AbraLlama: Predicting Abraham Model Solute Descriptors and Modified Solvent Parameters Using Llama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Data Preprocessing
2.3. Model Development
3. Results and Discussion
3.1. AbraLlama-Solvent
3.2. AbraLlama-Solute
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, J.; Yang, Z.; Wang, H.; Ojima, I.; Samaras, D.; Wang, F. A systematic study of key elements underlying molecular property prediction. Nat. Commun. 2023, 14, 6395. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.S.I.D.; Chong, W.K.; Wörner, J.H. Fine-Tuning ChemBERTa-2 for Aqueous Solubility Prediction. Ann. Chem. Sci. Res. 2023, 4, 1–3. [Google Scholar] [CrossRef]
- Luong, K.-D.; Singh, A. Application of Transformers in Cheminformatics. J. Chem. Inf. Model. 2024, 64, 4392–4409. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lang, A.S.I.D.; Cai, D.; Wheat, S.R. The Role of Model Architecture and Scale in Predicting Molecular Properties: Insights from Fine-Tuning RoBERTa, BART, and LLaMA. arXiv 2024. [Google Scholar] [CrossRef]
- Bradley, J.-C.; Abraham, M.H.; Acree, W.E.; Lang, A.S. Predicting Abraham model solvent coefficients. Chem. Cent. J. 2015, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Vermeire, F.H.; Wu, H.; Walker, P.J.; Abraham, M.H.; Green, W.H. Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free Energy, and Solvation Enthalpy. J. Chem. Inf. Model. 2022, 62, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Zissimos, A.M.; Acree, W.E. Partition of solutes into wet and dry ethers; an LFER analysis. New J. Chem. 2003, 27, 1041–1044. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E. Comparison of solubility of gases and vapours in wet and dry alcohols, especially octan-1-ol. J. Phys. Org. Chem. 2008, 21, 823–832. [Google Scholar] [CrossRef]
- Abraham, M.H.; Smith, R.E.; Luchtefeld, R.; Boorem, A.J.; Luo, R.; Acree, W.E. Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 2010, 99, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Jouyban, A.; Acree, W.E., Jr. Michael H. Abraham and his developed parameters: Various applications in medicine, chemistry and biology. Pharm. Sci. 2022, 28, 170–173. [Google Scholar] [CrossRef]
- Lee, J.L.; Chong, G.H.; Ota, M.; Guo, H.; Smith, R.L. Solvent Replacement Strategies for Processing Pharmaceuticals and Bio-Related Compounds—A Review. Liquids 2024, 4, 352–381. [Google Scholar] [CrossRef]
- Lang, A.S.I.D.; Lee, Y. AbraLlama Hugging Face App: Predicting Abraham Model Solute Descriptors and Modified Solvent Parameters Using Llama. Hugging Face. 2024. Available online: https://huggingface.co/spaces/ttmn/AbraLlama (accessed on 24 May 2024).
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.-U. UFZ-LSER Database v 3.2.1; Helmholtz Centre for Environmental Research-UFZ: Leipzig, Germany, 2017; Available online: http://www.ufz.de/lserd (accessed on 24 May 2024).
- Acree, W.E., Jr.; Land, A.S.I.D.; Lee, Y. Dataset: Abraham model Log P and Log K equation coefficients. Figshare 2024. [Google Scholar] [CrossRef]
- Sinha, S.; Yang, C.; Wu, E.; Acree, W.E., Jr. Abraham Solvation Parameter Model: Examination of Possible Intramolecular Hydrogen-Bonding Using Calculated Solute Descriptors. Liquids 2022, 2, 131–146. [Google Scholar] [CrossRef]
- Lang, A.S.I.D.; Lee, Y. Dataset: AbraLlama: Predicting Abraham Model Solute Descriptors and Modified Solvent Parameters Using Llama. Figshare 2024. [Google Scholar] [CrossRef]
- Lee, Y.; Lang, A.S.I.D.; Cai, D.; Wheat, S.R. Transformers and Chemistry. Available online: https://github.com/BrightBlueCheese/transformers_and_chemistry (accessed on 24 May 2024).
- Falcon, W. The PyTorch Lightning Team. PyTorch Lightning (Version 1.9.5). 2024. Available online: https://github.com/Lightning-AI/pytorch-lightning/ (accessed on 24 May 2024).
- The PyTorch Lightning Bolts Team. PyTorch Lightning Bolts (Version 0.7.0). 2024. Available online: https://github.com/Lightning-Universe/lightning-bolts (accessed on 24 May 2024).
- Lee, Y.; Lang, A.S.I.D. AbraLLaMA Source Code. Available online: https://github.com/BrightBlueCheese/AbraLLaMA (accessed on 24 May 2024).
Modified Solvent Parameters | Solute Descriptors | ||||||
---|---|---|---|---|---|---|---|
Parameter | N | RMSE | R2 | Descriptor | N | RMSE | R2 |
e0 | 122 | 0.163 | 0.32 | E | 6852 | 0.132 | 0.97 |
s0 | 122 | 0.353 | 0.66 | S | 6852 | 0.240 | 0.90 |
a0 | 122 | 0.655 | 0.81 | A | 6852 | 0.135 | 0.85 |
b0 | 122 | 0.480 | 0.40 | B | 6852 | 0.123 | 0.96 |
v0 | 122 | 0.318 | 0.49 | V | 6852 | 0.097 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, A.S.I.D.; Lee, Y. AbraLlama: Predicting Abraham Model Solute Descriptors and Modified Solvent Parameters Using Llama. Liquids 2024, 4, 518-524. https://doi.org/10.3390/liquids4030029
Lang ASID, Lee Y. AbraLlama: Predicting Abraham Model Solute Descriptors and Modified Solvent Parameters Using Llama. Liquids. 2024; 4(3):518-524. https://doi.org/10.3390/liquids4030029
Chicago/Turabian StyleLang, Andrew S. I. D., and Youngmin Lee. 2024. "AbraLlama: Predicting Abraham Model Solute Descriptors and Modified Solvent Parameters Using Llama" Liquids 4, no. 3: 518-524. https://doi.org/10.3390/liquids4030029