Reviewing Perovskite Oxide-Based Materials for the Effective Treatment of Antibiotic-Polluted Environments: Challenges, Trends, and New Insights
Abstract
:1. Introduction
2. Antibiotic Classes and Negative Effects on the Environment
3. Antibiotics Remediation Technologies
3.1. Physical Techniques
3.2. Chemical Techniques
3.3. Biological Techniques
4. Perovskite Oxide-Type Materials: Synthesis Strategies and Characteristics
5. Perovskite Oxide-Based Composites
5.1. Carbonaceous
5.2. Polymeric
5.3. Clays
6. Challenges, Future Perspectives, and Rethinking Treatment Strategies in Antibiotics Remediation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Oliveira, C.R.S.; da Silva Júnior, A.H.; Mulinari, J.; Ferreira, A.J.S.; da Silva, A. Fibrous Microplastics Released from Textiles: Occurrence, Fate, and Remediation Strategies. J. Contam. Hydrol. 2023, 256, 104169. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.N.; Clark, L.; Li, M. Microplastics as Hubs Enriching Antibiotic-Resistant Bacteria and Pathogens in Municipal Activated Sludge. J. Hazard. Mater. Lett. 2021, 2, 100014. [Google Scholar] [CrossRef]
- Nishat, A.; Yusuf, M.; Qadir, A.; Ezaier, Y.; Vambol, V.; Ijaz Khan, M.; Ben Moussa, S.; Kamyab, H.; Sehgal, S.S.; Prakash, C.; et al. Wastewater Treatment: A Short Assessment on Available Techniques. Alex. Eng. J. 2023, 76, 505–516. [Google Scholar] [CrossRef]
- da Silva Júnior, A.H.; Mulinari, J.; de Oliveira, P.V.; de Oliveira, C.R.S.; Reichert Júnior, F.W. Impacts of Metallic Nanoparticles Application on the Agricultural Soils Microbiota. J. Hazard. Mater. Adv. 2022, 7, 100103. [Google Scholar] [CrossRef]
- Huang, X.; Wen, D.; Wang, J. Radiation-Induced Degradation of Sulfonamide and Quinolone Antibiotics: A Brief Review. Radiat. Phys. Chem. 2024, 215, 111373. [Google Scholar] [CrossRef]
- de Oliveira, C.R.S.; da Silva Júnior, A.H.; Mulinari, J.; Immich, A.P.S. Textile Re-Engineering: Eco-Responsible Solutions for a More Sustainable Industry. Sustain. Prod. Consum. 2021, 28, 1232–1248. [Google Scholar] [CrossRef]
- Junaid, M.; Zainab, S.M.; Xu, N.; Sadaf, M.; Malik, R.N.; Wang, J. Antibiotics and Antibiotic Resistant Genes in Urban Aquifers. Curr. Opin. Environ. Sci. Health 2022, 26, 100324. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- da Silva Júnior, A.H.; de Oliveira, C.R.S.; Leal, T.W.; Mapossa, A.B.; Fiates, J.; Ulson de Souza, A.A.; Ulson de Souza, S.M.d.A.G.; da Silva, A. Organochlorine Pesticides Remediation Techniques: Technological Perspective and Opportunities. J. Hazard. Mater. Lett. 2024, 5, 100098. [Google Scholar] [CrossRef]
- de la Fuente-Nunez, C.; Cesaro, A.; Hancock, R.E.W. Antibiotic Failure: Beyond Antimicrobial Resistance. Drug Resist. Updat. 2023, 71, 101012. [Google Scholar] [CrossRef]
- Song, L.; Yang, S.; Gong, Z.; Wang, J.; Shi, X.; Wang, Y.; Zhang, R.; Wu, Y.; Wager, Y.Z. Antibiotics and Antibiotic-Resistant Genes in Municipal Solid Waste Landfills: Current Situation and Perspective. Curr. Opin. Environ. Sci. Health 2023, 31, 100421. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic Resistance in Microbes: History, Mechanisms, Therapeutic Strategies and Future Prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; An, L.; Xu, X.; Du, W.; Dai, R. A Review of Antibiotics in Surface Water and Their Removal by Advanced Electrocoagulation Technologies. Sci. Total Environ. 2024, 906, 167737. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, M.; Christou, A.; Michael, C.; Agapiou, A.; Papanastasiou, P.; Fatta-Kassinos, D. Adsorption and Removal of Seven Antibiotic Compounds Present in Water with the Use of Biochar Derived from the Pyrolysis of Organic Waste Feedstocks. J. Environ. Chem. Eng. 2021, 9, 105868. [Google Scholar] [CrossRef]
- Choi, K.-J.; Kim, S.-G.; Kim, S.-H. Removal of Antibiotics by Coagulation and Granular Activated Carbon Filtration. J. Hazard. Mater. 2008, 151, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Amaly, N.; EL-Moghazy, A.Y.; Nitin, N.; Sun, G.; Pandey, P.K. Design, Preparation, and Application of Novel Multilayer Metal-Polyphenol Composite on Macroporous Framework Melamine Foam for Effective Filtration Removal of Tetracycline in Fluidic Systems. Sep. Purif. Technol. 2023, 321, 124238. [Google Scholar] [CrossRef]
- Kontogiannis, A.; Evgenidou, E.; Nannou, C.; Bikiaris, D.; Lambropoulou, D. MOF-Based Photocatalytic Degradation of the Antibiotic Lincomycin Enhanced by Hydrogen Peroxide and Persulfate: Kinetics, Elucidation of Transformation Products and Toxicity Assessment. J. Environ. Chem. Eng. 2022, 10, 108112. [Google Scholar] [CrossRef]
- Anuar, N.F.; Iskandar Shah, D.R.S.; Ramli, F.F.; Md Zaini, M.S.; Mohammadi, N.A.; Mohamad Daud, A.R.; Syed-Hassan, S.S.A. The Removal of Antibiotics in Water by Chemically Modified Carbonaceous Adsorbents from Biomass: A Systematic Review. J. Clean. Prod. 2023, 401, 136725. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, P.; Li, X.; Ge, L.; Niu, J. Insight into Typical Photo-Assisted AOPs for the Degradation of Antibiotic Micropollutants: Mechanisms and Research Gaps. Chemosphere 2023, 343, 140211. [Google Scholar] [CrossRef]
- Bacha, A.-U.-R.; Nabi, I.; Chen, Y.; Li, Z.; Iqbal, A.; Liu, W.; Afridi, M.N.; Arifeen, A.; Jin, W.; Yang, L. Environmental Application of Perovskite Material for Organic Pollutant-Enriched Wastewater Treatment. Coord. Chem. Rev. 2023, 495, 215378. [Google Scholar] [CrossRef]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef] [PubMed]
- Besegatto, S.V.; da Silva, A.; Campos, C.E.M.; de Souza, S.M.A.G.U.; de Souza, A.A.U.; González, S.Y.G. Perovskite-Based Ca-Ni-Fe Oxides for Azo Pollutants Fast Abatement through Dark Catalysis. Appl. Catal. B Environ. 2021, 284, 119747. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Kadkhodayan, H.; Alizadeh, T. Manufacturing Visible-Light-Driven Heterojunction Photocatalyst Based on MOFs/Bi2WZnTiO9 Triple Perovskite/Carbonous Materials for Efficient Removal of Poisons, Antibiotics, and Inorganic Pollutants. J. Phys. Chem. Solids 2023, 183, 111620. [Google Scholar] [CrossRef]
- Brahmi, C.; Benltifa, M.; Vaulot, C.; Michelin, L.; Dumur, F.; Airoudj, A.; Morlet-Savary, F.; Raveau, B.; Bousselmi, L.; Lalevée, J. New Hybrid Perovskites/Polymer Composites for the Photodegradation of Organic Dyes. Eur. Polym. J. 2021, 157, 110641. [Google Scholar] [CrossRef]
- Bayan, E.M.; Pustovaya, L.E.; Volkova, M.G. Recent Advances in TiO2-Based Materials for Photocatalytic Degradation of Antibiotics in Aqueous Systems. Environ. Technol. Innov. 2021, 24, 101822. [Google Scholar] [CrossRef]
- Zhu, T.; Su, Z.; Lai, W.; Zhang, Y.; Liu, Y. Insights into the Fate and Removal of Antibiotics and Antibiotic Resistance Genes Using Biological Wastewater Treatment Technology. Sci. Total Environ. 2021, 776, 145906. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, L.; Zhong, H.; Li, P.; Zhang, C.; Wei, D. Response of Antibiotic and Heavy Metal Resistance Genes to Tetracyclines and Copper in Substrate-Free Hydroponic Microcosms with Myriophyllum Aquaticum. J. Hazard. Mater. 2021, 413, 125444. [Google Scholar] [CrossRef]
- Lima, É.; Oliveira, M.B.; Freitas, A. Antibiotics in Intensive Egg Production: Food Safety Tools to Ensure Regulatory Compliance. Food Chem. Adv. 2023, 3, 100548. [Google Scholar] [CrossRef]
- Jia, W.-L.; Song, C.; He, L.-Y.; Wang, B.; Gao, F.-Z.; Zhang, M.; Ying, G.-G. Antibiotics in Soil and Water: Occurrence, Fate, and Risk. Curr. Opin. Environ. Sci. Health 2023, 32, 100437. [Google Scholar] [CrossRef]
- Katiyar, R.; Chen, C.-W.; Singhania, R.R.; Tsai, M.-L.; Saratale, G.D.; Pandey, A.; Dong, C.-D.; Patel, A.K. Efficient Remediation of Antibiotic Pollutants from the Environment by Innovative Biochar: Current Updates and Prospects. Bioengineered 2022, 13, 14730–14748. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Rajput, D.; Kumar, V.; Jatain, I.; Aminabhavi, T.M.; Mohanakrishna, G.; Kumar, R.; Dubey, K.K. Photocatalytic Degradation of Four Emerging Antibiotic Contaminants and Toxicity Assessment in Wastewater: A Comprehensive Study. Environ. Res. 2023, 231, 116132. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Liu, W.; Dong, Y.; Lu, Y.; Yang, C.; Lin, H. Single Atom Catalysts for Degradation of Antibiotics from Aqueous Environments by Advanced Oxidation Processes: A Review. J. Clean. Prod. 2023, 423, 138688. [Google Scholar] [CrossRef]
- Li, D.; Zhan, W.; Gao, X.; Wang, Q.; Li, L.; Zhang, J.; Cai, G.; Zuo, W.; Tian, Y. Aminated Waste Paper Membrane for Efficient and Rapid Filtration of Anionic Dyes and Antibiotics from Water. Chem. Eng. J. 2023, 455, 140641. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of Natural Organic Matter in Drinking Water Treatment by Coagulation: A Comprehensive Review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Ba, S.; Haroune, L.; Soumano, L.; Bellenger, J.-P.; Jones, J.P.; Cabana, H. A Hybrid Bioreactor Based on Insolubilized Tyrosinase and Laccase Catalysis and Microfiltration Membrane Remove Pharmaceuticals from Wastewater. Chemosphere 2018, 201, 749–755. [Google Scholar] [CrossRef]
- Mustafa, S.E.; Mustafa, S.; Abas, F.; Manap, M.Y.A.B.D.; Ismail, A.; Amid, M.; Elzen, S. Optimization of Culture Conditions of Soymilk for Equol Production by Bifidobacterium Breve 15700 and Bifidobacterium Longum BB536. Food Chem. 2019, 278, 767–772. [Google Scholar] [CrossRef]
- Hamadeen, H.M.; Elkhatib, E.A. New Nanostructured Activated Biochar for Effective Removal of Antibiotic Ciprofloxacin from Wastewater: Adsorption Dynamics and Mechanisms. Environ. Res. 2022, 210, 112929. [Google Scholar] [CrossRef]
- Xing, Z.-P.; Sun, D.-Z. Treatment of Antibiotic Fermentation Wastewater by Combined Polyferric Sulfate Coagulation, Fenton and Sedimentation Process. J. Hazard. Mater. 2009, 168, 1264–1268. [Google Scholar] [CrossRef]
- Tang, X.; Fan, W.; Zhang, S.; Yan, B.; Zheng, H. The Improvement of Levofloxacin and Tetracycline Removal from Simulated Water by Thermosensitive Flocculant: Mechanisms and Simulation. Sep. Purif. Technol. 2023, 309, 123027. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, J.; Zeng, S.; Li, X.; Lisak, G.; Chen, F. Advanced Treatment of Microplastics and Antibiotic-Containing Wastewater Using Integrated Modified Dissolved Air Flotation and Pulsed Cavitation-Impinging Stream Processes. J. Hazard. Mater. Adv. 2022, 7, 100139. [Google Scholar] [CrossRef]
- Pattanayak, P.; Singh, P.; Bansal, N.K.; Paul, M.; Dixit, H.; Porwal, S.; Mishra, S.; Singh, T. Recent Progress in Perovskite Transition Metal Oxide-Based Photocatalyst and Photoelectrode Materials for Solar-Driven Water Splitting. J. Environ. Chem. Eng. 2022, 10, 108429. [Google Scholar] [CrossRef]
- Piccirillo, G.; Moreira-Santos, M.; Válega, M.; Eusébio, M.E.S.; Silva, A.M.S.; Ribeiro, R.; Freitas, H.; Pereira, M.M.; Calvete, M.J.F. Supported Metalloporphyrins as Reusable Catalysts for the Degradation of Antibiotics: Synthesis, Characterization, Activity and Ecotoxicity Studies. Appl. Catal. B Environ. 2021, 282, 119556. [Google Scholar] [CrossRef]
- Wang, X.; Jing, J.; Zhou, M.; Dewil, R. Recent Advances in H2O2-Based Advanced Oxidation Processes for Removal of Antibiotics from Wastewater. Chinese Chem. Lett. 2023, 34, 107621. [Google Scholar] [CrossRef]
- Batool, S.; Shah, A.A.; Abu Bakar, A.F.; Maah, M.J.; Abu Bakar, N.K. Removal of Organochlorine Pesticides Using Zerovalent Iron Supported on Biochar Nanocomposite from Nephelium Lappaceum (Rambutan) Fruit Peel Waste. Chemosphere 2022, 289, 133011. [Google Scholar] [CrossRef]
- Yin, S.; Wang, J.; Tong, Q.; Jiang, X.; Lu, P.; Zhu, Q.; Zhang, Q.; Zhang, Z.; Ueda, W. Degradation of Ciprofloxacin with Hydrogen Peroxide Catalyzed by Ironmolybdate-Based Zeolitic Octahedral Metal Oxide. Appl. Catal. A Gen. 2021, 626, 118375. [Google Scholar] [CrossRef]
- Dutta, N.; Usman, M.; Ashraf, M.A.; Luo, G.; Zhang, S. Efficacy of Emerging Technologies in Addressing Reductive Dechlorination for Environmental Bioremediation: A Review. J. Hazard. Mater. Lett. 2022, 3, 100065. [Google Scholar] [CrossRef]
- Li, W.; Liu, K.; Min, Z.; Li, J.; Zhang, M.; Korshin, G.V.; Han, J. Transformation of Macrolide Antibiotics during Chlorination Process: Kinetics, Degradation Products, and Comprehensive Toxicity Evaluation. Sci. Total Environ. 2023, 858, 159800. [Google Scholar] [CrossRef]
- Lai, J.-H.; Dhenadhayalan, N.; Chauhan, A.; Chien, C.-W.; Yeh, J.-C.; Hung, P.-Q.; Lin, K.-C. Antibiotic Drugs Removal by Visible Light-Driven Photocatalysis Using Pt/Ru Nanoparticle-Decorated Hafnium Oxide Nanohybrids. J. Environ. Chem. Eng. 2022, 10, 108557. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhan, X.; Hong, B.; Xia, Y.; Ding, Y.; Cai, T.; Yin, K.; Wang, X.; Yang, L.; Luo, S. Surface Atom Rearrangement on Carbon Nitride for Enhanced Photocatalysis Degradation of Antibiotics under Visible Light. Chem. Eng. J. 2023, 452, 139434. [Google Scholar] [CrossRef]
- Chen, C.; Bao, R.; Yang, L.; Tai, S.; Zhao, Y.; Wang, W.; Xia, J.; Li, H. Application of Inorganic Perovskite LaNiO3 Partial Substituted by Ce and Cu in Absorbance and Photocatalytic Degradation of Antibiotics. Appl. Surf. Sci. 2022, 579, 152026. [Google Scholar] [CrossRef]
- Zhu, Z.; Wan, S.; Lu, Q.; Zhong, Q.; Zhao, Y.; Bu, Y. A Highly Efficient Perovskite Oxides Composite as a Functional Catalyst for Tetracycline Degradation. Sep. Purif. Technol. 2022, 281, 119893. [Google Scholar] [CrossRef]
- Huy, B.T.; Nguyen, X.C.; Bui, V.K.H.; Tri, N.N.; Rabani, I.; Tran, N.H.T.; Ly, Q.V.; Truong, H.B. Photocatalytic Degradation of Antibiotic Sulfamethizole by Visible Light Activated Perovskite LaZnO3. J. Environ. Sci. 2023, 1–14. [Google Scholar] [CrossRef]
- Anusha, H.S.; Yadav, S.; Tenzin, T.; Prabagar, J.S.; Anilkumar, K.M.; Kitirote, W.; Shivaraju, H.P. Improved CeMnO3 Perovskite Framework for Visible-Light-Aided Degradation of Tetracycline Hydrochloride Antibiotic Residue and Methylene Blue Dye. Int. J. Environ. Sci. Technol. 2023, 20, 13519–13534. [Google Scholar] [CrossRef]
- Tuna, Ö.; Karadirek, Ş.; Simsek, E.B. Deposition of CaFe2O4 and LaFeO3 Perovskites on Polyurethane Filter: A New Photocatalytic Support for Flowthrough Degradation of Tetracycline Antibiotic. Environ. Res. 2022, 205, 112389. [Google Scholar] [CrossRef]
- Montes-Hernandez, G.; Feugueur, L.; Vernier, C.; Van Driessche, A.E.S.; Renard, F. Efficient Removal of Antibiotics from Water via Aqueous Portlandite Carbonation. J. Water Process Eng. 2023, 51, 103466. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, N.; Xu, J.; Jiang, H.; Chen, R.; Zhang, X.; Liu, N. Construction of Microwave/PMS Combined Dual Responsive Perovskite-MXene System for Antibiotic Degradation: Synergistic Effects of Thermal and Non-Thermal. Appl. Surf. Sci. 2023, 639, 158263. [Google Scholar] [CrossRef]
- Mamba, G.; Mafa, P.J.; Muthuraj, V.; Mashayekh-Salehi, A.; Royer, S.; Nkambule, T.I.T.; Rtimi, S. Heterogeneous Advanced Oxidation Processes over Stoichiometric ABO3 Perovskite Nanostructures. Mater. Today Nano 2022, 18, 100184. [Google Scholar] [CrossRef]
- Gonca, S.; Özdemir, S.; Tekgül, A.; Gokhan Unlu, C.; Ocakoglu, K.; Dizge, N. Synthesis and Characterization of Perovskite Type of La1-XBaxMnO3 Nanoparticles with Investigation of Biological Activity. Adv. Powder Technol. 2022, 33, 103346. [Google Scholar] [CrossRef]
- Yang, N.; Tian, Y.; Zhang, M.; Peng, X.; Li, F.; Li, J.; Li, Y.; Fan, B.; Wang, F.; Song, H. Photocatalyst-Enzyme Hybrid Systems for Light-Driven Biotransformation. Biotechnol. Adv. 2022, 54, 107808. [Google Scholar] [CrossRef]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of Pesticides from Water and Wastewater: Chemical, Physical and Biological Treatment Approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Wang, Y.; Ning, W.; Han, M.; Gao, C.; Guo, W.; Chang, J.-S.; Ho, S.-H. Algae-Mediated Bioremediation of Ciprofloxacin through a Symbiotic Microalgae-Bacteria Consortium. Algal Res. 2023, 71, 103062. [Google Scholar] [CrossRef]
- Leal, T.W.; Lourenço, L.A.; Scheibe, A.S.; de Souza, S.M.A.G.U.; de Souza, A.A.U. Textile Wastewater Treatment Using Low-Cost Adsorbent Aiming the Water Reuse in Dyeing Process. J. Environ. Chem. Eng. 2018, 6, 2705–2712. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Siddiqui, S.I.; Maeng, S.K.; Oh, S. Biological Detoxification of Oxytetracycline Using Achromobacter-Immobilized Bioremediation System. J. Water Process Eng. 2023, 52, 103491. [Google Scholar] [CrossRef]
- Pillay, L.; Machete, F.; Hart, R. Exploring the Use of Phytoremediation and Sustainable Methods of Agriculture in Alleviating the Pollution in the UThongathi River Estuary. Environ. Challenges 2022, 9, 100633. [Google Scholar] [CrossRef]
- Fu, T.; Du, L.; Wu, S.; Zhao, M.; Zheng, X.; Wang, Z.; Zhang, Y.; Fan, C.; Wang, W.; Ran, F.; et al. Synthesis and Application of Wetland Plant-Based Functional Materials for Aqueous Antibiotics Removal. Sci. Total Environ. 2024, 908, 168214. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, P.; Meena, U.; Thakur, I.S.; Srivastava, S. Heavy Metal Phytoremediation by the Novel Prospect of Microbes, Nanotechnology, and Genetic Engineering for Recovery and Rehabilitation of Landfill Site. Bioresour. Technol. Rep. 2023, 23, 101518. [Google Scholar] [CrossRef]
- Tian, R.; Zhang, R.; Uddin, M.; Qiao, X.; Chen, J.; Gu, G. Uptake and Metabolism of Clarithromycin and Sulfadiazine in Lettuce. Environ. Pollut. 2019, 247, 1134–1142. [Google Scholar] [CrossRef]
- Mulinari, J.; Junior, F.W.R.; de Oliveira, C.R.S.; da Silva Júnior, A.H.; Scariot, M.A.; Radünz, L.L.; Mossi, A.J. Biochar as a Tool for the Remediation of Agricultural Soils. In Biochar and Its Application in Bioremediation; Springer Nature: Singapore, 2021; pp. 281–303. [Google Scholar]
- Miao, S.; Zhang, Y.; Men, C.; Mao, Y.; Zuo, J. A Combined Evaluation of the Characteristics and Antibiotic Resistance Induction Potential of Antibiotic Wastewater during the Treatment Process. J. Environ. Sci. 2024, 138, 626–636. [Google Scholar] [CrossRef]
- Huang, K.; Yang, S.; Liu, X.; Zhu, C.; Qi, F.; Wang, K.; Wang, J.; Wang, Q.; Wang, T.; Ma, P. Adsorption of Antibiotics from Wastewater by Cabbage-Based N, P Co-Doped Mesoporous Carbon Materials. J. Clean. Prod. 2023, 391, 136174. [Google Scholar] [CrossRef]
- Míguez-González, A.; Cela-Dablanca, R.; Barreiro, A.; Rodríguez-López, L.; Rodríguez-Seijo, A.; Arias-Estévez, M.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Castillo-Ramos, V.; Álvarez-Rodríguez, E. Adsorption of Antibiotics on Bio-Adsorbents Derived from the Forestry and Agro-Food Industries. Environ. Res. 2023, 233, 116360. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Huang, W.; Li, Z.; Shao, H.; Wu, M.; Lei, J.; Tang, L. Radiolytic Decomposition of Sulfonamide Antibiotics: Implications to the Kinetics, Mechanisms and Toxicity. Sep. Purif. Technol. 2018, 202, 259–265. [Google Scholar] [CrossRef]
- Primožič, M.; Kravanja, G.; Knez, Ž.; Crnjac, A.; Leitgeb, M. Immobilized Laccase in the Form of (Magnetic) Cross-Linked Enzyme Aggregates for Sustainable Diclofenac (Bio)Degradation. J. Clean. Prod. 2020, 275, 124121. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Biotransformation of Carbamazepine by Laccase-Mediator System: Kinetics, by-Products and Toxicity Assessment. Process Biochem. 2018, 67, 147–154. [Google Scholar] [CrossRef]
- Touza-Otero, L.; Landin, M.; Diaz-Rodriguez, P. Fighting Antibiotic Resistance in the Local Management of Bovine Mastitis. Biomed. Pharmacother. 2024, 170, 115967. [Google Scholar] [CrossRef]
- Tummino, M.L.; Laurenti, E.; Deganello, F.; Bianco Prevot, A.; Magnacca, G. Revisiting the Catalytic Activity of a Doped SrFeO3 for Water Pollutants Removal: Effect of Light and Temperature. Appl. Catal. B Environ. 2017, 207, 174–181. [Google Scholar] [CrossRef]
- Hu, Z.; Yan, Q.; Wang, Y. Dynamic Surface Reconstruction of Perovskite Oxides in Oxygen Evolution Reaction and Its Impacts on Catalysis: A Critical Review. Mater. Today Chem. 2023, 34, 101800. [Google Scholar] [CrossRef]
- Oliveira, L.; Venâncio, R.; de Azevedo, P.V.; Anchieta, C.G.; C. M. Nepel, T.; Rodella, C.B.; Zanin, H.; Doubek, G. Reviewing Perovskite Oxide Sites Influence on Electrocatalytic Reactions for High Energy Density Devices. J. Energy Chem. 2023, 81, 1–19. [Google Scholar] [CrossRef]
- Yadav, P.; Yadav, S.; Atri, S.; Tomar, R. A Brief Review on Key Role of Perovskite Oxides as Catalyst. ChemistrySelect 2021, 6, 12947–12959. [Google Scholar] [CrossRef]
- Hirose, K.; Sinmyo, R.; Hernlund, J. Perovskite in Earth’s Deep Interior. Science 2017, 358, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Shen, Z.; Zhao, X.; Chen, R.; Thakur, V.K. Perovskite Oxides for Oxygen Transport: Chemistry and Material Horizons. Sci. Total Environ. 2022, 806, 151213. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Zhong, L.; Xiao, P.; Xu, X.; Yang, X.; Zhao, Z.; Li, J. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catal. 2014, 4, 2917–2940. [Google Scholar] [CrossRef]
- Lindquist, K.P.; Boles, M.A.; Mack, S.A.; Neaton, J.B.; Karunadasa, H.I. Gold-Cage Perovskites: A Three-Dimensional AuIII–X Framework Encasing Isolated MX63– Octahedra (MIII = In, Sb, Bi; X = Cl−, Br−, I−). J. Am. Chem. Soc. 2021, 143, 7440–7448. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Pazoki, M.; Hagfeldt, A.; Edvinsson, T. Goldschmidt’s Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH3NH3SrI3. J. Phys. Chem. C 2015, 119, 25673–25683. [Google Scholar] [CrossRef]
- Roudgar-Amoli, M.; Abedini, E.; Alizadeh, A.; Shariatinia, Z. Understanding Double Perovskite Oxides Capabilities to Improve Photocatalytic Contaminants Degradation Performances in Water Treatment Processes: A Review. J. Ind. Eng. Chem. 2024, 129, 579–619. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A Review of Dry (CO2) Reforming of Methane over Noble Metal Catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef]
- Peña, M.A.; Fierro, J.L.G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef]
- Thakur, V.; Singh, S.; Kumar, P.; Rawat, S.; Chandra Srivastava, V.; Lo, S.-L.; Lavrenčič Štangar, U. Photocatalytic Behaviors of Bismuth-Based Mixed Oxides: Types, Fabrication Techniques and Mineralization Mechanism of Antibiotics. Chem. Eng. J. 2023, 475, 146100. [Google Scholar] [CrossRef]
- Zhang, C.; Hua, W.; Wang, C.; Guo, Y.; Guo, Y.; Lu, G.; Baylet, A.; Giroir-Fendler, A. The Effect of A-Site Substitution by Sr, Mg and Ce on the Catalytic Performance of LaMnO3 Catalysts for the Oxidation of Vinyl Chloride Emission. Appl. Catal. B Environ. 2013, 134–135, 310–315. [Google Scholar] [CrossRef]
- Žužić, A.; Ressler, A.; Macan, J. Perovskite Oxides as Active Materials in Novel Alternatives to Well-Known Technologies: A Review. Ceram. Int. 2022, 48, 27240–27261. [Google Scholar] [CrossRef]
- Jing, J.; Pervez, M.N.; Sun, P.; Cao, C.; Li, B.; Naddeo, V.; Jin, W.; Zhao, Y. Highly Efficient Removal of Bisphenol A by a Novel Co-Doped LaFeO3 Perovskite/PMS System in Salinity Water. Sci. Total Environ. 2021, 801, 149490. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, J.; Yang, J.; Li, M.; Zhu, Y. Influence of LaCoO3 Perovskite Oxides Prepared by Different Method on the Catalytic Combustion of Ethyl Acetate in the Presence of NO. Appl. Surf. Sci. 2023, 623, 157045. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, Q.; Wang, C.; Chen, M.; Wang, Q. Facile Synthesis of CaMn1-XFexO3 to Incorporate Fe(IV) at High Ratio in Perovskite Structure for Efficient in Situ Adsorption-Oxidation of As(III). Chem. Eng. J. 2022, 435, 134894. [Google Scholar] [CrossRef]
- Qian, Y.; Ruan, Q.; Xue, M.; Chen, L. Emerging Perovskite Materials for Supercapacitors: Structure, Synthesis, Modification, Advanced Characterization, Theoretical Calculation and Electrochemical Performance. J. Energy Chem. 2024, 89, 41–70. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Didwal, P.N.; Mulani, S.R.; Patil, M.S.; Devan, R.S. Photocatalytic Activity of MnTiO3 Perovskite Nanodiscs for the Removal of Organic Pollutants. Heliyon 2021, 7, e07297. [Google Scholar] [CrossRef]
- Alkaykh, S.; Mbarek, A.; Ali-Shattle, E.E. Photocatalytic Degradation of Methylene Blue Dye in Aqueous Solution by MnTiO3 Nanoparticles under Sunlight Irradiation. Heliyon 2020, 6, e03663. [Google Scholar] [CrossRef]
- Shaterian, M.; Enhessari, M.; Rabbani, D.; Asghari, M.; Salavati-Niasari, M. Synthesis, Characterization and Photocatalytic Activity of LaMnO3 Nanoparticles. Appl. Surf. Sci. 2014, 318, 213–217. [Google Scholar] [CrossRef]
- Luo, X.; Su, C.; Chen, Z.; Xu, L.; Zhao, L.; Zhao, J.; Qiu, R.; Huang, Z. Mechanochemical Synthesis of La-Sr-Co Perovskite Composites for Catalytic Degradation of Doxycycline in the Dark: Role of Oxygen Vacancies. Sep. Purif. Technol. 2022, 300, 121891. [Google Scholar] [CrossRef]
- Pugazhenthiran, N.; Kaviyarasan, K.; Sivasankar, T.; Emeline, A.; Bahnemann, D.; Mangalaraja, R.V.; Anandan, S. Sonochemical Synthesis of Porous NiTiO3 Nanorods for Photocatalytic Degradation of Ceftiofur Sodium. Ultrason. Sonochem. 2017, 35, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Thamima, M.; Andou, Y.; Karuppuchamy, S. Microwave Assisted Synthesis of Perovskite Structured BaTiO3 Nanospheres via Peroxo Route for Photocatalytic Applications. Ceram. Int. 2017, 43, 556–563. [Google Scholar] [CrossRef]
- Pellenz, L.; de Oliveira, C.R.S.; da Silva Júnior, A.H.; da Silva, L.J.S.; da Silva, L.; Ulson de Souza, A.A.; de Souza, S.M.d.A.G.U.; Borba, F.H.; da Silva, A. A Comprehensive Guide for Characterization of Adsorbent Materials. Sep. Purif. Technol. 2023, 305, 122435. [Google Scholar] [CrossRef]
- Thinley, T.; Prakash, K.; Yadav, S.; Samuel, P.J.; Hosakote, A.; Anil Kumar, K.M.; Shivaraju, H.P. Facile Synthesis of Perovskite Carbonaceous Interface ZnSnO3/Fe/GC3N4 for Photocatalytic Remediation of Persistent Organic Pollutants. Mater. Today Proc. 2023, 75, 31–37. [Google Scholar] [CrossRef]
- Thinley, T.; Yadav, S.; Samuel Prabagar, J.; Hosakote, A.; Anil Kumar, K.M.; Shivaraju, H.P. Facile Synthesis of MnTiO3/Ag/GC3N4 Nanocomposite for Photocatalytic Degradation of Tetracycline Antibiotic and Synthesis of Ammonia. Mater. Today Proc. 2023, 75, 24–30. [Google Scholar] [CrossRef]
- Thinley, T.; Prabagar, J.S.; Yadav, S.; Anusha, H.S.; Anilkumar, K.M.; Kitirote, W.; Shahmoradi, B.; Shivaraju, H.P. LaNiO3-RGO Perovskite Interface for Sustainable Decontaminants of Emerging Concerns under Visible Light Photocatalysis. J. Mol. Struct. 2023, 1285, 135413. [Google Scholar] [CrossRef]
- Bilgin Simsek, E.; Tuna, Ö.; Balta, Z. Construction of Stable Perovskite-Type LaFeO3 Particles on Polymeric Resin with Boosted Photocatalytic Fenton-like Decaffeination under Solar Irradiation. Sep. Purif. Technol. 2020, 237, 116384. [Google Scholar] [CrossRef]
- Sadakane, M.; Horiuchi, T.; Kato, N.; Sasaki, K.; Ueda, W. Preparation of Three-Dimensionally Ordered Macroporous Perovskite-Type Lanthanum–Iron-Oxide LaFeO3 with Tunable Pore Diameters: High Porosity and Photonic Property. J. Solid State Chem. 2010, 183, 1365–1371. [Google Scholar] [CrossRef]
- Phan, T.T.N.; Nikoloski, A.N.; Bahri, P.A.; Li, D. Enhanced Removal of Organic Using LaFeO3-Integrated Modified Natural Zeolites via Heterogeneous Visible Light Photo-Fenton Degradation. J. Environ. Manag. 2019, 233, 471–480. [Google Scholar] [CrossRef]
- Peng, K.; Fu, L.; Yang, H.; Ouyang, J. Perovskite LaFeO3/Montmorillonite Nanocomposites: Synthesis, Interface Characteristics and Enhanced Photocatalytic Activity. Sci. Rep. 2016, 6, 19723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Du, L.; Bi, F.; He, H. A Novel SrTiO3/HZSM-5 Photocatalyst Prepared by Sol–Gel Method. Mater. Lett. 2015, 157, 103–105. [Google Scholar] [CrossRef]
- Mapossa, A.B.; da Silva Júnior, A.H.; de Oliveira, C.R.S.; Mhike, W. Thermal, Morphological and Mechanical Properties of Multifunctional Composites Based on Biodegradable Polymers/Bentonite Clay: A Review. Polymers 2023, 15, 3443. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, F.; Saravanakumar, K.; Maheskumar, V.; Njaramba, L.K.; Yoon, Y.; Park, C.M. Application of Perovskite Oxides and Their Composites for Degrading Organic Pollutants from Wastewater Using Advanced Oxidation Processes: Review of the Recent Progress. J. Hazard. Mater. 2022, 436, 129074. [Google Scholar] [CrossRef]
- de Oliveira, C.; Mulinari, J.; Reichert, F.; Júnior, A. Nano-Delivery Systems of Pesticides Active Agents for Agriculture Applications: An Overview. Available online: https://ciagro.institutoidv.org/ciagro/uploads/358.pdf (accessed on 9 December 2023).
- Júnior, A.; Mulinari, J.; de Oliveira, C.; Reichart, F. Nanofertilizers: An Overview. Available online: https://ciagro.institutoidv.org/ciagro/uploads/143.pdf (accessed on 9 December 2023).
Technique | Process | Material | Drug | Ref. |
---|---|---|---|---|
Chemical | Photocatalytic | La0.9Ce0.1Ni0.9Cu0.1O3 | Norfloxacin | [52] |
LaCoO3 and Bi4Ti3O12 | Tetracycline | [53] | ||
LaZnO3 | Sulfamethizole | [54] | ||
CeMnO3 | Tetracycline hydrochloride | [55] | ||
CaFe2O4 and LaFeO3 | Tetracycline | [56] |
Technique | Process | Drug | Removal | Ref. |
---|---|---|---|---|
Physical | Adsorption | Tetracycline | 99% | [72] |
Adsorption | Ciprofloxacin | 100% | [73] | |
Filtration and adsorption | Tetracycline | >90% | [35] | |
Chemical | Electron beam | Sulfathiazole | 90% | [74] |
Photocatalysis (Visible light) | Amoxicillin, azithromycin, cefixime, and ciprofloxacin | 99.99%, 99.99%, 99.89%, and 99.98% | [33] | |
Catalysis | Trimethoprim | 100% | [44] | |
Biological | Enzyme-based | Diclofenac | 92% | [75] |
Hybrid bioreactor | Several | >90% | [37] | |
Enzyme-based | Carbamazepine | 95% | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Júnior, A.H.; de Oliveira, C.R.S.; Wolff Leal, T.; Pellenz, L.; de Souza, S.M.d.A.G.U.; de Souza, A.A.U.; Mapossa, A.B.; Tewo, R.K.; Rutto, H.L.; da Silva, L.; et al. Reviewing Perovskite Oxide-Based Materials for the Effective Treatment of Antibiotic-Polluted Environments: Challenges, Trends, and New Insights. Surfaces 2024, 7, 54-78. https://doi.org/10.3390/surfaces7010005
da Silva Júnior AH, de Oliveira CRS, Wolff Leal T, Pellenz L, de Souza SMdAGU, de Souza AAU, Mapossa AB, Tewo RK, Rutto HL, da Silva L, et al. Reviewing Perovskite Oxide-Based Materials for the Effective Treatment of Antibiotic-Polluted Environments: Challenges, Trends, and New Insights. Surfaces. 2024; 7(1):54-78. https://doi.org/10.3390/surfaces7010005
Chicago/Turabian Styleda Silva Júnior, Afonso Henrique, Carlos Rafael Silva de Oliveira, Tarcisio Wolff Leal, Leandro Pellenz, Selene Maria de Arruda Guelli Ulson de Souza, Antônio Augusto Ulson de Souza, António Benjamim Mapossa, Robert Kimutai Tewo, Hilary Limo Rutto, Luciano da Silva, and et al. 2024. "Reviewing Perovskite Oxide-Based Materials for the Effective Treatment of Antibiotic-Polluted Environments: Challenges, Trends, and New Insights" Surfaces 7, no. 1: 54-78. https://doi.org/10.3390/surfaces7010005