Chemical Control of Snail Vectors as an Integrated Part of a Strategy for the Elimination of Schistosomiasis—A Review of the State of Knowledge and Future Needs
Abstract
:1. Introduction
2. Intermediate Host Snails
3. Approaches to Snail Control
3.1. History of Molluscicides in Schistosomiasis Control
3.2. Chemical Molluscicides
3.3. Plant-Based Molluscicides
3.4. Methods of Molluscicide Application
4. Molluscicide Formulations
5. Market for Molluscicides
6. Development of New Molluscicides
- Toxic to all life stages of the snails (i.e., egg masses, juvenile and adult snails).
- Remain effective in water at low concentrations for a prolonged period.
- Should not repel snails.
- Neither acutely or chronically toxic to humans and domestic animals nor to aquatic life in general.
- Non-toxic to irrigated crops and should not lead to toxic residues in such crops.
- Should be in a form or formulation that is easy and safe to handle, apply, and readily dispersible in water.
- Should be stable in storage during the shelf-life period.
- Should be easily and cheaply transported and can be applied at low operational costs.
- Have an affordable price.
7. Conclusions and Future Outlook for Use of Molluscicides
7.1. Interest in Travel Medicine and Mollusciciding around Touristic Sites and in Urban Areas
7.2. Cost of Chemical Control and Research Need
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, D.J.; McManus, D.P.; Li, Y.; Williams, G.M.; Bergquist, R.; Ross, A.G. Schistosomiasis elimination: Lessons from the past guide the future. Lancet Infect. Dis. 2010, 10, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Global Health Estimates 2021: Disease Burden by Cause, Age, Sex, by Country and by Region, 2000–2021. Geneva, World Health Organization. 2024. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 17 September 2024).
- Gryseels, B.; Polman, K.; Clerinx, J.; Kestens, L. Human schistosomiasis. Lancet 2006, 368, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Schistosomiasis and soil-transmitted helminthiases: Progress report, 2020. Wkly. Epidemiol. Rec. 2022, 97, 621–632. [Google Scholar]
- Madsen, H. Schistosoma intermediate host snails. In Schistosoma; CRC Press: Boca Raton, FL, USA, 2017; pp. 46–63. [Google Scholar]
- Moné, H.; Minguez, S.; Ibikounlé, M.; Allienne, J.-F.; Massougbodji, A.; Mouahid, G. Natural Interactions between S. haematobium and S. guineensis in the Republic of Benin. Sci. World J. 2012, 2012, 793420. [Google Scholar] [CrossRef]
- Morgan, J.A.T.; DeJong, R.J.; Lwambo, N.J.S.; Mungai, B.N.; Mkoji, G.M.; Loker, E.S. First report of a natural hybrid between Schistosoma mansoni and S. rodhaini. J. Parasitol. 2003, 89, 416–418. [Google Scholar] [CrossRef]
- Bandoni, S.M.; Brown, D.S. Freshwater Snails of Africa and Their Medical Importance, 2nd ed.; Taylor and Francis: London, UK, 1994. [Google Scholar]
- Bouchet, P.; Rocroi, J.-P.; Hausdorf, B.; Kaim, A.; Kano, Y.; Nützel, A.; Parkhaev, P.; Schrödl, M.; Strong, E.E. Revised Classification, Nomenclator and Typification of Gastropod and Monoplacophoran Families. Malacologia 2017, 61, 1–526. [Google Scholar] [CrossRef]
- Attwood, S.W. Studies on the parasitology, phylogeography and the evolution of host-parasite interactions for the snail inter-mediate hosts of medically important trematode genera in southeast Asia. In Advances in Parasitology, Volume 73: Important Helminth Infections in Southeast Asia: Diversity and Potential for Control and Elimination; Zhou, X.N., Bergquist, R., Olveda, R., Utzinger, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 73, pp. 405–440. [Google Scholar] [CrossRef]
- World Health Organization. The Control of Schistosomiasis. Report of a WHO Expert Committee; Technical Report Series 728; World Health Organization: Geneva, Switzerland, 1985; pp. 1–113. Available online: https://iris.who.int/handle/10665/39529 (accessed on 17 September 2024).
- World Health Organization. Snail Control in the Prevention of Bilharziasis; Monograph Series, No. 50; World Health Organization: Geneva, Switzerland, 1965. [Google Scholar]
- World Health Organization. Generic Risk Assessment Model for Insecticides Used for Larviciding and Mollusciciding, 2nd ed.; WHO/CDS/NTD/VEM/2018.04; World Health Organization: Geneva, Switzerland, 2018; p. 66. [Google Scholar]
- Ouedraogo, H.; Drabo, F.; Zongo, D.; Bagayan, M.; Bamba, I.; Pima, T.; Yago-Wienne, F.; Toubali, E.; Zhang, Y. Schistosomiasis in school-age children in Burkina Faso after a decade of preventive chemotherapy. Bull. World Health Organ. 2015, 94, 37–45. [Google Scholar] [CrossRef]
- Nyandwi, E.; Veldkamp, T.; Osei, F.B.; Amer, S. Spatio-temporal dynamics of schistosomiasis in Rwanda between 2001 and 2012: Impact of the national Neglected Tropical Disease control programme. Geospat. Health 2017, 12, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.; Bertsch, D.J.; Gazzinelli, A.; King, C.H. Decline in infection-related morbidities following drug-mediated reductions in the intensity of Schistosoma infection: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2017, 11, e0005372. [Google Scholar] [CrossRef]
- Bronzan, R.N.; Dorkenoo, A.M.; Agbo, Y.M.; Halatoko, W.; Layibo, Y.; Adjeloh, P.; Teko, M.; Sossou, E.; Yakpa, K.; Tchalim, M.; et al. Impact of community-based integrated mass drug administration on schistosomiasis and soil-transmitted helminth prevalence in Togo. PLoS Negl. Trop. Dis. 2018, 12, e0006551. [Google Scholar] [CrossRef]
- Kokaliaris, C.; Garba, A.; Matuska, M.; Bronzan, R.N.; Colley, D.G.; Dorkenoo, A.M.; Ekpo, U.F.; Fleming, F.M.; French, M.D.; Kabore, A.; et al. Effect of preventive chemotherapy with praziquantel on schistosomiasis among school-aged children in sub-Saharan Africa: A spatiotemporal modelling study. Lancet Infect. Dis. 2021, 22, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Haggag, A.A.; Rabiee, A.; Elaziz, K.M.A.; Gabrielli, A.F.; Abdelhai, R.; Hashish, A.; Jabbour, J.; Ramzy, R.M. Elimination of schistosomiasis haematobia as a public health problem in five governorates in Upper Egypt. Acta Trop. 2018, 188, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, R.; Zhou, X.-N.; Rollinson, D.; Reinhard-Rupp, J.; Klohe, K. Elimination of schistosomiasis: The tools required. Infect. Dis. Poverty 2017, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sokolow, S.H.; Wood, C.L.; Jones, I.J.; Lafferty, K.D.; Kuris, A.M.; Hsieh, M.H.; De Leo, G.A. To Reduce the Global Burden of Human Schistosomiasis, Use ‘Old Fashioned’ Snail Control. Trends Parasitol. 2017, 34, 23–40. [Google Scholar] [CrossRef]
- World Health Organization. Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017; p. 52. [Google Scholar]
- Rollinson, D.; Southgate, V.; Simpson, A. The genus Schistosoma: A taxonomic appraisal. In The Biology of Schistosomes: From Genes to Latrines; Rollinson, D., Simpson, A., Eds.; Academic Press: London, UK, 1987; pp. 1–49. ISBN 0125936923. [Google Scholar]
- Woodruff, D.S.; Staub, K.C.; Upatham, E.S.; Viyanant, V.; Yuan, H.C. Genetic-variation in Oncomelania-hupensis-Schistosoma-japonicum transmitting snails in China and the Philippines are distinct species. Malacologia 1988, 29, 347–361. [Google Scholar]
- Hope, M.; McManus, D.P. Genetic variation in geographically isolated populations and subspecies of Oncomelania hupensis determined by a PCR-based RFLP method. Acta Trop. 1994, 57, 75–82. [Google Scholar] [CrossRef]
- Woodruff, D.S.; Carpenter, M.P.; Upatham, E.S.; Viyanant, V. Molecular Phylogeography of Oncomelania Lindoensis (Gastropoda: Pomatiopsidae), the Intermediate Host of Schistosoma Japonicum in Sulawesi. J. Molluscan Stud. 1999, 65, 21–31. [Google Scholar] [CrossRef]
- Madsen, H.; Bloch, P.; Phiri, H.; Kristensen, T.K.; Furu, P. Bulinus nyassanus is an intermediate host for Schistosoma haematobium in Lake Malawi. Ann. Trop. Med. Parasitol. 2001, 95, 353–360. [Google Scholar] [CrossRef]
- Madsen, H.; Bloch, P.; Makaula, P.; Phiri, H.; Furu, P.; Stauffer, J.R. Schistosomiasis in lake Ma-lawi villages. EcoHealth 2011, 8, 163–176. [Google Scholar] [CrossRef]
- Madsen, H.; Stauffer, J.R. Density of Trematocranus placodon (Pisces: Cichlidae): A Predictor of Density of the Schistosome Intermediate Host, Bulinus nyassanus (Gastropoda: Planorbidae), in Lake Malaŵi. EcoHealth 2011, 8, 177–189. [Google Scholar] [CrossRef]
- Madsen, H.; Coulibaly, G.; Furu, P. Distribution of fresh-water snails in the river Niger basin in Mali with special reference to the intermediate hosts of schistosomes. Hydrobiologia 1987, 146, 77–88. [Google Scholar] [CrossRef]
- Babiker, A.; Fenwick, A.; Daffalla, A.A.; Amin, M.A. Focality and seasonality of Schistosoma-mansoni transmission in the Gezira irrigated area, Sudan. J. Trop. Med. Hyg. 1985, 88, 57–63. [Google Scholar] [PubMed]
- Tian-Bi, Y.-N.T.; N’Goran, E.K.; N’Guetta, S.-P.; Matthys, B.; Sangare, A.; Jarne, P. Prior selfing and the selfing syndrome in animals: An experimental approach in the freshwater snail Biomphalaria pfeifferi. Genet. Res. 2008, 90, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Pesigan, T.; Hairston, N.; Jauregui, J.; Garcia, E.; Santos, A.; Santos, B.; Besa, A.A. Studies on Schistosoma japonicum infection in the Philippines: 2. The molluscan host. Bull. World Health Organ. 1958, 18, 481. [Google Scholar]
- Xu, X.; Zhou, X.; Zhang, Y. 8. Biology and control of Oncomelania snail. Asian Parasitol. Schistosomiasis Asia 2005, 5, 133–150. [Google Scholar]
- Madsen, H.; Carabin, H.; Balolong, D.; Tallo, V.L.; Olveda, R.; Yuan, M.; McGarvey, S.T. Prevalence of Schistosoma japonicum infection of Oncomelania quadrasi snail colonies in 50 irrigated and rain-fed villages of Samar Province, the Philippines. Acta Trop. 2007, 105, 235–241. [Google Scholar] [CrossRef]
- Davis, G.M.; Kitikoon, V.; Temcharoen, P. Monograph on “Lithoglyphopsis” aperta, the snail host of Mekong River schistosomiasis. Malacologia 1976, 15, 241–287. [Google Scholar]
- Attwood, S.; Kitikoon, V.; Southgate, V. Infectivity of a Cambodian isolate of Schistosoma mekongi to Neotricula aperta from northeast Thailand. J. Helminthol. 1997, 71, 183–188. [Google Scholar] [CrossRef]
- Davis, G.M.; Greer, G.J. A new genus and 2 new species of Triculinae (Gastropoda, Prosobranchia) and the transmission of a malaysian mammalian Schistosoma sp. Proc. Acad. Nat. Sci. Phila. 1980, 132, 245–276. [Google Scholar]
- Attwood, S.W.; Lokman, H.S.; Ong, K.Y. Robertsiella Silvicola, A New Species of Triculine Snail (Caenogastropoda: Pomatiopsidae) from Peninsular Malaysia, Intermediate Host of Schistosoma Malayensis (Trematoda: Digenea). J. Molluscan Stud. 2005, 71, 379–391. [Google Scholar] [CrossRef]
- Maes, T.; Hammoud, C.; Volckaert, F.A.; Huyse, T. A call for standardised snail ecological studies to support schistosomiasis risk assessment and snail control efforts. Hydrobiologia 2021, 848, 1773–1793. [Google Scholar] [CrossRef]
- Kajihara, N.; Hirayama, K. The War against a Regional Disease in Japan A History of the Eradication of Schistosomiasis japonica. Trop. Med. Health 2011, 39 (Suppl. S1), 3. [Google Scholar] [CrossRef]
- Leiper, R.T. Report on the results of the bilharzia mission in Egypt, 1915. J. R. Army Med. Corps 1915, 25, 1–192. [Google Scholar]
- Appleton, C. Molluscicides in snail control. In Proceedings of the Workshop: A Status of Research on Medical Malacology in Relation to Schistosomiasis in Africa, Harare, Zimbabwe, 21–25 August 1995; Madsen, H., Kristensen, T.K., Ndlovu, P., Eds.; Danish Bilharziasis Laboratory: Copenhagen, Denmark, 1996. [Google Scholar]
- Ritchie, L.S. The chemical control of snails. In The Epidemiology and Control of Schistosomiasis (Bilharziasis); Ansari, N., Ed.; Karger S: Basel, Switzerland, 1973; pp. 458–532. [Google Scholar]
- Sturrock, R.F. Current concepts of snail control. Mem. Inst. Oswaldo Cruz 1995, 90, 241–248. [Google Scholar] [CrossRef]
- Kristensen, T.K.; Brown, D.S. Control of intermediate host snails for parasitic diseases-a threat to biodiversity in African fresh-waters? Malacologia 1999, 41, 379–391. [Google Scholar]
- Xiang, J.; Wu, H.; Gao, J.; Jiang, W.; Tian, X.; Xie, Z.; Zhang, T.; Feng, J.; Song, R. Niclosamide exposure disrupts antioxidant defense, histology, and the liver and gut transcriptome of Chinese soft-shelled turtle (Pelodiscus sinensis). Ecotoxicol. Environ. Saf. 2023, 260, 115081. [Google Scholar] [CrossRef]
- Madsen, H.; Rohde, R.; Maiga, A.S. Trials on focal molluscicide application in larger irrigation canals and lakes in Mali. Trop. Med. Parasitol. 1986, 37, 22–24. [Google Scholar]
- Yousif, F.; Roushdy, M.; El Emam, M.; Shiff, C.J.; Abou-Elyazeed, R. Focal transmission of schistosomiasis in Egypt. L. Transmission of Schistosoma mansoni in Kafr El Sheikh governoratet. In Proceedings of the SRP 1995 International Conference on Schistosomiasis, Cairo, Egypt, 10 October 1995; p. 181. [Google Scholar]
- Shiff, C.J.; Clarke, V.D.V.; Evans, A.C.; Barnish, G. Molluscicide for control of schistosomiasis in irrigation schemes-study in southern Rhodesia. Bull. World Health Organ. 1973, 48, 299–307. [Google Scholar]
- McCullough, F.S. The Role of Mollusciciding in Schistosomiasis Control; World Health Organization, WHO/SCHISTO/92.107: Geneva, Switzerland, 1992. [Google Scholar]
- King, C.H.; Sutherland, L.J.; Bertsch, D. Systematic Review and Meta-analysis of the Impact of Chemical-Based Mollusciciding for Control of Schistosoma mansoni and S. haematobium Transmission. PLoS Negl. Trop. Dis. 2015, 9, e0004290. [Google Scholar] [CrossRef]
- Anon, A. Molluscicides: Second Report of the Expert Committee on Bilharziasis; Technical Report Series, No. 214. World Health Organization: Geneva, Switzerland, 1961. [Google Scholar]
- World Health Organization. In Proceedings of the Meeting of Directors of Collaborating Laboratories on Molluscicide Testing and Evaluation, Washington, DC, USA, 31 August–4 September 1970. WHO/SCHISTO/71.6.
- World Health Organization. Molluscicide screening and evaluation. Bull. World Health Organ. 1965, 33, 567–581. [Google Scholar]
- McCullough, F.S.; Gayral, P.; Duncan, J.; Christie, J.D. Molluscicides in schistosomiasis control. Bull. World Health Organ. 1980, 58, 681–689. [Google Scholar] [PubMed]
- Zheng, L.; Deng, L.; Zhong, Y.; Wang, Y.; Guo, W.; Fan, X. Molluscicides against the snail-intermediate host of Schistosoma: A review. Parasitol. Res. 2021, 120, 3355–3393. [Google Scholar] [CrossRef] [PubMed]
- Andrews, P.; Thyssen, J.; Lorke, D. The biology and toxicology of molluscicides, bayluscide. Pharmacol. Ther. 1982, 19, 245–295. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.C.; Sullivan, J.T. A comparative study of the effects of two copper compounds on the respiration and survival of biomphalaria glabrata (mollusca: Pulmonata). Gen. Pharmacol. 1973, 4, 315–320. [Google Scholar] [CrossRef]
- Österberg, R. Physiology and pharmacology of copper. Pharmacol. Ther. 1980, 9, 121–146. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Hady, H.M.; Salama, M.; el-Ghazali, S. Laboratory study on the molluscicidal effect of Earth Tec: An environmen-tally responsible copper sulfate product. J. Egypt. Soc. Parasitol. 1994, 24, 317–322. [Google Scholar]
- Duncan, J. The toxicology of molluscicides—Trifenmorph. Pharmacol. Ther. 1981, 14, 67–88. [Google Scholar] [CrossRef]
- Blair, D.M. Dangers in using and handling sodium pentachlorophenate as a molluscicide. Bull. World Health Organ. 1961, 25, 597–601. [Google Scholar] [PubMed]
- Duncan, J. The toxicology of molluscicides. The organotins. Pharmacol. Ther. 1980, 10, 407–429. [Google Scholar] [CrossRef]
- Duncan, J. The toxicology of molluscicides, the organotins. In International Encyclopedia of Pharmacology and Therapeutics; Webbe, G., Ed.; Pergamon Press: Oxford, UK; New York, NY, USA, 1987; Volume 125, pp. 117–140. ISBN 0-08-034209. [Google Scholar]
- Kajihara, N.; Horimi, T.; Minai, M.; Hosaka, Y. Laboratory assessment of the molluscicidal activity of B-2, a new chemical against Oncomelania-nosophora. Jpn. J. Med. Sci. Biol. 1979, 32, 185–188. [Google Scholar] [CrossRef]
- Kajihara, N.; Horimi, T.; Minai, M.; Hosaka, Y. Field assessment of B-2 as a new molluscicide for the control of Oncomelania-nosophora. Jpn. J. Med. Sci. Biol. 1979, 32, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Xia, C.; Chen, M.; Zhang, C.; Mao, P.; Nei, G.; Hosaka, Y. Laboratory and field assessment of molluscicidal activity of B-2 against Oncomelania hupensis, the vector snail of schistosomiasis in China. Jpn. J. Med. Sci. Biol. 1988, 41, 31–36. [Google Scholar] [CrossRef]
- Joubert, P.H.; Pretorius, S.J. Laboratory evaluation of B-2 as a molluscicide in the control of the snail intermediate hosts of schistosomiasis in South-Africa. Ann. Trop. Med. Parasitol. 1991, 85, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Gu, J.; Yin, S.; Hong, G.; Chen, P.; Guo, Y. Study on a new molluscicide, bromoacetamide. J. Parasitol. Parasit. Dis. 1984, 2, 17–20. [Google Scholar]
- Wang, G.F.; Song, G.M.; Becker, W. Mode of action of the molluscicide bromoacetamide. Comp. Biochem. Physiol. C-Pharmacol. Toxicol. Endocrinol. 1991, 100, 373–379. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Y. Study on the effect of bromoacetamide upon the development of snail eggs. Chin. J. Parasitol. Parasit. Dis. 1992, 10, 258–262. (In Chinese) [Google Scholar]
- Yi, Y.A.; Xu, X.J.; Dong, H.F.; Jiang, M.S.; Zhu, H.G. Transmission control of schistosomiasis japonica: Implementation and evaluation of different snail control interventions. Acta Trop. 2005, 96, 191–197. [Google Scholar] [CrossRef]
- Gupta, R.C. Metaldehyde. In Veterinary Toxicology: Basic and Clinical Principles; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 624–628. [Google Scholar]
- De La Cruz, M.; Joshi, R. Efficacy of commercial molluscicide formulations against the golden apple snail Pomacea canaliculata (Lamarck). Philipp. Agric. Sci. 2001, 84, 51–55. Available online: https://eurekamag.com/research/003/747/003747351.php (accessed on 17 September 2024).
- Bao, Z.-P.; Cao, C.-L.; Dai, J.-R.; Liu, J.-B.; Li, G.-P.; Guo, J.-D.; Guo, J.-G. Evaluation on molluscicidal effect of suspension concentrate of metaldehyde and niclosamide. Chin. J. Schistosomiasis Control. 2011, 23, 48–53. [Google Scholar]
- Thomas, J.D.; Ofosubarko, J.; Patience, R.L. Behavioral-responses to carboxylic and amino-acids by Biomphalaria-glabrata (Say), the snail host of Schistosoma-mansoni (Sambon), and other fresh-water mollusks. Comp. Biochem. Physiol. C-Pharmacol. Toxicol. Endocrinol. 1983, 75, 57–76. [Google Scholar] [CrossRef]
- Speiser, B.; Kistler, C. Field tests with a molluscicide containing iron phosphate. Crop Prot. 2002, 21, 389–394. [Google Scholar] [CrossRef]
- Bari, M.A. Comparative efficacy of mollusk baits containing metaldehyde (slugfest and deadline) and iron phosphate (Sluggo) against the gray garden slug, Deroceras reticulatum occurring on artichokes. Acta Hortic. 2004, 660, 39–45. [Google Scholar] [CrossRef]
- Hollingsworth, R.G.; Howe, K.; Jarvi, S.I. Control measures for slug and snail hosts of Angiostrongylus cantonensis, with special reference to the semi-slug Parmarion martensi. Hawai’i J. Med. Public Health 2013, 72 (Suppl. S2), 75. [Google Scholar]
- Burks, R.L.; Bernatis, J.; Byers, J.E.; Carter, J.; Martin, C.W.; McDowell, W.G.; Van Dyke, J. Identity, reproductive potential, distribution, ecology and management of invasive Pomacea maculata in the southern United States. In Biology and Management of Invasive Apple Snails; Philippine Rice Research Institute: Nueva Ecija, Philippines, 2017; Volume 3119, pp. 293–333. [Google Scholar]
- Terhune, J.S.; Wise, D.J.; Avery, J.L.; Khoo, L.H.; Goodwin, A.E. Bolbophorus sp. in Channel Catfish; Southern Regional Aquaculture Center Publication: Stoneville, MS, USA, 2003. [Google Scholar]
- Wise, D.J.; Mischke, C.C.; Greenway, T.; Byars, T.S.; Mitchell, A.J. Uniform application of copper sulfate as a potential treatment for controlling snail populations in channel catfish production ponds. N. Am. J. Aquac. 2006, 68, 364–368. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Snyder, S.; Wise, D.J.; Mischke, C.C. Evaluating pond shoreline treatments of slurried hydrated lime for reducing marsh rams-horn snail populations. N. Am. J. Aquac. 2007, 69, 313–316. [Google Scholar] [CrossRef]
- Arthur, J.R.; Lavilla-Pitogo, C.R.; Subasinghe, R.P. Use of chemicals in aquaculture in Asia. In Proceedings of the Meeting on the Use of Chemicals in Aquaculture in Asia, Iloilo, Philippines, 20–22 May 1996; Available online: http://hdl.handle.net/10862/1815 (accessed on 17 September 2024).
- Kloos, H.; McCullough, F.S. Plant molluscicides. Planta Med. 1982, 46, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J. The toxicology of plant molluscicides. Pharmacol. Ther. 1985, 27, 243–264. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.M.; Meira, C.S.; da Silva, J.W.; Moura, D.M.N.; de Oliveira, S.A.; da Costa, C.J.; Santos, E.d.S.; Soares, M.B.P. Therapeutic potential of natural products in the treatment of schistosomiasis. Molecules 2023, 28, 6807. [Google Scholar] [CrossRef]
- Mott, K.E. Plant Molluscicides; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1987; p. 326. [Google Scholar] [CrossRef]
- Lemma, A. A preliminary report on the molluscicidal property of Endod (Phytolacca dodecandrd). Ethiop. Med. J. 1965, 3, 187–190. [Google Scholar]
- Pereira, L.P.L.A.; Ribeiro, E.C.G.; Brito, M.C.A.; Silveira, D.P.B.; Araruna, F.O.S.; Araruna, F.B.; Leite, J.A.C.; Dias, A.A.S.; Firmo, W.d.C.A.; Borges, M.O.d.R.; et al. Essential oils as molluscicidal agents against schistosomiasis transmitting snails—A review. Acta Trop. 2020, 209, 105489. [Google Scholar] [CrossRef]
- Tiwari, F. Efficacy of essential oils from plant origin molluscicides against the vector snail Lymnaea acuminata. Culture 2021, 5, 654–657. [Google Scholar] [CrossRef]
- Lucero, J.M.; Wilson, B.E. Regional expansion and chemical control for invasive apple snails (Pomacea maculata) in Louisiana rice and crawfish production systems. Crop Prot. 2023, 164, 106127. [Google Scholar] [CrossRef]
- Duke, S.O.; Cantrell, C.L.; Meepagala, K.M.; Wedge, D.E.; Tabanca, N.; Schrader, K.K. Natural toxins for use in pest management. Toxins 2010, 2, 1943–1962. [Google Scholar] [CrossRef]
- Valério, E.; Chaves, S.; Tenreiro, R. Diversity and impact of prokaryotic toxins on aquatic environments: A review. Toxins 2010, 2, 2359–2410. [Google Scholar] [CrossRef]
- Pereira, A.R.; McCue, C.F.; Gerwick, W.H. Cyanolide a, a glycosidic macrolide with potent molluscicidal activity from the Papua New Guinea cyanobacterium Lyngbya bouillonii. J. Nat. Prod. 2010, 73, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.R.; Etzbach, L.; Engene, N.; Müller, R.; Gerwick, W.H. Molluscicidal metabolites from an assemblage of Palmyra Atoll cyanobacteria. J. Nat. Prod. 2011, 74, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Essack, M.; Alzubaidy, H.S.; Bajic, V.B.; Archer, J.A.C. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry. Toxins 2014, 6, 3058–3076. [Google Scholar] [CrossRef] [PubMed]
- Falaise, C.; François, C.; Travers, M.-A.; Morga, B.; Haure, J.; Tremblay, R.; Turcotte, F.; Pasetto, P.; Gastineau, R.; Hardivillier, Y.; et al. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar. Drugs 2016, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Engene, N.; Gunasekera, S.P.; Gerwick, W.H.; Paul, V.J. Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria. Appl. Environ. Microbiol. 2013, 79, 1882–1888. [Google Scholar] [CrossRef]
- Molloy, D.P.; Mayer, D.A.; Gaylo, M.J.; Morse, J.T.; Presti, K.T.; Sawyko, P.M.; Karatayev, A.Y.; Burlakova, L.E.; Laruelle, F.; Nishikawa, K.C.; et al. Pseudomonas fluorescens strain cl145a–a biopesticide for the control of Zebra and Quagga mussels (Bivalvia: Dreissenidae). J. Invertebr. Pathol. 2013, 113, 104–114. [Google Scholar] [CrossRef]
- Whitledge, G.W.; Weber, M.M.; DeMartini, J.; Oldenburg, J.; Roberts, D.; Link, C.; Rackl, S.; Rude, N.; Yung, A.; Bock, L.; et al. An evaluation Zequanox® efficacy and application strategies for targeted control of Zebra Mussels in shallow-water habitats in lakes. Manag. Biol. Invasions 2015, 6, 71–82. [Google Scholar] [CrossRef]
- Abd El-Ghany, A.M.; Salama, A.; Abd El-Ghany, N.M.; Gharieb, R.M. New approach for controlling snail host of Schistosoma mansoni, Biomphalaria alexandrina with cyanobacterial strains-derived c-phycocyanin. Vector-Borne Zoonotic Dis. 2018, 18, 464–468. [Google Scholar] [CrossRef]
- Shanta, I.S.; Anisuzzaman Mohanta, U.K.; Farjana, T.; Mondal, M.M.H. Efficacy of some indigenous plants in controlling vector snails of trematode parasites of medical and veterinary importance. Bangladesh J. Vet. Med. 2008, 6, 107–114. [Google Scholar] [CrossRef]
- Nikinmaa, M. Introduction to Aquatic Toxicology; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Marston, A.; Hostettmann, K. Plant molluscicides. Phytochemistry 1985, 24, 639–652. [Google Scholar] [CrossRef]
- Chu, K.Y. Trials of ecological and chemical measures for control of Schistosoma-haematobium transmission in a volta lake village. Bull. World Health Organ. 1978, 56, 313–322. [Google Scholar]
- Hamburger, J.; He, N.; Xin, X.Y.; Ramzy, R.M.; Jourdane, J.; Ruppel, A. A polymerase chain reaction assay for detecting snails infected with bilharzia parasites (Schistosoma mansoni) from very early prepatency. Am. J. Trop. Med. Hyg. 1998, 59, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, I.; King, C.H.; Muchiri, E.M.; Hamburger, J. Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: Identification of infected snails from early prepatency. Am. J. Trop. Med. Hyg. 2010, 83, 427–432. [Google Scholar] [CrossRef]
- Allan, F.; Ame, S.M.; Tian-Bi, Y.N.T.; Hofkin, B.V.; Webster, B.L.; Diakité, N.R.; N’goran, E.K.; Kabole, F.; Khamis, I.S.; Gouvras, A.N.; et al. Snail-related contributions from the schistosomiasis consortium for operational research and evaluation program including xenomonitoring, focal mollusciciding, biological control, and modeling. Am. J. Trop. Med. Hyg. 2020, 103, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, M.E.; Hellström, M.; Kariuki, H.C.; Olsen, A.; Thomsen, P.F.; Mejer, H.; Willerslev, E.; Mwanje, M.T.; Madsen, H.; Kristensen, T.K.; et al. Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proc. Natl. Acad. Sci. USA 2019, 116, 8931–8940. [Google Scholar] [CrossRef]
- Meyer-Lassen, J.; Daffalla, A.A.; Madsen, H. Evaluation of focal mollusciciding in the Rahad irrigation scheme, Sudan. Acta Trop. 1994, 58, 229–241. [Google Scholar] [CrossRef]
- Baalawy, S.S. Relative effectiveness of corncobs and polyester granules as vehicles for Bayluscide. Bull. World Health Organ. 1966, 35, 451. [Google Scholar]
- Upatham, E.S.; Sturrock, R.F. Preliminary trials against Biomphalaria-glabrata of a new molluscicide formulation-gelatin granules containing Bayluscide wettable powder. Ann. Trop. Med. Parasitol. 1977, 71, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Prentice, M.A.; Barnish, G. Granule formulations of molluscicides for use in developing-countries. Ann. Trop. Med. Parasitol. 1980, 74, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.T.; Dai, J.-R.; Dai, Y.; Yang, Z.-K.; Wang, F.; Liang, X.-T.; Ma, B.; Qu, G.-L.; Wang, W.; Liang, Y.-S. Preparation and molluscicidal effect of 5% niclosamide ethanolamine granules. Chin. J. Schistosomiasis Control. 2013, 25, 473. [Google Scholar]
- Strufe, R.; Dazo, B.; Dawood, I. Field and laboratory trials with Bayluscide in the bilharziasis control pilot project Egypt 49. Pflanzenschutz Nachrichten 1965, 18, 110–122. [Google Scholar]
- Prentice, M. A molluscicide formulation for the control of Biomphalaria choanomphala in deep water. In Proceedings of the Symposium on Schistosomiasis, Addis Ababa, Ethiopia, 3–7 November 1970; Organization of African Unity, OAU Health Bureau Publication: Ife, Nigeria, 1970. [Google Scholar]
- Cardarelli, N. Controlled Release Molluscicides; Environmental Management Laboratory, University of Akron: Akron, OH, USA, 1977. [Google Scholar]
- Hopf, H.S.; Duncan, J.; Beesley, J.S.S.; Webley, D.J.; Sturrock, R.F. Molluscicidal properties of organotin and organolead compounds—With particular reference to triphenyllead acetate. Bull. World Health Organ. 1967, 36, 955. [Google Scholar] [PubMed]
- Gilbert, B.; Paesleme, L.A.; Ferreira, A.M.; Bulhoes, M.S.; Castleton, C. Field-tests of hexabutyldistannoxane (tbto) in slow-release formulations against Biomphalaria-spp. Bull. World Health Organ. 1973, 49, 633–636. [Google Scholar]
- Toledo, J.V.; Monteirodasilva, C.S.; Bulhoes, M.S.; Paesleme, L.A.; Dasilvanetto, J.A.; Gilbert, B. Snail control in urban sites in Brazil with slow-release hexabutyldistannoxane and pentachlorophenol. Bull. World Health Organ. 1976, 54, 421–425. [Google Scholar] [PubMed]
- Duft, M.; Schulte-Oehlmann, U.; Tillmann, M.; Weltje, L.; Oehlmann, J. Biological impact of organotin compounds on mollusks in marine and freshwater ecosystems. Coast. Mar. Sci. 2005, 29, 95–110. [Google Scholar]
- Hopf, H.S.; Wood, A.B.; Duncan, J. Molluscicidal activity of copper compounds of low solubility. Bull. World Health Organ. 1963, 29, 128. [Google Scholar] [PubMed]
- Chu, K.Y. Effects of environmental-factors on molluscicidal activities of slow-release hexabutyldistannoxane and copper-sulfate. Bull. World Health Organ. 1976, 54, 417–420. [Google Scholar]
- Christie, J.D.; Prentice, M.A.; Upatham, E.S.; Barnish, G. Laboratory and field trials of a slow-release copper molluscicide in St-Lucia. Am. J. Trop. Med. Hyg. 1978, 27, 616–622. [Google Scholar] [CrossRef]
- Chandiwana, S.K.; Ndamba, J.; Makura, O.; Taylor, P. Field-evaluation of controlled release copper glass as a molluscicide in snail control. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 952–955. [Google Scholar] [CrossRef]
- Emara, L.H. The development of slow-release molluscicide in a biodegradable gelatin matrix. J. Control. Release 1994, 31, 255–261. [Google Scholar] [CrossRef]
- Wang, J.; Xing, Y.; Dai, Y.; Li, Y.; Xiang, W.; Dai, J.; Xu, F. A novel gelatin-based sustained-release molluscicide for control of the invasive agricultural pest and disease vector Pomacea canaliculata. Molecules 2022, 27, 4268. [Google Scholar] [CrossRef]
- Koltnow, M.; Walker, K.; Cardarelli, N. Destruction of Aquatic Snails by Means of a Bait Concept; Report Series PD/MOL/69.6; WHO: Geneva, Switzerland, 1969. [Google Scholar]
- Cardarelli, N.F.; Walker, K. Schistosomiasis: Its Potential Eradication with Biocidal Elastomers; Kent, O., Ed.; American Institute of Chemistry Meeting: Philadelphia, PA, USA, 1969. [Google Scholar]
- Thomas, J.D. The application of behavioural and biochemical ecology towards the development of controlled release formulations for the selective removal of the snail hosts of schistosome parasites. In Proceedings of the Workshop: A Status of Research on Medical Malacology in Relation to Schistosomiasis in Africa, Harare, Zimbabwe, 21–25 August 1995; Madsen, H., Kristensen, T.K., Ndlovu, P., Eds.; Danish Bilharziasis Laboratory: Copenhagen, Denmark, 1996; pp. 275–321. [Google Scholar]
- Laila, R.; Genena, M. Biochemical effect of three molluscicide baits against the two land snails, Monacha cantiana and Eobania vermiculata (Gastropoda: Helicidae). Int. J. Agric. Res. 2011, 6, 682–690. [Google Scholar] [CrossRef]
- Singh, D.K.; Singh, V.K.; Singh, R.N.; Kumar, P. Snail control. In Fasciolosis: Causes, Challenges and Controls; Springer: Singapore, 2021; pp. 75–125. [Google Scholar] [CrossRef]
- Kumar, P.; Sunita, K.; Singh, V.; Singh, D. Fecundity, hatchability and survival of Indoplanorbis exustus fed to bait containing attractant and molluscicides. N. Y. Sci. J. 2014, 7, 1–5. [Google Scholar]
- Dai, J.R.; Wang, W.; Liang, Y.S.; Li, H.J.; Guan, X.H.; Zhu, Y.C. A novel molluscicidal formulation of niclosamide. Parasitol. Res. 2008, 103, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.J.; Li, W.; Sun, L.P.; Wu, F.; Yang, K.; Huang, Y.X.; Zhou, X.N. Molluscicidal efficacies of different formulations of niclosamide: Result of meta-analysis of Chinese literature. Parasites Vectors 2010, 3, 84. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.R.; Coles, G.C.; Wang, W.; Liang, Y.S. Toxicity of a novel suspension concentrate of niclosamide against Biomphalaria glabrata. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 304–306. [Google Scholar] [CrossRef]
- Li, H.; Wang, W. Apropos: Critical analysis of molluscicide application in schistosomiasis control programs in Brazil. Infect. Dis. Poverty 2017, 6, 54. [Google Scholar] [CrossRef]
- Araújo, P.S.; Caixeta, M.B.; Brito, R.D.; Gonçalves, B.B.; da Silva, S.M.; Lima, E.C.D.; Silva, L.D.; Bezerra, J.C.B.; Rocha, T.L. Molluscicidal activity of polyvinylpyrrolidone (PVP)-functionalized silver nanoparticles to Biomphalaria glabrata. Implications for control of intermediate host snail of Schistosoma mansoni. Acta Trop. 2020, 211, 105644. [Google Scholar] [CrossRef]
- Oyeyemi, O.T. Application of nanotized formulation in the control of snail intermediate hosts of schistosomes. Acta Trop. 2021, 220, 105945. [Google Scholar] [CrossRef]
- Zayed, K.M.; Guo, Y.-H.; Lv, S.; Zhang, Y.; Zhou, X.-N. Molluscicidal and antioxidant activities of silver nanoparticles on the multi-species of snail intermediate hosts of schistosomiasis. PLoS Negl. Trop. Dis. 2022, 16, e0010667. [Google Scholar] [CrossRef]
- McMahon, R.F.; Shipman, B.N.; Erck, D.E. Effects of two molluscicides on the freshwater macrofouling bivalve, Dreissena polymorpha, the Zebra Mussel. Proc. Am. Power Conf. 1990, 1990, 1006–1011. [Google Scholar]
- Costa, R.; Elliott, P.; Saraiva, P.M.; Aldridge, D.; Moggridge, G.D. Development of sustainable solutions for Zebra Mussel control through chemical product engineering. Chin. J. Chem. Eng. 2008, 16, 435–440. [Google Scholar] [CrossRef]
- Costa, R.; Aldridge, D.C.; Moggridge, G.D. Preparation and evaluation of biocide-loaded particles to control the biofouling Zebra Mussel, Dreissena polymorpha. Chem. Eng. Res. Des. 2011, 89, 2322–2329. [Google Scholar] [CrossRef]
- Boogaard, M.A. Delivery systems of piscicides. In Integrated Management Techniques to Control Nonnative Fishes, Completion report, ed.; Dawson, V.K., Kolar, C.S., Eds.; United States Geological Survey, Upper Midwest Environmental Sciences Center: La Crosse, WI, USA, 2003; pp. 39–50. [Google Scholar]
- Parker, M.; Allen, T. Does mass drug administration for the integrated treatment of neglected tropical diseases really work? Assessing evidence for the control of schistosomiasis and soil-transmitted helminths in Uganda. Health Res. Policy Syst. 2011, 9, 3. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Laboratory and Field Testing of Molluscicides for Control of Schistosomiasis; World Health Organization: Geneva, Switzerland, 2019; p. 30. [Google Scholar]
- Liang, Y.S.; Wang, W.; Xing, Y.T.; Li, H.J.; Xu, Y.L.; Shen, X.H.; Qu, G.-L.; Li, Y.-Z.; Dai, J.-R. A strategy for emergency treatment of Schistosoma japonicum-infested water. Parasites Vectors 2011, 4, 209. [Google Scholar] [CrossRef] [PubMed]
- Ansara-Ross, T.M.; Wepener, V.; van den Brink, P.J.; Ross, M.J. Pesticides in South African fresh waters. Afr. J. Aquat. Sci. 2012, 37, 1–16. [Google Scholar] [CrossRef]
- Thomas, J.; Cowley, C.; Ofosu-Barko, J. Behavioural responses to amino and carboxylic acids by Biomphalaria glabrata, one of the snail hosts of Schistosoma mansoni. In Controlled Release of Bioactive Materials; Academic Press: New York, NY, USA, 1980; pp. 433–448. [Google Scholar]
- Fenwick, A. Development of snail control methods on an irrigated sugar-cane estate in northern Tanzania. Bull. World Health Organ. 1970, 42, 589. [Google Scholar]
- Rollinson, D.; Knopp, S.; Levitz, S.; Stothard, J.R.; Tchuenté, L.A.T.; Garba, A.; Mohammed, K.A.; Schur, N.; Person, B.; Colley, D.G.; et al. Time to set the agenda for schistosomiasis elimination. Acta Trop. 2013, 128, 423–440. [Google Scholar] [CrossRef] [PubMed]
- Muhsin, M.A.; Wang, X.Y.; Kabole, F.M.; Zilabumba, J.; Yang, K. The indispensability of snail control for accelerating schistosomiasis elimination: Evidence from Zanzibar. Trop. Med. Infect. Dis. 2022, 7, 347. [Google Scholar] [CrossRef] [PubMed]
- Knopp, S.; Person, B.; Ame, S.M.; Ali, S.M.; Hattendorf, J.; Juma, S.; Muhsin, J.; Khamis, I.S.; A Mohammed, K.; Utzinger, J.; et al. Evaluation of integrated interventions layered on mass drug administration for urogenital schistosomiasis elimination: A cluster-randomised trial. Lancet Glob. Health 2019, 7, e1118–e1129. [Google Scholar] [CrossRef]
- Fenwick, A.; Savioli, L. Schistosomiasis elimination. Lancet Infect. Dis. 2011, 11, 346. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Watts, C.H.; Chandiwana, S.K. Heterogeneities in transmission rates and the epidemiology of schistosome infection. Proc. R. Soc. B-Biol. Sci. 1991, 245, 109–114. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Etard, J.F.; Dietz, K.; Ndhlovu, P.D.; Chandiwana, S.K. Heterogeneities in schistosome transmission dynamics and control. Parasitology 1998, 117, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, R.; Barnish, G.; Upatham, E. Snail findings from an experimental mollusciciding programme to control Schistosoma mansoni transmission on St. Lucia. Int. J. Parasitol. 1974, 4, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Barnish, G.; Jordan, P.; Bartholomew, R.K.; Grist, E. Routine focal mollusciciding after chemotherapy to control Schistosoma-mansoni in Cul de Sac valley, Saint-Lucia. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Daffalla, A.; Fenwick, A.; Babiker, A. Focal snail control in irrigation canal water contact sites. In Proceedings of the Fifth International Congress of Parasitology, Toronto, ON, Canada, 7–14 August 1982. [Google Scholar]
- Werler, C. Efficiency of focal molluscicide treatment against schistosomiasis reinfection in an irrigation scheme and in a small dams area in Mali-preliminary communication. Trop. Med. Parasitol. 1989, 40, 234–236. [Google Scholar]
- Kariuki, H.C.; Madsen, H.; Ouma, J.H.; Butterworth, A.E.; Dunne, D.W.; Booth, M.; Kimani, G.; Mwatha, J.K.; Muchiri, E.; Vennervald, B.J. Long term study on the effect of mollusciciding with niclosamide in stream habitats on the transmission of Schistosomiasis mansoni after community-based chemotherapy in Makueni District, Kenya. Parasites Vectors 2013, 6, 107. [Google Scholar] [CrossRef]
- Holtfreter, M.C.; Moné, H.; Müller-Stöver, I.; Mouahid, G.; Richter, J. Schistosoma haematobium infections acquired in Corsica, France, August 2013. Eurosurveillance 2014, 19, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.; Moné, H.; Iriart, X.; Mouahid, G.; Aboo, O.; Boissier, J.; Fillaux, J.; Cassaing, S.; Debuisson, C.; Valentin, A.; et al. Schistosomiasis haematobium, Corsica, France. Emerg. Infect. Dis. 2014, 20, 1595–1597. [Google Scholar] [CrossRef]
- Lingscheid, T.; Kurth, F.; Clerinx, J.; Marocco, S.; Trevino, B.; Schunk, M.; Muñoz, J.; Gjørup, I.E.; Jelinek, T.; Develoux, M.; et al. Schistosomiasis in European travelers and migrants: Analysis of 14 years tropnet surveillance data. Am. J. Trop. Med. Hyg. 2017, 97, 567–574. [Google Scholar] [CrossRef]
- Murta, F.L.G.; Massara, C.L.; Nogueira, J.F.C.; dos Santos Carvalho, O.; de Mendonça, C.L.F.; Pinheiro, V.A.O.; Enk, M.J. Ecotourism as a source of infection with Schistosoma mansoni in Minas Gerais, Brazil. Trop. Dis. Travel Med. Vaccines 2016, 2, 1–3. [Google Scholar] [CrossRef]
- Cetron, M.S.; Chitsulo, L.; Sullivan, J.J.; Pilcher, J.; Wilson, M.; Noh, J.; Tsang, V.C.; Hightower, A.W.; Addiss, D.G. Schistosomiasis in Lake Malawi. Lancet 1996, 348, 1274–1278. [Google Scholar] [CrossRef]
- Madsen, H.; Stauffer, J.R., Jr.; Makaula, P.; Bloch, P.; Konings, A.; Likongwe, J. Bilharzia in Lake Malawi-What Are the Facts. 2006 Brochure, Danish Bilharziasis Laboratory, Copenhagen, Denmark. Available online: https://ecosystems.psu.edu/research/labs/stauffer/lake-malawi/general/bilharzia (accessed on 17 September 2024).
- Klohe, K.; Koudou, B.G.; Fenwick, A.; Fleming, F.; Garba, A.; Gouvras, A.; Gouvras, A.; Harding-Esch, E.M.; Knopp, S.; Molyneux, D.; et al. A systematic literature review of schistosomiasis in urban and peri-urban settings. PLoS Negl. Trop. Dis. 2021, 15, e0008995. [Google Scholar] [CrossRef] [PubMed]
- Lo, N.C.; Gurarie, D.; Yoon, N.; Coulibaly, J.T.; Bendavid, E.; Andrews, J.R.; King, C.H. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc. Natl. Acad. Sci. USA 2018, 115, E584–E591. [Google Scholar] [CrossRef] [PubMed]
- Salari, P.; Fürst, T.; Knopp, S.; Rollinson, D.; Kabole, F.; Khamis, M.I.; Omar, M.A.; Bacon, O.; Ali, S.M.; Utzinger, J.; et al. Financial costs of the Zanzibar elimination of schistosomiasis transmission project. Am. J. Trop. Med. Hyg. 2020, 103, 2260–2267. [Google Scholar] [CrossRef]
- Mulero, S.; Boissier, J.; Allienne, J.F.; Quilichini, Y.; Foata, J.; Pointier, J.P.; Rey, O. Environmental DNA for detecting Bulinus truncatus: A new environmental surveillance tool for schistosomiasis emergence risk assessment. Environ. DNA 2020, 2, 161–174. [Google Scholar] [CrossRef]
Strategy | Description |
---|---|
Flowing watercourses: natural streams, canals, and drains in irrigation schemes | |
Blanket spraying | covers the entire surface of a habitat, working upstream to ensure the formation of a plug of treated water that will move downstream. |
Partial treatment | avoids the expense and wastage of blanket spraying, treating only a swathe ± 6–8 m wide or to a depth of 3 m, whichever is reached first, along all or part of each bank. |
Controlled spillage | further reduces costs, allowing water from a treated dam to flow into target furrows after the required retention time. |
Focal/contact point treatment | concentrates blanket or partial treatment at human contact points and for an arbitrary distance upstream and downstream. |
Dam-and-flush treatment | impounds water in a watercourse at a bridge, treating the impounded water with the concentration needed for both the impounded volume plus that of any residual pools and tributaries downstream. Release occurs after allowing the treated water to stand for 2 h. |
Drip-feed dispensing | molluscicide is fed at a pre-determined rate into flowing systems via 200 L constant head dispensers for a 12 h period once or twice per year, depending on the observed rate of recolonization by snails. |
Lentic waterbodies: farm storage dams and pools in rivers | |
Total volume treatment | the cost-effective use of this method depends on the calculation of the volume of water to be treated. Best suited to small waterbodies (<75,000 m3) where transmission potential is high. In larger waterbodies where potential is low, partial treatment may suffice. |
Focal/contact point treatment | see above. |
Slow-release formulations | molluscicide-impregnated rubber or glass matrices are scattered on the substratum at a given density. Snail control depends on chronic intoxication after a lag period. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garba Djirmay, A.; Yadav, R.S.; Guo, J.; Rollinson, D.; Madsen, H. Chemical Control of Snail Vectors as an Integrated Part of a Strategy for the Elimination of Schistosomiasis—A Review of the State of Knowledge and Future Needs. Trop. Med. Infect. Dis. 2024, 9, 222. https://doi.org/10.3390/tropicalmed9090222
Garba Djirmay A, Yadav RS, Guo J, Rollinson D, Madsen H. Chemical Control of Snail Vectors as an Integrated Part of a Strategy for the Elimination of Schistosomiasis—A Review of the State of Knowledge and Future Needs. Tropical Medicine and Infectious Disease. 2024; 9(9):222. https://doi.org/10.3390/tropicalmed9090222
Chicago/Turabian StyleGarba Djirmay, Amadou, Rajpal Singh Yadav, Jiagang Guo, David Rollinson, and Henry Madsen. 2024. "Chemical Control of Snail Vectors as an Integrated Part of a Strategy for the Elimination of Schistosomiasis—A Review of the State of Knowledge and Future Needs" Tropical Medicine and Infectious Disease 9, no. 9: 222. https://doi.org/10.3390/tropicalmed9090222