Experimental Study on Ultimate Tensile Strength and Impact Energy of Al-2024 Friction Stir-Welded Joints †
Abstract
:1. Introduction
2. Materials and Method
3. Experiment Design and Setup
4. Results and Discussion
4.1. Statistical Analysis
4.2. Analysis of the Main Effect Plots
4.3. Analysis of the Interaction Plots
5. Multi-Response Optimization
6. Confirmatory Test
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehdi, H.; Batra, L.; Singh, A.P.; Malla, C. Multi-response optimization of FSW process parameters of dissimilar aluminum alloys of AA2014 and AA6061 by response surface methodology (RSM). Int. J. Interact. Des. Manuf. (IJIDeM) 2024, 18, 1507–1522. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Ataya, S.; El-Sayed Seleman, M.M.; Ammar, H.R.; Ahmed, E. Friction stir welding of similar and dissimilar AA7075 and AA5083. J. Mater. Process. Technol. 2017, 242, 77–91. [Google Scholar] [CrossRef]
- Haribalaji, V.; Boopathi, S.; Asif, M.M. Optimization of friction stir welding process to join dissimilar AA2014 and AA7075 aluminum alloys. Mater. Today Proc. 2022, 50, 2227–2234. [Google Scholar] [CrossRef]
- Ghosh, M.; Kumar, K.; Kailas, S.; Ray, A. Optimization of friction stir welding parameters for dissimilar aluminum alloys. Mater. Des. 2010, 31, 3033–3037. [Google Scholar] [CrossRef]
- Samuela, G.D.; Dhasb, J.E.R. Multi-Objective Optimization of friction stir welded dissimilar aluminium composites using grey analysis. Int. J. Appl. Eng. Res. 2017, 12, 1279–1289. [Google Scholar]
- Elangovan, K.; Balasubramanian, V. Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J. Mech. Work. Technol. 2008, 200, 163–175. [Google Scholar] [CrossRef]
- Meshram, S.; Reddy, M. Influence of Tool Tilt Angle on Material Flow and Defect Generation in Friction Stir Welding of AA2219. Def. Sci. J. 2018, 68, 512–518. [Google Scholar] [CrossRef]
- Mahany, M.S.; Abbas, R.R.; Ahmed, M.M.; Abdelkader, H. Influence of Tool Rotational Speed and Axial Load in Friction Stir Welding (Fsw) of High Strength Aluminum Alloys. IJRET Int. J. Res. Eng. Technol. 2017, 6, 114–120. [Google Scholar]
- Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P. Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1824–1835. [Google Scholar] [CrossRef]
- Jin, J.; Geng, S.; Shu, L.; Jiang, P.; Shao, X.; Han, C.; Ren, L.; Li, Y.; Yang, L.; Wang, X. High-strength and crack-free welding of 2024 aluminium alloy via Zr-core-Al-shell wire. Nat. Commun. 2024, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.; Jahanzaib, M.; Hanif, M.W. Optimizing the process parameters of Fiction Stir Welded dissimilar 2024Al-5754Al Joint using the Taguchi Method. MATEC Web Conf. 2023, 381, 02006. [Google Scholar] [CrossRef]
- Ghetiya, N.D.; Patel, K.M.; Kavar, A.J. Multi-objective Optimization of FSW Process Parameters of Aluminium Alloy Using Taguchi-Based Grey Relational Analysis. Trans. Indian Inst. Met. 2016, 69, 917–923. [Google Scholar] [CrossRef]
- Antony, J. Design of Experiments for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Hanif, M.W.; Wasim, A.; Sajid, M. Evaluating the Effect of Process Parameters on the Mechanical Properties of an AA7075-Cu Overcast Joint Using the Taguchi Method. Eng. Proc. 2022, 23, 3. [Google Scholar] [CrossRef]
- Jawad, M.; Jahanzaib, M.; Ilyas, M. Evaluation of welded joints of dissimilar titanium alloy Ti-5Al-2.5Sn and stainless-steel 304 at different multi-interlayer modes. Mater. Res. Express 2022, 9, 106501. [Google Scholar] [CrossRef]
- ASTM International. Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- ASTM E23-12c; Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2012.
- Ramarao, M.; King, M.F.L.; Sivakumar, A.; Manikandan, V.; Vijayakumar, M.; Subbiah, R. Optimizing GMAW parameters to achieve high impact strength of the dissimilar weld joints using Taguchi approach. Mater. Today Proc. 2022, 50, 861–866. [Google Scholar] [CrossRef]
- Jawad, M.; Jahanzaib, M.; Ali, M.A.; Hussain, S.; Ahmad, W.; Ahmed, N. Improvement in mechanical and microstructural properties of novel TA7/Nb/Cu/SS304 composite joints by reducing intermetallic compounds. Int. J. Adv. Manuf. Technol. 2024, 130, 3257–3274. [Google Scholar] [CrossRef]
- Hanif, M.W.; Wasim, A.; Sajid, M.; Hussain, S.; Jawad, M.; Jahanzaib, M. Evaluation of microstructure and mechanical properties of squeeze overcast Al7075−Cu composite joints. China Foundry 2023, 20, 29–39. [Google Scholar] [CrossRef]
- Jawad, M.; Ali, A.; Ishfaq, K.; Jahanzaib, M.; Sajid, M. Performance Evaluation of 70-30 Cu-Ni Filler Metal for Improving Dissimilar Al2024-SS304 Joints’ Efficiency: A Mechanical and Microstructural Investigation. J. Mater. Eng. Perform. 2023, 1–16. [Google Scholar] [CrossRef]
Materials | Cu | Si | Cr | Fe | Mn | Ni | Mg | Zn | Ag | Cr | Ti | Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al-2024 (wt.%) | 3.79 | 0.160 | 0.008 | 0.294 | 0.563 | 0.007 | 1.551 | 0.065 | 0.004 | 0.008 | 0.014 | 93.54 |
Trial No. | Axial Load (KN) | Tool Tilt Angle (degree) | Tool Rotation Speed (rpm) | UTS (MPa) | Impact Energy (Joule) |
---|---|---|---|---|---|
1 | 8 | 1 | 500 | 290.18 ± 3.80 | 16.17 ± 1.42 |
2 | 8 | 2 | 1000 | 310.93 ± 4.72 | 28.13 ± 2.95 |
3 | 8 | 3 | 1500 | 240.14 ± 4.81 | 12.34 ± 2.98 |
4 | 10 | 1 | 1000 | 350.13 ± 2.48 | 35.43 ± 3.86 |
5 | 10 | 2 | 1500 | 333.06 ± 1.27 | 40.62 ± 3.06 |
6 | 10 | 3 | 500 | 200.52 ± 2.59 | 28.61 ± 3.09 |
7 | 12 | 1 | 1500 | 250.92 ± 2.39 | 21.41 ± 2.99 |
8 | 12 | 2 | 500 | 178.14 ± 3.30 | 30.04 ± 2.24 |
9 | 12 | 3 | 1000 | 155.78 ± 3.76 | 24.06 ± 2.45 |
Mean Response Table for UTS (MPa) | Mean Response Table for Impact Energy (J) | ||||||
---|---|---|---|---|---|---|---|
Level | Axial Load | Tool Tilt Angle | Rotation Speed | Level | Axial Load | Tool Tilt Angle | Rotation Speed |
1 | 150.3 | 291.1 | 118.2 | 1 | 18.67 | 24.00 | 24.67 |
2 | 290.9 | 149.0 | 147.8 | 2 | 34.33 | 32.67 | 29.00 |
3 | 103.9 | 105.0 | 260.0 | 3 | 25.00 | 21.33 | 24.33 |
Delta | 56.9 | 56.1 | 30.7 | Delta | 15.67 | 11.33 | 4.67 |
Rank | 1 | 2 | 3 | Rank | 1 | 2 | 3 |
Parameters | DF. | Seq. SS. | Adj. SS. | Ad. MS. | F | P | Percentage Contribution (%) |
---|---|---|---|---|---|---|---|
AL (KN) | 2 | 17,428.7 | 17,428.7 | 8714.34 | 368.21 | 0.003 | 45.39 |
TA (degree) | 2 | 15,847.2 | 15,847.2 | 7923.62 | 334.80 | 0.003 | 41.27 |
RS (rpm) | 2 | 5118.7 | 5118.7 | 2559.36 | 108.14 | 0.009 | 13.33 |
Residual error | 2 | 47.3 | 47.3 | 23.67 | |||
Total | 8 | 38,442.0 | |||||
Model summary: R-squared (adj.) = 99.83%, R-squared (96.96%), and S = 1.612 |
Parameters | DF. | Seq. SS. | Adj. SS. | Adj. MS. | F | P | Percentage Contribution (%) |
---|---|---|---|---|---|---|---|
AL | 2 | 372.667 | 372.667 | 186.333 | 186.33 | 0.005 | 59.72 |
TA | 2 | 210.667 | 210.667 | 105.333 | 105.33 | 0.009 | 33.76 |
RS | 2 | 40.667 | 40.667 | 20.333 | 20.33 | 0.047 | 6.52 |
Residual error | 2 | 2.000 | 2.000 | 1.000 | |||
Total | 8 | 626.000 | |||||
Model summary: R-squared (adj.) = 98.72%, R-squared (99.68%), and S = 1.00 |
Exp. Run | Normalized Values | Grey Relational Coefficients (GRCs) | Gray Relational Grade (GRG) | Rank | ||
---|---|---|---|---|---|---|
UTS | IE (Joule) | UTS | IE (Joule) | |||
1 | 0.308 | 0.865 | 0.618 | 0.366 | 0.492 | 4 |
2 | 0.202 | 0.442 | 0.713 | 0.531 | 0.622 | 3 |
3 | 0.566 | 1.000 | 0.469 | 0.333 | 0.401 | 8 |
4 | 0.000 | 0.184 | 1.000 | 0.732 | 0.866 | 2 |
5 | 0.088 | 0.000 | 0.851 | 1.000 | 0.925 | 1 |
6 | 0.770 | 0.425 | 0.394 | 0.541 | 0.467 | 5 |
7 | 0.510 | 0.679 | 0.495 | 0.424 | 0.459 | 7 |
8 | 0.885 | 0.374 | 0.361 | 0.572 | 0.467 | 6 |
9 | 1.000 | 0.586 | 0.333 | 0.461 | 0.397 | 9 |
Process Variable | DF. | Seq. SS. | Adj. SS. | Adj. MS. | F | P | Contribution (%) |
---|---|---|---|---|---|---|---|
AL | 2 | 29.917 | 29.917 | 14.9584 | 25.07 | 0.038 | 0.51 |
TA | 2 | 22.526 | 22.526 | 11.2629 | 18.87 | 0.050 | 0.38 |
RS | 2 | 6.209 | 6.209 | 3.1045 | 5.20 | 0.161 | 0.11 |
Residual error | 2 | 1.194 | 1.194 | 0.5968 | |||
Total | 8 | 59.845 | |||||
Model summary: R-squared (adj.) = 84.02%, R-squared = 96.05%, and S = 0.0788 |
Output Responses | Calculated Value | Actual Value | Uncertainty (Error) |
---|---|---|---|
UTS (MPa) | 328.711 | 333.06 | 4.349 |
IE (Joule) | 43.475 | 40.62 | 2.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanif, M.W.; Haider, F.; Jawad, M.; Ali, A.; Imran, A. Experimental Study on Ultimate Tensile Strength and Impact Energy of Al-2024 Friction Stir-Welded Joints. Eng. Proc. 2024, 75, 4. https://doi.org/10.3390/engproc2024075004
Hanif MW, Haider F, Jawad M, Ali A, Imran A. Experimental Study on Ultimate Tensile Strength and Impact Energy of Al-2024 Friction Stir-Welded Joints. Engineering Proceedings. 2024; 75(1):4. https://doi.org/10.3390/engproc2024075004
Chicago/Turabian StyleHanif, Muhammad Waqas, Feroz Haider, Muhammad Jawad, Asad Ali, and Asif Imran. 2024. "Experimental Study on Ultimate Tensile Strength and Impact Energy of Al-2024 Friction Stir-Welded Joints" Engineering Proceedings 75, no. 1: 4. https://doi.org/10.3390/engproc2024075004