Review of Laboratory Testing and Biomarker Screening for Preeclampsia
Abstract
:1. Introduction
2. Methods
3. Etiology and Epidemiology
4. Pathophysiology
5. Diagnostic Tests
5.1. Routine Testing
- Blood pressure readings (systolic pressure/diastolic pressure)
- Urine testing
- ○
- Urine protein-to-creatinine ratio
- ○
- Quantitative 24 h urine collection for total protein
- ○
- Random urine protein measurement
- ○
- Qualitative urine dipstick
- Complete blood count (CBC) with platelets
- Serum creatinine level
- Liver chemistries (aspartate aminotransferase [AST], alanine aminotransferase [ALT]), and bilirubin
5.2. Additional Testing under Certain Clinical Conditions
- Liver chemistries (including lactate dehydrogenase [LDH])
- Additional studies for those with liver dysfunction or epigastric or abdominal pain including glucose, amylase, lipase, and ammonia levels
- Coagulation studies (prothrombin time [PT], partial thromboplastin time [PTT], fibrinogen)
- ○
- Additional ADAMTS13 studies in patients with thrombocytopenia (platelet count < 50,000/microL), fragmented blood cells on peripheral blood smears, neurologic findings, and normal clotting screen
5.3. Non-Routine Testing
- Serum plasma and urinary antiangiogenic markers for soluble fms-like tyrosine kinase-1 (sFlt-1), and their ratios
- Serum and urinary angiogenic markers for placental growth factor (PlGF), and their ratios
6. Testing Procedures
6.1. Blood Pressure Measurements
6.2. Urine Protein Measurement
6.3. Serum Markers
6.4. Ultrasound and Doppler Studies
7. Clinical Significance
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erez, O.; Romero, R.; Jung, E.; Chaemsaithong, P.; Bosco, M.; Suksai, M.; Gallo, D.M.; Gotsch, F. Preeclampsia and eclampsia: The conceptual evolution of a syndrome. Am. J. Obstet. Gynecol. 2022, 226, S786–S803. [Google Scholar] [CrossRef] [PubMed]
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef] [PubMed]
- Karrar, S.A.; Hong, P.L. Preeclampsia; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet 2021, 398, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Raymond, D.; Peterson, E. A critical review of early-onset and late-onset preeclampsia. Obstet. Gynecol. Surv. 2011, 66, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Wadhwani, P.; Saha, P.K.; Kalra, J.K.; Gainder, S.; Sundaram, V. A study to compare maternal and perinatal outcome in early vs. late onset preeclampsia. Obstet. Gynecol. Sci. 2020, 63, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Verlohren, S.; Brennecke, S.P.; Galindo, A.; Karumanchi, S.A.; Mirkovic, L.B.; Schlembach, D.; Stepan, H.; Vatish, M.; Zeisler, H.; Rana, S. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022, 27, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Mlambo, Z.P.; Khaliq, O.P.; Moodley, J.; Naicker, T. Circulatory and Placental Expression of Soluble Fms-like Tyrosine Kinase- 1 and Placental Growth Factor in HIV-infected Preeclampsia. Curr. Hypertens. Rev. 2023, 19, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.T.; Thompson, J.H.; Burda, B.U.; Cantor, A. Preeclampsia Screening: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2017, 317, 1668–1683. [Google Scholar] [CrossRef] [PubMed]
- Battarbee, A.N.; Sinkey, R.G.; Harper, L.M.; Oparil, S.; Tita, A.T.N. Chronic hypertension in pregnancy. Am. J. Obstet. Gynecol. 2020, 222, 532–541. [Google Scholar] [CrossRef]
- Jeyabalan, A. Epidemiology of preeclampsia: Impact of obesity. Nutr. Rev. 2013, 71 (Suppl. S1), S18–S25. [Google Scholar] [CrossRef]
- Miller, E.C.; Wilczek, A.; Bello, N.A.; Tom, S.; Wapner, R.; Suh, Y. Pregnancy, preeclampsia and maternal aging: From epide-miology to functional genomics. Ageing Res. Rev. 2022, 73, 101535. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Ramola, R.; Jain, S.; Haas, D.M.; Natarajan, S.; Radivojac, P. Using Association Rules to Understand the Risk of Adverse Pregnancy Outcomes in a Diverse Population. Pac. Symp. Biocomput. 2023, 28, 209–220. [Google Scholar] [PubMed]
- Leeman, L.; Dresang, L.T.; Fontaine, P. Hypertensive Disorders of Pregnancy. Am. Fam. Physician 2016, 93, 121–127. [Google Scholar] [PubMed]
- Jung, E.; Romero, R.; Yeo, L.; Gomez-Lopez, N.; Chaemsaithong, P.; Jaovisidha, A.; Gotsch, F.; Erez, O. The etiology of preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S844–S866. [Google Scholar] [CrossRef] [PubMed]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat. Rev. Nephrol. 2019, 15, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L.; Webster, R.P. Vascular biology of preeclampsia. J. Thromb. Haemost. 2009, 7, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Nirupama, R.; Divyashree, S.; Janhavi, P.; Muthukumar, S.P.; Ravindra, P.V. Preeclampsia: Pathophysiology and management. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 101975. [Google Scholar] [CrossRef] [PubMed]
- Dionisio, L.M.; Favero, G.M. Platelet indices and angiogenesis markers in hypertensive disorders of pregnancy. Int. J. Lab. Hematol. 2023, 46, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, M.; Bi, X.; Fu, Y.; Jing, X.; Zhang, H.; Cao, B.; Wang, C. A systematic review on the application of vascular endothelial growth factors in preeclampsia. Ann. Palliat. Med. 2021, 10, 9259–9266. [Google Scholar] [CrossRef]
- Chau, K.; Hennessy, A.; Makris, A. Placental growth factor and pre-eclampsia. J. Hum. Hypertens. 2017, 31, 782–786. [Google Scholar] [CrossRef]
- Westerberg, A.C.; Degnes, M.L.; Andresen, I.J.; Roland, M.C.P.; Michelsen, T.M. Angiogenic and vasoactive proteins in the maternal-fetal interface in healthy pregnancies and preeclampsia. Am. J. Obstet. Gynecol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Karumanchi, S.A.; Epstein, F.H. Placental ischemia and soluble fms-like tyrosine kinase 1: Cause or consequence of preeclampsia? Kidney Int. 2007, 71, 959–961. [Google Scholar] [CrossRef]
- Maynard, S.E.; Karumanchi, S.A. Angiogenic factors and preeclampsia. Semin. Nephrol. 2011, 31, 33–46. [Google Scholar] [CrossRef]
- Velegrakis, A.; Kouvidi, E.; Fragkiadaki, P.; Sifakis, S. Predictive value of the sFlt-1/PlGF ratio in women with suspected preeclampsia: An update (Review). Int. J. Mol. Med. 2023, 52, 89. [Google Scholar] [CrossRef]
- Lim, S.; Li, W.; Kemper, J.; Nguyen, A.; Mol, B.W.; Reddy, M. Biomarkers and the Prediction of Adverse Outcomes in Preeclampsia: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2021, 137, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Bohiltea, R.E.; Cirstoiu, M.M.; Turcan, N.; Stoian, A.P.; Zugravu, C.A.; Munteanu, O.; Arsene, L.V.; Oana, B.; Neacsu, A.; Fur-tunescu, F. Inherited thrombophilia is significantly associated with severe preeclampsia. Exp. Ther. Med. 2021, 21, 261. [Google Scholar] [CrossRef] [PubMed]
- Middeldorp, S.; Naue, C.; Kohler, C. Thrombophilia, Thrombosis and Thromboprophylaxis in Pregnancy: For What and in Whom? Hamostaseologie 2022, 42, 54–64. [Google Scholar] [CrossRef]
- Honigberg, M.C.; Truong, B.; Khan, R.R.; Xiao, B.; Bhatta, L.; Vy, H.M.T.; Guerrero, R.F.; Schuermans, A.; Selvaraj, M.S.; Patel, A.P.; et al. Polygenic prediction of preeclampsia and gestational hypertension. Nat. Med. 2023, 29, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- Triche, E.W.; Uzun, A.; DeWan, A.T.; Kurihara, I.; Liu, J.; Occhiogrosso, R.; Shen, B.; Parker, J.; Padbury, J.F. Bioinformatic ap-proach to the genetics of preeclampsia. Obstet. Gynecol. 2014, 123, 1155–1161. [Google Scholar] [CrossRef]
- Giannakou, K.; Evangelou, E.; Papatheodorou, S.I. Genetic and non-genetic risk factors for pre-eclampsia: Umbrella review of systematic reviews and meta-analyses of observational studies. Ultrasound Obstet. Gynecol. 2018, 51, 720–730. [Google Scholar] [CrossRef]
- Tyrmi, J.S.; Kaartokallio, T.; Lokki, A.I.; Jaaskelainen, T.; Kortelainen, E.; Ruotsalainen, S.; Karjalainen, J.; Ripatti, S.; Kivioja, A.; Laisk, T.; et al. Genetic Risk Factors Associated with Preeclampsia and Hypertensive Disorders of Pregnancy. JAMA Cardiol. 2023, 8, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Masoudian, P.; Nasr, A.; de Nanassy, J.; Fung-Kee-Fung, K.; Bainbridge, S.A.; El Demellawy, D. Oocyte donation pregnancies and the risk of preeclampsia or gestational hypertension: A systematic review and metaanalysis. Am. J. Obstet. Gynecol. 2016, 214, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Deer, E.; Herrock, O.; Campbell, N.; Cornelius, D.; Fitzgerald, S.; Amaral, L.M.; LaMarca, B. The role of immune cells and me-diators in preeclampsia. Nat. Rev. Nephrol. 2023, 19, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef] [PubMed]
- Loke, Y.W.; King, A. Immunology of implantation. Baillieres Best. Pract. Res. Clin. Obstet. Gynaecol. 2000, 14, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Aneman, I.; Pienaar, D.; Suvakov, S.; Simic, T.P.; Garovic, V.D.; McClements, L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front. Immunol. 2020, 11, 1864. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, A.L.; Cristinziano, L.; Petraroli, A.; Bova, M.; Gigliotti, M.C.; Marcella, S.; Modestino, L.; Varricchi, G.; Braile, M.; Galdiero, M.R.; et al. Roles of Immune Cells in Hereditary Angioedema. Clin. Rev. Allergy Immunol. 2021, 60, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Santner-Nanan, B.; Peek, M.J.; Khanam, R.; Richarts, L.; Zhu, E.; Fazekas de St Groth, B.; Nanan, R. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 2009, 183, 7023–7030. [Google Scholar] [CrossRef]
- Hiby, S.E.; Walker, J.J.; O’Shaughnessy, K.M.; Redman, C.W.; Carrington, M.; Trowsdale, J.; Moffett, A. Combinations of ma-ternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 2004, 200, 957–965. [Google Scholar] [CrossRef]
- Saftlas, A.F.; Beydoun, H.; Triche, E. Immunogenetic determinants of preeclampsia and related pregnancy disorders: A sys-tematic review. Obstet. Gynecol. 2005, 106, 162–172. [Google Scholar] [CrossRef]
- Slade, L.J.; Wilson, M.; Mistry, H.D.; Bone, J.N.; Bello, N.A.; Blackman, M.; Syeda, N.; von Dadelszen, P.; Magee, L.A. The 2017 American College of Cardiology and American Heart Association blood pressure categories in the second half of pregnancy-a systematic review of their association with adverse pregnancy outcomes. Am. J. Obstet. Gynecol. 2023, 229, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Tanner, M.S.; Davey, M.A.; Mol, B.W.; Rolnik, D.L. The evolution of the diagnostic criteria of preeclampsia-eclampsia. Am. J. Obstet. Gynecol. 2022, 226, S835–S843. [Google Scholar] [CrossRef] [PubMed]
- Metoki, H.; Iwama, N.; Hamada, H.; Satoh, M.; Murakami, T.; Ishikuro, M.; Obara, T. Hypertensive disorders of pregnancy: Definition, management, and out-of-office blood pressure measurement. Hypertens. Res. 2022, 45, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Ogedegbe, G.; Pickering, T. Principles and techniques of blood pressure measurement. Cardiol. Clin. 2010, 28, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Hameed Khan, A.; Shahab, H.; Zhang, Y.Q.; Chin Tay, J.; Buranakitjaroen, P.; Turana, Y.; Verma, N.; Chen, C.H.; Cheng, H.M.; et al. Office blood pressure measurement: A comprehensive review. J. Clin. Hypertens. 2021, 23, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Eknoyan, G.; Hostetter, T.; Bakris, G.L.; Hebert, L.; Levey, A.S.; Parving, H.H.; Steffes, M.W.; Toto, R. Proteinuria and other markers of chronic kidney disease: A position statement of the national kidney foundation (NKF) and the national institute of diabetes and digestive and kidney diseases (NIDDK). Am. J. Kidney Dis. 2003, 42, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Demirci, O.; Kumru, P.; Arinkan, A.; Ardic, C.; Arisoy, R.; Tozkir, E.; Tandogan, B.; Ayvaci, H.; Tugrul, A.S. Spot protein/creatinine ratio in preeclampsia as an alternative for 24-hour urine protein. Balk. Med. J. 2015, 32, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; August, P.A.; Bakris, G.; Barton, J.R.; Bernstein, I.M.; Druzin, M. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013; 122, 1122–1131. [Google Scholar]
- Stefanska, K.; Zielinski, M.; Zamkowska, D.; Adamski, P.; Jassem-Bobowicz, J.; Piekarska, K.; Jankowiak, M.; Leszczynska, K.; Swiatkowska-Stodulska, R.; Preis, K.; et al. Comparisons of Dipstick Test, Urine Protein-to-Creatine Ratio, and Total Protein Measurement for the Diagnosis of Preeclampsia. Int. J. Environ. Res. Public. Health 2020, 17, 4195. [Google Scholar] [CrossRef] [PubMed]
- Cote, A.M.; Firoz, T.; Mattman, A.; Lam, E.M.; von Dadelszen, P.; Magee, L.A. The 24-hour urine collection: Gold standard or historical practice? Am. J. Obstet. Gynecol. 2008, 199, 625.e1–625.e6. [Google Scholar] [CrossRef]
- Fishel Bartal, M.; Lindheimer, M.D.; Sibai, B.M. Proteinuria during pregnancy: Definition, pathophysiology, methodology, and clinical significance. Am. J. Obstet. Gynecol. 2022, 226, S819–S834. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, Q.; Tan, X.; Ye, W.; Liao, G.; Yang, J. Twenty-four-hour urinary protein excretion in uncomplicated singleton pregnancy. Am. J. Obstet. Gynecol. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, J.M.; Chang, B.S.; Matarese, R.A.; Garella, S. Use of single voided urine samples to estimate quantitative proteinuria. N. Engl. J. Med. 1983, 309, 1543–1546. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, F.; Alidadi, A.; Payandeh, A.; Ajdary, M.; Eslahi, N.; Pahlavanravi, A.; Mirgaloybayat, S. Study of The Relationship Between 24-hour Urine Protein Excretion Rate and Protein/Creatinine Ratio in Random Urine Specimen of Women with Preeclampsia. Iran. J. Kidney Dis. 2023, 17, 184–190. [Google Scholar] [PubMed]
- Karrar, S.; Fogel, J.; Hong, P. Withstanding the test of time: Morning versus afternoon/evening urine protein-to-creatinine ratios in preeclampsia. Pregnancy Hypertens. 2023, 34, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Teeuw, H.M.; Amoakoh, H.B.; Ellis, C.A.; Lindsley, K.; Browne, J.L. Diagnostic accuracy of urine dipstick tests for proteinuria in pregnant women suspected of preeclampsia: A systematic review and meta-analysis. Pregnancy Hypertens. 2022, 27, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Nadkarni, G.N.; Grams, M.E.; Sang, Y.; Ballew, S.H.; Coresh, J.; Matsushita, K.; Surapaneni, A.; Brunskill, N.; Chadban, S.J.; et al. Conversion of Urine Protein-Creatinine Ratio or Urine Dipstick Protein to Urine Albumin-Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis: An Individual Participant-Based Meta-analysis. Ann. Intern. Med. 2020, 173, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.; Furuta, I.; Zhai, T.; Ohkuchi, A.; Yamada, T.; Takahashi, K.; Matsubara, S.; Minakami, H. Effect of urine creatinine level during pregnancy on dipstick test. J. Obstet. Gynaecol. Res. 2017, 43, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Mbamalu, D.; Banerjee, A. Methods of obtaining peripheral venous access in difficult situations. Postgrad. Med. J. 1999, 75, 459–462. [Google Scholar] [CrossRef]
- Giavarina, D.; Lippi, G. Blood venous sample collection: Recommendations overview and a checklist to improve quality. Clin. Biochem. 2017, 50, 568–573. [Google Scholar] [CrossRef]
- Heilmann, L.; Siekmann, U.; Schmid-Schonbein, H.; Ludwig, H. Hemoconcentration and pre-eclampsia. Arch. Gynecol. 1981, 231, 7–21. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Simon, R. Hepatic Complications in Preeclampsia. Clin. Obstet. Gynecol. 2020, 63, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Umans, J.G. Obstetric nephrology: Preeclampsia--the nephrologist’s perspective. Clin. J. Am. Soc. Nephrol. 2012, 7, 2107–2113. [Google Scholar] [CrossRef]
- Jeyabalan, A.; Conrad, K.P. Renal function during normal pregnancy and preeclampsia. Front. Biosci. 2007, 12, 2425–2437. [Google Scholar] [CrossRef] [PubMed]
- Dani, R.; Mendes, G.S.; Medeiros Jde, L.; Peret, F.J.; Nunes, A. Study of the liver changes occurring in preeclampsia and their possible pathogenetic connection with acute fatty liver of pregnancy. Am. J. Gastroenterol. 1996, 91, 292–294. [Google Scholar] [PubMed]
- Reddy, M.; Fenn, S.; Rolnik, D.L.; Mol, B.W.; da Silva Costa, F.; Wallace, E.M.; Palmer, K.R. The impact of the definition of preeclampsia on disease diagnosis and outcomes: A retrospective cohort study. Am. J. Obstet. Gynecol. 2021, 224, 217.e1–217.e11. [Google Scholar] [CrossRef] [PubMed]
- Cerdeira, A.S.; O’Sullivan, J.; Ohuma, E.O.; Harrington, D.; Szafranski, P.; Black, R.; Mackillop, L.; Impey, L.; Greenwood, C.; James, T.; et al. Randomized Interventional Study on Prediction of Preeclampsia/Eclampsia in Women with Suspected Preeclampsia: INSPIRE. Hypertension 2019, 74, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Chirila, C.N.; Marginean, C.; Chirila, P.M.; Gliga, M.L. The Current Role of the sFlt-1/PlGF Ratio and the Uter-ine-Umbilical-Cerebral Doppler Ultrasound in Predicting and Monitoring Hypertensive Disorders of Pregnancy: An Update with a Review of the Literature. Children 2023, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Terrault, N.A.; Williamson, C. Pregnancy-Associated Liver Diseases. Gastroenterology 2022, 163, 97–117.e111. [Google Scholar] [CrossRef]
- Schaarschmidt, W.; Rana, S.; Stepan, H. The course of angiogenic factors in early- vs. late-onset preeclampsia and HELLP syn-drome. J. Perinat. Med. 2013; 41, 511–516. [Google Scholar]
- Andraweera, P.H.; Dekker, G.A.; Roberts, C.T. The vascular endothelial growth factor family in adverse pregnancy outcomes. Human. Reprod. Update 2012, 18, 436–457. [Google Scholar] [CrossRef]
- Stepan, H.; Herraiz, I.; Schlembach, D.; Verlohren, S.; Brennecke, S.; Chantraine, F.; Klein, E.; Lapaire, O.; Llurba, E.; Ramoni, A.; et al. Implementation of the sFlt-1/PlGF ratio for prediction and diagnosis of pre-eclampsia in singleton pregnancy: Implications for clinical practice. Ultrasound Obstet. Gynecol. 2015, 45, 241–246. [Google Scholar] [CrossRef]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennstrom, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef]
- Cornes, M.; Ibarz, M.; Ivanov, H.; Grankvist, K. Blood sampling guidelines with focus on patient safety and identification—A review. Diagnosis 2019, 6, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Cnossen, J.S.; Morris, R.K.; ter Riet, G.; Mol, B.W.; van der Post, J.A.; Coomarasamy, A.; Zwinderman, A.H.; Robson, S.C.; Bindels, P.J.; Kleijnen, J.; et al. Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth re-striction: A systematic review and bivariable meta-analysis. CMAJ 2008, 178, 701–711. [Google Scholar] [CrossRef]
- Pedroso, M.A.; Palmer, K.R.; Hodges, R.J.; Costa, F.D.S.; Rolnik, D.L. Uterine Artery Doppler in Screening for Preeclampsia and Fetal Growth Restriction. Rev. Bras. Ginecol. Obstet. 2018, 40, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 2009, 33, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Ives, C.W.; Sinkey, R.; Rajapreyar, I.; Tita, A.T.N.; Oparil, S. Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 1690–1702. [Google Scholar] [CrossRef] [PubMed]
- Zunker, P.; Ley-Pozo, J.; Louwen, F.; Schuierer, G.; Holzgreve, W.; Ringelstein, E.B. Cerebral hemodynamics in pre-eclampsia/eclampsia syndrome. Ultrasound Obstet. Gynecol. 1995, 6, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Roos, N.M.; Wiegman, M.J.; Jansonius, N.M.; Zeeman, G.G. Visual disturbances in (pre)eclampsia. Obstet. Gynecol. Surv. 2012, 67, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Logue, O.C.; George, E.M.; Bidwell, G.L., 3rd. Preeclampsia and the brain: Neural control of cardiovascular changes during pregnancy and neurological outcomes of preeclampsia. Clin. Sci. 2016, 130, 1417–1434. [Google Scholar]
- Ciesielski, T.H.; Marsit, C.J.; Williams, S.M. Maternal psychiatric disease and epigenetic evidence suggest a common biology for poor fetal growth. BMC Pregnancy Childbirth 2015, 15, 192. [Google Scholar]
- Brito, M.; Gamito, M.; Neves, A.R.; Caeiro, F.; Martins, A.; Dias, E.; Verissimo, C. Conservative management of a pregnancy complicated by preeclampsia and postpartum spontaneous hepatic rupture: A case report and review of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 267, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Rani, J. “Hepatic rupture in preeclampsia and HELLP syndrome: A catastrophic presentation”. Taiwan. J. Obstet. Gynecol. 2020, 59, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Augustin, G.; Hadzic, M.; Juras, J.; Oreskovic, S. Hypertensive disorders in pregnancy complicated by liver rupture or hematoma: A systematic review of 391 reported cases. World J. Emerg. Surg. 2022, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Vigil-De Gracia, P.; Ortega-Paz, L. Pre-eclampsia/eclampsia and hepatic rupture. Int. J. Gynaecol. Obstet. 2012, 118, 186–189. [Google Scholar] [CrossRef]
- Lynch, T.A.; Dexter, S.C. Alcoholic Pancreatitis Masquerading as Preeclampsia. Obstet. Gynecol. 2015, 126, 1276–1278. [Google Scholar] [CrossRef]
- Bauer, S.T.; Cleary, K.L. Cardiopulmonary complications of pre-eclampsia. Semin. Perinatol. 2009, 33, 158–165. [Google Scholar] [CrossRef]
- Cypher, R.L. Pulmonary Edema in Obstetrics: Essential Facts for Critical Care Nurses. AACN Adv. Crit. Care 2018, 29, 327–335. [Google Scholar] [CrossRef]
- Miller, E.C.; Leffert, L. Stroke in Pregnancy: A Focused Update. Anesth. Analg. 2020, 130, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, C.; Chireau, M. Preeclampsia and Stroke: Risks during and after Pregnancy. Stroke Res. Treat. 2011, 2011, 858134. [Google Scholar] [CrossRef]
- Lackovic, M.; Nikolic, D.; Jankovic, M.; Rovcanin, M.; Mihajlovic, S. Stroke vs. Preeclampsia: Dangerous Liaisons of Hypertension and Pregnancy. Medicina 2023, 59, 1707. [Google Scholar] [CrossRef]
- Liu, S.; Joseph, K.S.; Liston, R.M.; Bartholomew, S.; Walker, M.; Leon, J.A.; Kirby, R.S.; Sauve, R.; Kramer, M.S. Maternal Health Study Group of the Canadian Perinatal Surveillance, S. Incidence, risk factors, and associated complications of eclampsia. Obstet. Gynecol. 2011, 118, 987–994. [Google Scholar] [CrossRef]
- Fishel Bartal, M.; Sibai, B.M. Eclampsia in the 21st century. Am. J. Obstet. Gynecol. 2022, 226, S1237–S1253. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. ACOG Committee Opinion number 313, September 2005. The importance of preconception care in the continuum of women’s health care. Obstet. Gynecol. 2005, 106, 665–666. [Google Scholar]
- Sibai, B.M.; Mercer, B.M.; Schiff, E.; Friedman, S.A. Aggressive versus expectant management of severe preeclampsia at 28 to 32 weeks’ gestation: A randomized controlled trial. Am. J. Obstet. Gynecol. 1994, 171, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.S.; Ananth, C.V. Placental abruption at near-term and term gestations: Pathophysiology, epidemiology, diagnosis, and management. Am. J. Obstet. Gynecol. 2023, 228, S1313–S1329. [Google Scholar] [CrossRef]
- Tita, A.T.; Szychowski, J.M.; Boggess, K.; Dugoff, L.; Sibai, B.; Lawrence, K.; Hughes, B.L.; Bell, J.; Aagaard, K.; Edwards, R.K.; et al. Treatment for Mild Chronic Hypertension during Pregnancy. N. Engl. J. Med. 2022, 386, 1781–1792. [Google Scholar] [CrossRef]
Vasoactive Factor | Type of Angiogenic Factor | Level of Factor in Preeclampsia | Source of Factor | Effects | References |
---|---|---|---|---|---|
Soluble fms-like tyrosine kinase-1 (sFlt-1) | Anti-angiogenic factor | Up | Placenta | Binds to PlGF and VEGF and results in vasoconstriction and endothelial dysfunction | [21] |
Placental growth factor (PlGF) | Pro-angiogenic factor | Down | Placenta | Development and maturation of the placental vascular system | [19,20] |
Vascular endothelial growth factor (VEGF) | Pro-angiogenic factor | Down | Placenta | Promotes the stabilization of endothelial cells in blood vessels, the liver, brain, and kidneys | [23,24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladipo, A.F.; Jayade, M. Review of Laboratory Testing and Biomarker Screening for Preeclampsia. BioMed 2024, 4, 122-135. https://doi.org/10.3390/biomed4020010
Oladipo AF, Jayade M. Review of Laboratory Testing and Biomarker Screening for Preeclampsia. BioMed. 2024; 4(2):122-135. https://doi.org/10.3390/biomed4020010
Chicago/Turabian StyleOladipo, Antonia F., and Maansi Jayade. 2024. "Review of Laboratory Testing and Biomarker Screening for Preeclampsia" BioMed 4, no. 2: 122-135. https://doi.org/10.3390/biomed4020010