Scanning Micro X-ray Fluorescence and Multispectral Imaging Fusion: A Case Study on Postage Stamps
Abstract
:1. Introduction
2. Instruments and Technical Characteristics
2.1. The μ-XRF Scanner
2.2. The MSI Camera
3. Applied Methodology and Results
3.1. The 0.25 Franc French Gallic Cock Stamp by Albert Decaris
3.2. The Scanning μ-XRF Measurements
3.3. The MSI Measurements
3.4. Co-Registration of μ-XRF and Multispectral Images
4. μ-XRF and MSI Dataset Fusion for the Data Analysis
4.1. Composition Analysis Applying Multispectral Clustering and Mean XRF Spectra per Cluster
4.2. Dataset Fusion for Comparing the Composition of “Similar” Stamps
4.3. Composition Analysis by Sub-Clustering the μ-XRF Dataset within an MSI Cluster
4.4. Elemental Composition of the Postage Postmark
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dik, J.; Janssens, K.; Van Der Snickt, G.; Van Der Loeff, L.; Rickers, K.; Cotte, M. Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 2008, 80, 6436–6442. [Google Scholar] [CrossRef] [PubMed]
- Alfeld, M.; Pedroso, J.V.; van Eikema Hommes, M.; Van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K. A Mobile Instrument for In Situ Scanning Macro-XRF Investigation of Historical Paintings. J. Anal. At. Spectrom. 2013, 28, 760. [Google Scholar] [CrossRef]
- Romano, F.P.; Caliri, C.; Nicotra, P.; Di Martino, S.; Pappalardo, L.; Rizzo, F.; Santos, H.C. Real-Time Elemental Imaging of Large Dimension Paintings with a Novel Mobile Macro X-Ray Fluorescence (MA-XRF) Scanning Technique. J. Anal. At. Spectrom. 2017, 32, 773–781. [Google Scholar] [CrossRef]
- Mastrotheodoros, G.P.; Asvestas, A.; Gerodimos, T.; Tzima, A.; Papadopoulou, V.; Anagnostopoulos, D.F. MA-XRF Investigation of a 17th Century Icon by the Renowned Painter Theodoros Poulakis. J. Archaeol. Sci. Reports 2024, 53, 104313. [Google Scholar] [CrossRef]
- Mastrotheodoros, G.P.; Asvestas, A.; Gerodimos, T.; Anagnostopoulos, D.F. Revealing the Materials, Painting Techniques, and State of Preservation of a Heavily Altered Early 19th Century Greek Icon through MA-XRF. Heritage 2023, 6, 1903–1920. [Google Scholar] [CrossRef]
- Liang, H. Advances in Multispectral and Hyperspectral Imaging for Archaeology and Art Conservation. Appl. Phys. A 2011, 106, 309–323. [Google Scholar] [CrossRef]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance hyperspectral imaging for investigation of works of art: Old master paintings and illuminated manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, L.W.; Vitorino, T.; Picollo, M.; Pillay, R.; Obarzanowski, M.; Sobczyk, J.; Nascimento, S.; Linhares, J. Assessment of Multispectral and Hyperspectral Imaging Systems for Digitisation of a Russian Icon. Herit. Sci. 2017, 5, 41. [Google Scholar] [CrossRef]
- Kogou, S.; Shahtahmassebi, G.; Lucian, A.; Liang, H.; Shui, B.; Zhang, W.; Su, B.; van Schaik, S. From Remote Sensing and Machine Learning to the History of the Silk Road: Large Scale Material Identification on Wall Paintings. Sci. Rep. 2020, 10, 19312. [Google Scholar] [CrossRef]
- Gabrieli, F.; Delaney, J.K.; Erdmann, R.G.; Gonzalez, V.; van Loon, A.; Smulders, P.; Berkeveld, R.; van Langh, R.; Keune, K. Reflectance Imaging Spectroscopy (RIS) for Operation Night Watch: Challenges and Achievements of Imaging Rembrandt’s Masterpiece in the Glass Chamber at the Rijksmuseum. Sensors 2021, 21, 6855. [Google Scholar] [CrossRef]
- Alfeld, M.; Mulliez, M.; Devogelaere, J.; de Viguerie, L.; Jockey, P.; Walter, P. MA-XRF and Hyperspectral Reflectance Imaging for Visualizing Traces of Antique Polychromy on the Frieze of the Siphnian Treasury. Microchem. J. 2018, 141, 395–403. [Google Scholar] [CrossRef]
- de Viguerie, L.; Rochut, S.; Alfeld, M.; Walter, P.; Astier, S.; Gontero, V.; Boulc’h, F. XRF and Reflectance Hyperspectral Imaging on a 15th Century Illuminated Manuscript: Combining Imaging and Quantitative Analysis to Understand the Artist’s Technique. Herit. Sci. 2018, 6, 11. [Google Scholar] [CrossRef]
- Galli, A.; Caccia, M.; Caglio, S.; Bonizzoni, L.; Castiglioni, I.; Gironda, M.; Alberti, R.; Martini, M. An Innovative Protocol for the Study of Painting Materials Involving the Combined Use of MA-XRF Maps and Hyperspectral Images. Eur. Phys. J. Plus 2021, 137, 22. [Google Scholar] [CrossRef]
- Alfeld, M.; Pedetti, S.; Martinez, P.; Walter, P. Joint data treatment for Vis–NIR reflectance imaging spectroscopy and XRF imaging acquired in the Theban Necropolis in Egypt by data fusion and t-SNE. Comptes Rendus Phys. 2018, 19, 625–635. [Google Scholar] [CrossRef]
- Fiske, L.D.; Katsaggelos, A.K.; Aalders MC, G.; Alfeld, M.; Walton, M.; Cossairt, O. A data fusion method for the delayering of x-ray fluorescence images of painted works of art. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3458–3462. [Google Scholar] [CrossRef]
- Raphaël, M.; Lucile, B.D.; Laurent, P.; Brice, M.; Didier, G.; Thomas, C. Application of a MA-XRF/RIS/PL Scanner to Paintwork Studies. Eur. Phys. J. Plus 2023, 138, 16. [Google Scholar] [CrossRef]
- Occhipinti, M.; Alberti, R.; Parsani, T.; Dicorato, C.; Tirelli, P.; Gironda, M.; Tocchio, A.; Frizzi, T. IRIS: A novel integrated instrument for co-registered MA-XRF mapping and VNIR-SWIR hyperspectral imaging. X-Ray Spectrom. 2023. early view. [Google Scholar] [CrossRef]
- Available online: https://www.bruker.com/en/products-and-solutions/elemental-analyzers/micro-xrf-spectrometers/m6-jetstream.html (accessed on 9 April 2024).
- Available online: https://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart# (accessed on 28 February 2024).
- Messina, E.; Evans, J.M. Standards for Visual Acuity. National Institute of Standards and Technology. 2006. Available online: https://www.nist.gov/system/files/documents/el/isd/ks/Visual_Acuity_Standards_1.pdf (accessed on 9 April 2024).
- Pouyet, E.; Barbi, N.; Chopp, H.; Healy, O.; Katsaggelos, A.; Moak, S.; Mott, R.; Vermeulen, M.; Walton, M. Development of a highly mobile and versatile large MA-XRF scanner for in situ analyses of painted work of arts. X-ray Spectrom. 2021, 50, 263–271. [Google Scholar] [CrossRef]
- Available online: https://www.ceradrop.com/en/products/f-serie/ (accessed on 10 March 2024).
- Yang, J.; Zhang, Z.; Cheng, Q. Resolution Enhancement in Micro-XRF Using Image Restoration Techniques. J. Anal. At. Spectrom. 2022, 37, 750–758. [Google Scholar] [CrossRef]
- Available online: https://www.xpecam.com/ (accessed on 10 March 2024).
- Papadakis, V.M.; Machado, M.; dos Santos, J. XpeCAM: The complete solution for artwork documentation and analysis. In International Conference Florence Heri-Tech: The Future of Heritage Science and Technologies; Springer International Publishing: Cham, Switzerland, 2022; pp. 16–27. [Google Scholar] [CrossRef]
- Lesgor, R. On the Rooster “Cock de Decaris” Stamp of France. France & Colonies Philatelists. 1964. Volume 22, No 2. Available online: https://www.franceandcolonies.org/philatelist/119.pdf (accessed on 21 January 2024).
- Shugar, A.N. Handheld Macro-XRF Scanning: Development of Collimators for Sub-mm Resolution. In Proceedings of the Fourth International Symposium on Analytical MethodsIn Philately, Washington, DC, USA, 13–14 November 2020; pp. 13–20. [Google Scholar]
- Available online: https://www.chemplex.com/3014-spectromembraner-thin-film-sample-support-window-frames.html (accessed on 9 April 2024).
- Zacharopoulos, A.; Hatzigiannakis, K.; Karamaoynas, P.; Papadakis, V.M.; Andrianakis, M.; Melessanaki, K.; Zabulis, X. A method for the registration of spectral images of paintings and its evaluation. J. Cult. Herit. 2018, 29, 10–18. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bakar, S.A.; Jiang, X.; Gui, X.; Li, G.; Li, Z. Image stitching for chest digital radiography using the SIFT and SURF feature extraction by RANSAC algorithm. J. Phys. Conf. Ser. 2020, 1624, 042023. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Zhang, J.; Xiong, R.; Gao, W. Interpolation-dependent image downsampling. IEEE Trans. Image Process. 2011, 20, 3291–3296. [Google Scholar] [CrossRef] [PubMed]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965, 27 December 1965–7 January 1966; Volume 1, pp. 281–296. [Google Scholar]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef]
- Yivlialin, R.; Galli, A.; Raimondo, L.; Martini, M.; Sassella, A. Detecting the NIR fingerprint of colors: The characteristic response of modern blue pigments. Heritage 2019, 2, 2255–2261. [Google Scholar] [CrossRef]
- Aceto, M.; Agostino, A.; Fenoglio, G.; Picollo, M. Non-invasive differentiation between natural and synthetic ultramarine blue pigments by means of 250–900 nm FORS analysis. Anal. Methods 2013, 5, 4184–4189. [Google Scholar] [CrossRef]
- Fonseca, B.; Schmidt Patterson, C.; Ganio, M.; MacLennan, D.; Trentelman, K. Seeing Red: Towards an Improved Protocol for the Identification of Madder- and Cochineal-Based Pigments by Fiber Optics Reflectance Spectroscopy (FORS). Herit. Sci. 2019, 7, 92. [Google Scholar] [CrossRef]
- Gerodimos, T.; Asvestas, A.; Mastrotheodoros, G.P.; Chantas, G.; Liougos, I.; Likas, A.; Anagnostopoulos, D.F. Scanning X-ray Fluorescence Data Analysis for the Identification of Byzantine Icons’ Materials, Techniques, and State of Preservation: A Case Study. J. Imaging 2022, 8, 147. [Google Scholar] [CrossRef]
- Kogou, S.; Lee, L.; Shahtahmassebi, G.; Liang, H. A new approach to the interpretation of XRF spectral imaging data using neural networks. X-ray Spectrom. 2021, 50, 310–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerodimos, T.; Patakiouta, I.V.; Papadakis, V.M.; Exarchos, D.; Asvestas, A.; Kenanakis, G.; Matikas, T.E.; Anagnostopoulos, D.F. Scanning Micro X-ray Fluorescence and Multispectral Imaging Fusion: A Case Study on Postage Stamps. J. Imaging 2024, 10, 95. https://doi.org/10.3390/jimaging10040095
Gerodimos T, Patakiouta IV, Papadakis VM, Exarchos D, Asvestas A, Kenanakis G, Matikas TE, Anagnostopoulos DF. Scanning Micro X-ray Fluorescence and Multispectral Imaging Fusion: A Case Study on Postage Stamps. Journal of Imaging. 2024; 10(4):95. https://doi.org/10.3390/jimaging10040095
Chicago/Turabian StyleGerodimos, Theofanis, Ioanna Vasiliki Patakiouta, Vassilis M. Papadakis, Dimitrios Exarchos, Anastasios Asvestas, Georgios Kenanakis, Theodore E. Matikas, and Dimitrios F. Anagnostopoulos. 2024. "Scanning Micro X-ray Fluorescence and Multispectral Imaging Fusion: A Case Study on Postage Stamps" Journal of Imaging 10, no. 4: 95. https://doi.org/10.3390/jimaging10040095