Economic and Environmental Assessment of Variable Rate Nitrogen Application in Potato by Fusion of Online Visible and Near Infrared (Vis-NIR) and Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Online Soil Scanning and Sampling
2.3. Laboratory Scanning and Analysis
2.4. Online Vis-NIR Spectral Prediction Models and Maps
2.5. NDVI Data Collection
2.6. Management Zones Delineation and Application Map
2.7. Crop Management and Yield Measurement
2.8. Cost–Benefit and Environmental Analysis
2.9. Statistical Analysis
3. Results
3.1. Accuracy of Prediction Models of Online Vis-NIR Sensor
3.2. Spatial Variation in Soil Fertility
3.3. Crop Yield Response to Variable Nitrogen Application
3.4. Cost–Benefit and Environmental Assessment of Variable Rate Nitrogen
4. Discussion
4.1. Models Accuracy
4.2. Within Field Spatial Variability
4.3. Variable Rate Nitrogen Impact on Crop Yield
4.4. Cost–Benefit and Environmental Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Uebbing, L.F.; Beusen, A.H.W.; Bouwman, A.F.; De Vries, W. From Planetary to Regional Boundaries for Agricultural Nitrogen Pollution. Nature 2022, 610, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; De Neve, S.; Mouazen, A.M. Data Fusion Approach for Map-Based Variable-Rate Nitrogen Fertilization in Barley and Wheat. Soil. Tillage Res. 2021, 205, 104789. [Google Scholar] [CrossRef]
- Leslie, J.E.; Weersink, A.; Yang, W.; Fox, G. Actual versus Environmentally Recommended Fertilizer Application Rates: Implications for Water Quality and Policy. Agric. Ecosyst. Environ. 2017, 240, 109–120. [Google Scholar] [CrossRef]
- Qaswar, M.; Jing, H.; Ahmed, W.; Dongchu, L.; Shujun, L.; Lu, Z.; Cai, A.; Lisheng, L.; Yongmei, X.; Jusheng, G.; et al. Yield Sustainability, Soil Organic Carbon Sequestration and Nutrients Balance under Long-Term Combined Application of Manure and Inorganic Fertilizers in Acidic Paddy Soil. Soil. Tillage Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- D’Haene, K.; Salomez, J.; De Neve, S.; De Waele, J.; Hofman, G. Environmental Performance of Nitrogen Fertiliser Limits Imposed by the EU Nitrates Directive. Agric. Ecosyst. Environ. 2014, 192, 67–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification Caused by Excessive Application of Nitrogen Fertilizer Aggravates Soil-Borne Diseases: Evidence from Literature Review and Field Trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J. Cost-Effective Mitigation of Nitrogen Pollution from Global Croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Klages, S.; Heidecke, C.; Osterburg, B.; Bailey, J.; Calciu, I.; Casey, C.; Dalgaard, T.; Frick, H.; Glavan, M.; D’Haene, K.; et al. Nitrogen Surplus—A Unified Indicator for Water Pollution in Europe? Water 2020, 12, 1197. [Google Scholar] [CrossRef]
- Qi, J.; Yang, H.; Wang, X.; Zhu, H.; Wang, Z.; Zhao, C.; Li, B.; Liu, Z. State-of-the-Art on Animal Manure Pollution Control and Resource Utilization. J. Environ. Chem. Eng. 2023, 11, 110462. [Google Scholar] [CrossRef]
- Ransom, C.J.; Kitchen, N.R.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Laboski, C.A.M.; Myers, D.B.; Nafziger, E.D. Combining Corn N Recommendation Tools for an Improved Economical Optimal Nitrogen Rate Estimation. Soil. Sci. Soc. Am. J. 2023, 87, 902–917. [Google Scholar] [CrossRef]
- Guerrero Castillo, A.P.; De Neve, S.; Mouazen, A. Map-Based Variable-Rate Nitrogen Application Based on Proximal and Remote Sensing Techniques. In Proceedings of the EEGS/WG-PSS/SEG Symposium: Applications of Proximal and Remote Sensing Technologies for Soil Investigations, Virtual, 16–19 August 2021; pp. 74–75. [Google Scholar]
- Koch, B.; Khosla, R.; Frasier, W.M.; Westfall, D.G.; Inman, D. Economic Feasibility of Variable-rate Nitrogen Application Utilizing Site-specific Management Zones. Agron. J. 2004, 96, 1572–1580. [Google Scholar] [CrossRef]
- Schloter, M.; Bach, H.J.; Metz, S.; Sehy, U.; Munch, J.C. Influence of Precision Farming on the Microbial Community Structure and Functions in Nitrogen Turnover. Agric. Ecosyst. Environ. 2003, 98, 295–304. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, X.; Zhang, Y.; Liu, X.; Cao, Q.; Zhu, Y.; Cao, W.; Chen, D.; Tian, Y. Unveiling the Environmental and Socioeconomic Benefits of Precision Nitrogen Management for Paddy Fields in Subtropical China. Eur. J. Agron. 2023, 142, 126663. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Alexandridis, T.; Buddenbaum, H.; Cohen, Y.; Moshou, D.; Mulla, D.; Nawar, S.; Sudduth, K.A. Monitoring. In Agricultural Internet of Things and Decision Support for Precision Smart Farming; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–138. [Google Scholar]
- Christy, C.D. Real-Time Measurement of Soil Attributes Using on-the-Go near Infrared Reflectance Spectroscopy. Comput. Electron. Agric. 2008, 61, 10–19. [Google Scholar] [CrossRef]
- Mouazen, A.M. Soil Survey Device. International Publication Published under the Patent Cooperation Treaty (PCT). World Intellectual Property Organization, International Bureau. International Publication Number WO2006/015463; PCT/BE2005/000129, 16 February 2006. [Google Scholar]
- Munnaf, M.A.; Guerrero, A.; Calera, M.; Mouazen, A.M. Precision Nitrogen Fertilization for Opium Poppy Using Combined Proximal and Remote Sensor Data Fusion. Remote Sens. 2023, 15, 5442. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K. Techniques for Quantative Evaluation of Mine Site Reclamation Success: Case Study. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 415–438. [Google Scholar]
- Li, X.; Coles, B.J.; Ramsey, M.H.; Thornton, I. Sequential extraction of soils for multielement analysis by ICP-AES. Chem. Geol. 1995, 124, 109–123. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, I.C. Genesis and Management of Sodic (Alkali) Soils; Scientific Publishers: Jodhpur, India, 2017. [Google Scholar]
- Stevens, A.; Ramirez-Lopez, L. An Introduction to the Prospectr Package. 2014. Available online: https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html (accessed on 29 February 2024).
- Mouazen, A.M.; Maleki, M.R.; Cockx, L.; Van Meirvenne, M.; Van Holm, L.H.J.; Merckx, R.; De Baerdemaeker, J.; Ramon, H. Optimum Three-Point Linkage Set up for Improving the Quality of Soil Spectra and the Accuracy of Soil Phosphorus Measured Using an on-Line Visible and near Infrared Sensor. Soil. Tillage Res. 2009, 103, 144–152. [Google Scholar] [CrossRef]
- Wehrens, R.; Mevik, B.-H. The Pls Package: Principal Component and Partial Least Squares Regression in R. JSS J. Stat. Softw. 2007, 18, 1–23. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy Reflectance, Photosynthesis and Transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. Adv. Agron. 2017, 143, 175–245. [Google Scholar]
- Munnaf, M.A.; Haesaert, G.; Mouazen, A.M. Map-Based Site-Specific Seeding of Seed Potato Production by Fusion of Proximal and Remote Sensing Data. Soil. Tillage Res. 2021, 206, 104801. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; Sujayananad, G.K.; Vadivel, R.; Das, T.K.; et al. Nitrogen Use Efficiency—A Key to Enhance Crop Productivity under a Changing Climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Van Meirvenne, M.; Mouazen, A.M. Site-Specific Seeding Using Multi-Sensor and Data Fusion Techniques: A Review. Adv. Agron. 2020, 161, 241–323. [Google Scholar]
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing Soil Properties in the Laboratory, in Situ, and on-Line: A Review. Adv. Agron. 2012, 114, 155–223. [Google Scholar]
- Marín-González, O.; Kuang, B.; Quraishi, M.Z.; Munóz-García, M.Á.; Mouazen, A.M. On-Line Measurement of Soil Properties without Direct Spectral Response in near Infrared Spectral Range. Soil. Tillage Res. 2013, 132, 21–29. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; De Ketelaere, B.; Ramon, H.; De Baerdemaeker, J. On-the-Go Variable-Rate Phosphorus Fertilisation Based on a Visible and near-Infrared Soil Sensor. Biosyst. Eng. 2008, 99, 35–46. [Google Scholar] [CrossRef]
- Zhang, J.; Guerrero, A.; Mouazen, A.M. Map-Based Variable-Rate Manure Application in Wheat Using a Data Fusion Approach. Soil. Tillage Res. 2021, 207, 104846. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B. On-Line Visible and near Infrared Spectroscopy for in-Field Phosphorous Management. Soil. Tillage Res. 2016, 155, 471–477. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes That Control How Soil PH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Whetton, R.; Zhao, Y.; Shaddad, S.; Mouazen, A.M. Nonlinear Parametric Modelling to Study How Soil Properties Affect Crop Yields and NDVI. Comput. Electron. Agric. 2017, 138, 127–136. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; De Souza, R.; Thompson, R.B. Proximal Optical Sensors for Nitrogen Management of Vegetable Crops: A Review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.G.; Rosen, C.J.; Shiffler, A.K.; Taysom, T.W. Enhanced Efficiency Fertilizers for Improved Nutrient Management: Potato (Solanum tuberosum). Crop Manag. 2008, 7, 1–16. [Google Scholar] [CrossRef]
- Bowen, W.; Cabrera, H.; Barrera, V.H.; Baigorria, G. Simulating the Response of Potato to Applied Nitrogen. In CIP Program Report 1997–1998: Impact on a Changing World; International Potato Center: Lima, Peru, 1999. [Google Scholar]
- Koch, M.; Naumann, M.; Pawelzik, E.; Gransee, A.; Thiel, H. The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Res. 2020, 63, 97–119. [Google Scholar] [CrossRef]
- Möller, K.; Habermeyer, J.; Zinkernagel, V.; Reents, H.-J. Impact and Interaction of Nitrogen and Phytophthora Infestans as Yield-Limiting and Yield-Reducing Factors in Organic Potato (Solanum tuberosum L.) Crops. Potato Res. 2006, 49, 281–301. [Google Scholar] [CrossRef]
- Godard, C.; Roger-Estrade, J.; Jayet, P.-A.; Brisson, N.; Le Bas, C. Use of Available Information at a European Level to Construct Crop Nitrogen Response Curves for the Regions of the EU. Agric. Syst. 2008, 97, 68–82. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G.; Durand, J.-L.; Louarn, G. Quantifying Crop Responses to Nitrogen and Avenues to Improve Nitrogen-Use Efficiency. In Crop Physiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 161–206. [Google Scholar]
- Wu, W.; Ma, B.-L.; Fan, J.-J.; Sun, M.; Yi, Y.; Guo, W.-S.; Voldeng, H.D. Management of Nitrogen Fertilization to Balance Reducing Lodging Risk and Increasing Yield and Protein Content in Spring Wheat. Field Crops Res. 2019, 241, 107584. [Google Scholar] [CrossRef]
- Bernard, L.; Basile-Doelsch, I.; Derrien, D.; Fanin, N.; Fontaine, S.; Guenet, B.; Karimi, B.; Marsden, C.; Maron, P. Advancing the Mechanistic Understanding of the Priming Effect on Soil Organic Matter Mineralisation. Funct. Ecol. 2022, 36, 1355–1377. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mastrolonardo, G.; Sánchez-Monedero, M.A.; Mondini, C. Role of Biochar in Promoting Circular Economy in the Agriculture Sector. Part 1: A Review of the Biochar Roles in Soil N, P and K Cycles. Chem. Biol. Technol. Agric. 2020, 7, 15. [Google Scholar] [CrossRef]
- De Groot, C.C.; Marcelis, L.F.M.; van den Boogaard, R.; Kaiser, W.M.; Lambers, H. Interaction of Nitrogen and Phosphorus Nutrition in Determining Growth. Plant Soil. 2003, 248, 257–268. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Fiorentino, C.; Ritchie, J.T. Wheat Yield Response to Spatially Variable Nitrogen Fertilizer in Mediterranean Environment. Eur. J. Agron. 2013, 51, 65–70. [Google Scholar] [CrossRef]
- Meyer-Aurich, A.; Weersink, A.; Gandorfer, M.; Wagner, P. Optimal Site-Specific Fertilization and Harvesting Strategies with Respect to Crop Yield and Quality Response to Nitrogen. Agric. Syst. 2010, 103, 478–485. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision Nitrogen Management of Wheat. A Review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
Samples | Soil Properties | Min | Max | Median | Mean | SD | Range | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
Blondel-3 | MC | 4.05 | 6.09 | 4.76 | 4.76 | 0.55 | 2.03 | 0.99 | 3.47 |
pH | 7.40 | 7.70 | 7.60 | 7.61 | 0.100 | 0.30 | −0.96 | −0.29 | |
TOC | 0.74 | 1.56 | 0.97 | 1.00 | 0.20 | 0.82 | 1.39 | 1.63 | |
P | 32.00 | 47.00 | 41.00 | 41.08 | 3.93 | 15 | −0.64 | −0.12 | |
K | 14.00 | 26.00 | 17.00 | 18.23 | 3.49 | 12.00 | 0.85 | −0.45 | |
Mg | 43.00 | 52.00 | 47.00 | 47.00 | 2.52 | 9.00 | 0.17 | −0.97 | |
Ca | 2400.00 | 3500.00 | 3200.00 | 3162.00 | 287.34 | 1100.00 | −1.36 | 1.22 | |
CEC | 125.40 | 180.20 | 164.80 | 163.00 | 14.33 | 54.78 | −1.31 | 1.10 | |
Online spiked from spectral library | MC | 4.94 | 24.81 | 14.79 | 14.64 | 6.14 | 19.87 | −0.14 | −1.35 |
pH | 6.10 | 8.00 | 7.70 | 7.55 | 0.37 | 1.90 | −1.68 | 3.51 | |
TOC | 0.89 | 2.50 | 1.74 | 1.74 | 0.38 | 1.61 | −0.23 | −0.50 | |
P | 10.00 | 69.00 | 24.00 | 27.38 | 11.68 | 59.00 | 1.45 | 2.52 | |
K | 8.00 | 30.00 | 14.00 | 16.72 | 7.34 | 22.00 | 0.49 | −1.23 | |
Mg | 33.00 | 74.00 | 44.00 | 46.85 | 9.96 | 41.00 | 1.21 | 0.77 | |
Ca | 1670.00 | 6610.00 | 3330.00 | 3665.50 | 1398.00 | 4940.00 | 0.81 | −0.50 | |
CEC | 91.59 | 335.92 | 171.91 | 189.33 | 68.80 | 244.32 | 0.84 | −0.46 |
Order → | Moving Average | Normalization | SG Derivative | GS Derivative | Smoothing | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil properties | w | Type | w | p | m | m | w | s | w | p | m |
MC, pH, P | 3 | 0 to 1 | 7 | 2 | 1 | 1 | 5 | 3 | 5 | 2 | 0 |
TOC | 3 | 0 to 1 | - | - | - | 1 | 5 | 3 | 5 | 2 | 0 |
K | 5 | 0 to 1 | 3 | 1 | 0 | 1 | 5 | 3 | 5 | 2 | 0 |
Mg | 3 | 0 to 1 | 3 | 2 | 1 | 1 | 5 | 3 | 5 | 2 | 0 |
Ca, CEC | 15 | 0 to 1 | - | - | - | 1 | 7 | 3 | 5 | 2 | 0 |
Soil Properties | Calibration (70%) | Independent Validation (30%) | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSECV | RPD | RPIQ | R2 | RMSEP | RPD | RPIQ | |
MC | 0.94 | 1.32 | 4.18 | 8.62 | 0.87 | 1.82 | 2.86 | 2.69 |
pH | 0.84 | 0.12 | 2.56 | 3.27 | 0.72 | 0.21 | 1.93 | 1.16 |
TOC | 0.70 | 0.23 | 1.86 | 2.69 | 0.69 | 0.24 | 1.85 | 2.89 |
P | 0.87 | 3.74 | 2.85 | 3.80 | 0.80 | 6.38 | 2.31 | 2.58 |
K | 0.70 | 4.68 | 1.85 | 2.24 | 0.71 | 5.06 | 1.92 | 2.81 |
Mg | 0.96 | 1.81 | 5.36 | 5.51 | 0.73 | 3.57 | 2.00 | 2.58 |
CEC | 0.91 | 12.15 | 3.53 | 4.21 | 0.64 | 36.85 | 1.73 | 2.79 |
Treatment | Area (ha) | N-Fertilizer Application Rate (N kg/ha) | Fertilizer Cost (EUR/ha) | Yield (ton/ha) | Revenue (EUR/ha) | Gross Margin (EUR/ha) | Relative Gross Margin (EUR/ha) | Simulated Field Relative Gross Margin (EUR) | MVN (t/kg) | YRI |
---|---|---|---|---|---|---|---|---|---|---|
UR | 2.00 | 39.00 | 39.78 | 58.66 | 11,712.91 | 11,693.13 | ||||
VR-H | 0.79 | 19.50 | 63.44 | 1.08 | ||||||
VR-MH | 1.39 | 29.25 | 55.44 | 0.95 | ||||||
VR-ML | 1.30 | 48.75 | 67.06 | 1.14 | ||||||
VR-L | 1.14 | 58.50 | 57.32 | 0.98 | ||||||
Total VR | 4.63 | 40.24 | 41.08 | 60.55 | 12,109.05 | 12,067.96 | 374.83 | 2481.37 | 0.68 | 1.03 |
Treatments | Area (ha) | N-Fertilizer Application Rate (N kg/ha) | Yield (t/ha) | NUE (%) | Net N Impact ΔN (kg/ha) |
---|---|---|---|---|---|
UR | 2.00 | 39.00 | 58.66 | 58.70 | |
VR-H | 0.79 | 19.50 | 63.44 | 126.87 | 19.50 |
VR-MH | 1.39 | 29.25 | 55.44 | 73.92 | 9.75 |
VR-ML | 1.30 | 48.75 | 67.06 | 53.64 | −9.75 |
VR-L | 1.14 | 58.50 | 57.32 | 38.21 | −19.5 |
Total VR | 4.63 | 40.24 | 60.55 | 60.81 | −1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qaswar, M.; Bustan, D.; Mouazen, A.M. Economic and Environmental Assessment of Variable Rate Nitrogen Application in Potato by Fusion of Online Visible and Near Infrared (Vis-NIR) and Remote Sensing Data. Soil Syst. 2024, 8, 66. https://doi.org/10.3390/soilsystems8020066
Qaswar M, Bustan D, Mouazen AM. Economic and Environmental Assessment of Variable Rate Nitrogen Application in Potato by Fusion of Online Visible and Near Infrared (Vis-NIR) and Remote Sensing Data. Soil Systems. 2024; 8(2):66. https://doi.org/10.3390/soilsystems8020066
Chicago/Turabian StyleQaswar, Muhammad, Danyal Bustan, and Abdul Mounem Mouazen. 2024. "Economic and Environmental Assessment of Variable Rate Nitrogen Application in Potato by Fusion of Online Visible and Near Infrared (Vis-NIR) and Remote Sensing Data" Soil Systems 8, no. 2: 66. https://doi.org/10.3390/soilsystems8020066