARS-CoV-2 were retrieved from NCBI. Contigs and consensus sequences were developed to identify these variants using SnapGene. Data of the variants that significantly differed from each other was run through Predict Protein software to understand the changes produced in the protein structure. The SOPMA web server was used to predict the secondary structure of the proteins. Tertiary structure details of the selected proteins were analyzed using the web server SWISS-MODEL. Sequencing results showed numerous single nucleotide polymorphisms in the surface glycoprotein, nucleocapsid, ORF1a, and ORF1ab polyprotein while the envelope, membrane, ORF3a, ORF6, ORF7a, ORF8, and ORF10 genes had no or few SNPs. Contigs were used to identify variations in the Alpha and Delta variants of SARS-CoV-2 with the reference strain (Wuhan). Some of the secondary structures of the SARS-CoV-2 proteins were predicted by using Sopma software and were further compared with reference strains of SARS-CoV-2 (Wuhan) proteins. The tertiary structure details of only spike proteins were analyzed through the SWISS-MODEL and Ramachandran plots. Through the Swiss-model, a comparison of the tertiary structure model of the SARS-CoV-2 spike protein of the Alpha and Delta variants was made with the reference strain (Wuhan). Alpha and Delta variants of the SARS-CoV-2 isolates submitted in GISAID from Pakistan with changes in structural and nonstructural proteins were compared with the reference strain, and 3D structure mapping of the spike glycoprotein and mutations in the amino acids were seen. The surprisingly increased rate of SARS-CoV-2 transmission has forced numerous countries to impose a total lockdown due to an unusual occurrence. In this research, we employed in silico computational tools to analyze the SARS-CoV-2 genomes worldwide to detect vital variations in structural proteins and dynamic changes in all SARS-CoV-2 proteins, mainly spike proteins, produced due to many mutations. Our analysis revealed substantial differences in the functionality, immunological, physicochemical, and structural variations in the SARS-CoV-2 isolates. However, the real impact of these SNPs can only be determined further by experiments. Our results can aid in vivo and in vitro experiments in the future. Full article
(This article belongs to the Section Cellular/Molecular Immunology)
Show Figures

Figure 1

13 pages, 1041 KiB  
Review
Exosomes as Rheumatoid Arthritis Diagnostic Biomarkers and Therapeutic Agents
by Romina Heydari, Fatemeh Koohi, Milad Rasouli, Kimia Rezaei, Elham Abbasgholinejad, Sander Bekeschus and Mohammad Doroudian
Vaccines 2023, 11(3), 687; https://doi.org/10.3390/vaccines11030687 - 17 Mar 2023
Cited by 24 | Viewed by 4199
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disorder that causes systemic inflammation, autoimmunity, and joint abnormalities that result in permanent disability. Exosomes are nanosized extracellular particles found in mammals (40–100 nm). They are a transporter of lipids, proteins, and genetic material involved [...] Read more.
Rheumatoid arthritis (RA) is a chronic inflammatory joint disorder that causes systemic inflammation, autoimmunity, and joint abnormalities that result in permanent disability. Exosomes are nanosized extracellular particles found in mammals (40–100 nm). They are a transporter of lipids, proteins, and genetic material involved in mammalian cell–cell signaling, biological processes, and cell signaling. Exosomes have been identified as playing a role in rheumatoid arthritis-related joint inflammation (RA). Uniquely functioning extracellular vesicles (EVs) are responsible for the transport of autoantigens and mediators between distant cells. In addition, paracrine factors, such as exosomes, modulate the immunomodulatory function of mesenchymal stem cells (MSCs). In addition to transporting genetic information, exosomes convey miRNAs between cells and have been studied as drug delivery vehicles. In animal models, it has been observed that MSCs secrete EVs with immunomodulatory properties, and promising results have been observed in this area. By understanding the diversity of exosomal contents and their corresponding targets, it may be possible to diagnose autoimmune diseases. Exosomes can be employed as diagnostic biomarkers for immunological disorders. We here discuss the most recent findings regarding the diagnostic, prognostic, and therapeutic potential of these nanoparticles in rheumatoid arthritis and provide an overview of the evidence pertaining to the biology of exosomes in RA. Full article
(This article belongs to the Section Cellular/Molecular Immunology)
Show Figures

Figure 1

15 pages, 9874 KiB  
Article
Phosphatidylserine-Exposing Annexin A1-Positive Extracellular Vesicles: Potential Cancer Biomarkers
by Gloria I. Perez, Matthew P. Bernard, Daniel Vocelle, Ahmed A. Zarea, Najla A. Saleh, Matthew A. Gagea, Doug Schneider, Maxine Bauzon, Terry Hermiston and Masamitsu Kanada
Vaccines 2023, 11(3), 639; https://doi.org/10.3390/vaccines11030639 - 13 Mar 2023
Cited by 6 | Viewed by 2529
Abstract
Under physiological conditions, phosphatidylserine (PS) predominantly localizes to the cytosolic leaflet of the plasma membrane of cells. During apoptosis, PS is exposed on the cell surface and serves as an “eat-me” signal for macrophages to prevent releasing self-immunogenic cellular components from dying cells [...] Read more.
Under physiological conditions, phosphatidylserine (PS) predominantly localizes to the cytosolic leaflet of the plasma membrane of cells. During apoptosis, PS is exposed on the cell surface and serves as an “eat-me” signal for macrophages to prevent releasing self-immunogenic cellular components from dying cells which could potentially lead to autoimmunity. However, increasing evidence indicates that viable cells can also expose PS on their surface. Interestingly, tumor cell-derived extracellular vesicles (EVs) externalize PS. Recent studies have proposed PS-exposing EVs as a potential biomarker for the early detection of cancer and other diseases. However, there are confounding results regarding subtypes of PS-positive EVs, and knowledge of PS exposure on the EV surface requires further elucidation. In this study, we enriched small EVs (sEVs) and medium/large EVs (m/lEVs) from conditioned media of breast cancer cells (MDA-MB-231, MDA-MB-468) and non-cancerous cells (keratinocytes, fibroblasts). Since several PS-binding molecules are available to date, we compared recombinant proteins of annexin A5 and the carboxylated glutamic acid domain of Protein S (GlaS), also specific for PS, to detect PS-exposing EVs. Firstly, PS externalization in each EV fraction was analyzed using a bead-based EV assay, which combines EV capture using microbeads and analysis of PS-exposing EVs by flow cytometry. The bulk EV assay showed higher PS externalization in m/lEVs derived from MDA-MB-468 cells but not from MDA-MB-231 cells, while higher binding of GlaS was also observed in m/lEVs from fibroblasts. Second, using single EV flow cytometry, PS externalization was also analyzed on individual sEVs and m/lEVs. Significantly higher PS externalization was detected in m/lEVs (annexin A1+) derived from cancer cells compared to m/lEVs (annexin A1+) from non-cancerous cells. These results emphasize the significance of PS-exposing m/lEVs (annexin A1+) as an undervalued EV subtype for early cancer detection and provide a better understanding of PS externalization in disease-associated EV subtypes. Full article
(This article belongs to the Section Cellular/Molecular Immunology)
Show Figures

Figure 1

27 pages, 456 KiB  
Review
Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination
by Andrew R. Kick, Alicyn F. Grete, Elisa Crisci, Glen W. Almond and Tobias Käser
Vaccines 2023, 11(3), 594; https://doi.org/10.3390/vaccines11030594 - 5 Mar 2023
Cited by 3 | Viewed by 4566
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation. Full article
(This article belongs to the Section Cellular/Molecular Immunology)
Show Figures

Graphical abstract

17 pages, 1688 KiB  
Article
Cohort-Specific Peptide Reagents Broaden Depth and Breadth Estimates of the CD8 T Cell Response to HIV-1 Gag Potential T Cell Epitopes
by Clive M. Michelo, Andrew Fiore-Gartland, Jama A. Dalel, Peter Hayes, Jianming Tang, Edward McGowan, William Kilembe, Natalia Fernandez, Jill Gilmour and Eric Hunter
Vaccines 2023, 11(2), 472; https://doi.org/10.3390/vaccines11020472 - 17 Feb 2023
Viewed by 2085
Abstract
An effective HIV vaccine will need to stimulate immune responses against the sequence diversity presented in circulating virus strains. In this study, we evaluate breadth and depth estimates of potential T-cell epitopes (PTEs) in transmitted founder virus sequence-derived cohort-specific peptide reagents against reagents [...] Read more.
An effective HIV vaccine will need to stimulate immune responses against the sequence diversity presented in circulating virus strains. In this study, we evaluate breadth and depth estimates of potential T-cell epitopes (PTEs) in transmitted founder virus sequence-derived cohort-specific peptide reagents against reagents representative of consensus and global sequences. CD8 T-cells from twenty-six HIV-1+ PBMC donor samples, obtained at 1-year post estimated date of infection, were evaluated. ELISpot assays compared responses to 15mer consensus (n = 121), multivalent-global (n = 320), and 10mer multivalent cohort-specific (n = 300) PTE peptides, all mapping to the Gag antigen. Responses to 38 consensus, 71 global, and 62 cohort-specific PTEs were confirmed, with sixty percent of common global and cohort-specific PTEs corresponding to consensus sequences. Both global and cohort-specific peptides exhibited broader epitope coverage compared to commonly used consensus reagents, with mean breadth estimates of 3.2 (global), 3.4 (cohort) and 2.2 (consensus) epitopes. Global or cohort peptides each identified unique epitope responses that would not be detected if these peptide pools were used alone. A peptide set designed around specific virologic and immunogenetic characteristics of a target cohort can expand the detection of CD8 T-cell responses to epitopes in circulating viruses, providing a novel way to better define the host response to HIV-1 with implications for vaccine development. Full article
(This article belongs to the Section Cellular/Molecular Immunology)
Show Figures

Figure 1

17 pages, 3033 KiB  
Article
The Use of an Adjuvant System Improves Innate and Adaptive Immune Response When Associated with a Leishmania (Viannia) braziliensis Antigen in a Vaccine Candidate against L. (Leishmania) infantum Infection
by Fernando Augusto Siqueira Mathias, Thais Lopes Valentim Di Paschoale Ostolin, Levi Eduardo Soares Reis, Jamille Mirelle de Oliveira Cardoso, Rory Cristiane Fortes De Brito, Rodrigo Dian de Oliveira Aguiar Soares, Bruno Mendes Roatt, Paula Melo de Abreu Vieira and Alexandre Barbosa Reis
Vaccines 2023, 11(2), 395; https://doi.org/10.3390/vaccines11020395 - 9 Feb 2023
Viewed by 2125
Abstract
Background: The adjuvants’ optimal dose and the administration route can directly influence the epitope recognition patterns and profiles of innate response. We aimed to establish the effect and the optimal dose of adjuvant systems for proposing a vaccine candidate to be employed with [...] Read more.
Background: The adjuvants’ optimal dose and the administration route can directly influence the epitope recognition patterns and profiles of innate response. We aimed to establish the effect and the optimal dose of adjuvant systems for proposing a vaccine candidate to be employed with Leishmania (Viannia) braziliensis. Methods: We evaluated the adjuvants saponin (SAP), monophosphoryl lipid A (MPL) and resiquimod (R-848) isolated and combined as adjuvant systems in a lower dose corresponding to 25%, 33%, and 50% of each adjuvant total dose. Male outbred BALB/c mice were divided into 13 groups, SAP, MPL, and R-848 isolated, and the adjuvant systems SAP plus MPL (SM), SAP plus R-848 (SR), and MPL plus R-848 (MR). Results: SM50 increased levels of all chemokines analyzed and TNF production, while it presented an increased inflammatory cell infiltrate in the skin with macrophage recruitment. Thus, we proposed a vaccine candidate employing L. (V.) braziliensis antigen associated with the SM adjuvant system against experimental L. (Leishmania) infantum challenge. We observed a significant increase in the frequency of cells expressing the central and effector memory CD4+ T cells phenotype in immunized mice with the LBSM50. In the liver, there was a decreased parasite load when mice received LBSM50. Conclusions: When combined with L. (V.) braziliensis antigen, SM50 increases TNF and IFN-γ, which generates central and effector memory CD4+ T cells. Therefore, using an adjuvant system can promote an effective innate immune response with the potential to compose future vaccines. Full article
(This article belongs to the Section Cellular/Molecular Immunology)
Show Figures

Figure 1

21 pages, 4605 KiB  
Article
Assessment of Liver Regeneration in Patients Who Have Undergone Living Donor Hepatectomy for Living Donor Liver Transplantation
by Basri Satilmis, Sami Akbulut, Tevfik Tolga Sahin, Yasin Dalda, Adem Tuncer, Zeynep Kucukakcali, Zeki Ogut and Sezai Yilmaz
Vaccines 2023, 11(2), 244; https://doi.org/10.3390/vaccines11020244 - 21 Jan 2023
Cited by 2 | Viewed by 2177
Abstract
Background: Inflammation and the associated immune pathways are among the most important factors in liver regeneration after living donor hepatectomy. Various biomarkers, especially liver function tests, are used to show liver regeneration. The aim of this study was to evaluate the course of [...] Read more.
Background: Inflammation and the associated immune pathways are among the most important factors in liver regeneration after living donor hepatectomy. Various biomarkers, especially liver function tests, are used to show liver regeneration. The aim of this study was to evaluate the course of liver regeneration following donor hepatectomy (LDH) by routine and regeneration-related biomarkers. Method: Data from 63 living liver donors (LLDs) who underwent LDH in Inonu University Liver Transplant Institute were prospectively analyzed. Serum samples were obtained on the preoperative day and postoperative days (POD) 1, 3, 5, 10, and 21. Regenerative markers including alfa-fetoprotein (AFP), des carboxy prothrombin (DCP), ornithine decarboxylase (ODC), retinol-binding protein 4 (RBP4), and angiotensin-converting enzyme isotype II (ACEII) and liver function tests including alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP) and total bilirubin levels were all analyzed. Results: The median age of the LLDs was 29.7 years and 28 LLDs were female. Eight LLDs developed postoperative complications requiring relaparotomy. The routine laboratory parameters including AST (<0.001), ALT (<0.001), ALP (<0.001), and total bilirubin (<0.001) showed a significant increase over time until postoperative day (POD) 3. For the regeneration-related parameters, except for the RBP4, all parameters including ACEII (p = 0.006), AFP (p = 0.002), DCP (p = 0.007), and ODC (p = 0.002) showed a significant increase in POD3. The regeneration parameters showed a different pattern of change. In right-lobe liver grafts, ACEII (p = 0.002), AFP (p = 0.035), and ODC (p = 0.001) showed a significant increase over time. DCP (p = 0.129) and RBP4 (p = 0.335) showed no significant changes in right-lobe liver grafts. Conclusions: Regenerative markers are increased in a sustained fashion following LDH. This is more prominent following right-lobe grafts which are indicative of progenitor-associated liver regeneration. Full article
(This article belongs to the Section Cellular/Molecular Immunology)
Show Figures

Figure 1

Back to TopTop