Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compost Vessel
2.2. Composition of the Composting Materials and Different Levels of Post-Consumer Cotton Waste Mixture
2.3. Composting Process
3. Results and Discussion
3.1. Pre-Compost Phase
3.2. Vermicomposting Phase
3.3. Final Compost
3.4. Various Post-Consumer Textile Waste Ratio Effect on Vermicomposting Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yalcin-Enis, I.; Kucukali-Ozturk, M.; Sezgin, H. Risks and Management of Textile Waste. In Nanoscience and Biotechnology for Environmental Applications; Springer: Cham, Switzerland, 2019; pp. 29–53. [Google Scholar] [CrossRef]
- Pensupa, N.; Leu, S.Y.; Hu, Y.; Du, C.; Liu, H.; Jing, H.; Wang, H.; Lin, C.S.K. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. Top. Curr. Chem. 2017, 375, 189–228. [Google Scholar] [CrossRef]
- DeVoy, J.E.; Congiusta, E.; Lundberg, D.J.; Findeisen, S.; Bhattacharya, S. Post-Consumer textile waste and disposal: Differences by socioeconomic, demographic, and retail factors. Waste Manag. 2021, 136, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Tuesday, T. Waste Reduction Week in Canada. Available online: https://wrwcanada.com/en/theme-days/textiles-tuesday (accessed on 14 December 2021).
- Gamberini, R.; Galloni, L.; Rimini, B.; Luppi, M. Post-consumer textile waste re-use: Main steps of a sustainable process. In Proceedings of the XIX Summer School “Francesco Turco”, Senigallia, AN, Italy, 9–12 September 2014; pp. 354–359. [Google Scholar]
- Coskun, G.; Basaran, F.N. Post-Consumer Textile Waste Minimization: A Review. J. Strateg. Res. Soc. Sci. 2019, 5, 1–18. [Google Scholar] [CrossRef]
- Stanescu, M.D. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. Environ. Sci. Pollut. Res. 2021, 28, 14253–14270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. (Chemical Engineer) Fundamentals of Fiber Science; DEStech Publications, Inc.: Lancaster, PA, USA, 2014; p. 415. ISBN 1605951196. [Google Scholar]
- Gershuny, G. Compost, Vermicompost and Compost Tea: Feeding the Soil on the Organic Farm; Chelsea Green Pub: White River Junction, VT, USA, 2011. [Google Scholar]
- Zhang, H.; Li, J.; Zhang, Y.; Huang, K. Quality of vermicompost and microbial community diversity affected by the contrasting temperature during vermicomposting of dewatered sludge. Int. J. Environ. Res. Public Health 2020, 17, 1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadimitriou, E.K.; Balis, C. Comparative study of parameters to evaluate and monitor the rate of a composting process. Compost Sci. Util. 1996, 4, 52–61. [Google Scholar] [CrossRef]
- Manyuchi, M.; Phiri, A. Vermicomposting in Solid Waste Management: A Review. Int. J. Sci. Eng. Technol. 2013, 2, 1234–1242. [Google Scholar]
- Sharma, K.; Garg, V.K. Vermicomposting of Waste: A Zero-Waste Approach for Waste Management; Elsevier B.V.: Amsterdam, The Netherlands, 2019; ISBN 9780444642004. [Google Scholar]
- Ndegwa, P.M.; Thompson, S.A. Effects of C-to-N ratio on vermicomposting of biosolids. Bioresour. Technol. 2000, 75, 7–12. [Google Scholar] [CrossRef]
- Rorat, A.; Vandenbulcke, F. Earthworms Converting Domestic and food Industry Wastes into Biofertilizer; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128159071. [Google Scholar]
- Elcik, H.; Zoungrana, A.; Bekaraki, N. Investigation of Aerobic Compostability of Municipal Solid Waste in Istanbul. Sigma J. Eng. Nat. Sci. 2016, 34, 211–220. [Google Scholar]
- Hay, C. Pathogen destruction and biosolids composting. Biocycle 1996, 37, 67–76. [Google Scholar]
- Ndukwe, I.; Yuan, Q. Drywall (Gyproc plasterboard) recycling and reuse as a compost-bulking agent in Canada and North America: A review. Recycling 2016, 1, 311. [Google Scholar] [CrossRef]
- Ghorbani, M.; Sabour, M.R.; Bidabadi, M. Vermicomposting Smart Closed Reactor Design and Performance Assessment by Using Sewage Sludge. Waste Biomass Valorization 2021, 12, 6177–6190. [Google Scholar] [CrossRef]
- Aira, M.; Monroy, F.; Domínguez, J. Microbial Ecology Eisenia fetida (Oligochaeta: Lumbricidae) Modifies the Structure and Physiological Capabilities of Microbial Communities Improving Carbon Mineralization During Vermicomposting of Pig Manure. Microb. Ecol. 2007, 54, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Castillo-González, E.; De Medina-Salas, L.; Giraldi-Díaz, M.R.; Sánchez-Noguez, C. Vermicomposting: A valorization alternative for corn cob waste. Appl. Sci. 2021, 11, 5692. [Google Scholar] [CrossRef]
- Punde, B.D.; Ganorkar, R.A. Vermicomposting-Recycling Waste into Valuable Organic Fertilizer. Int. J. Eng. Res. Appl. 2012, 2, 2342–2347. [Google Scholar]
- Arumugam, K.; Ganesan, S.; Muthunarayanan, V.; Vivek, S.; Sugumar, S.; Munusamy, V. Potentiality of Eisenia fetida to degrade disposable paper cups—An ecofriendly solution to solid waste pollution. Environ. Sci. Pollut. Res. 2015, 22, 2868–2876. [Google Scholar] [CrossRef] [PubMed]
Feed Stock | Moisture (%) | Carbon Content (%) | Nitrogen Content (%) | Density (kg/L) |
---|---|---|---|---|
Leaves | 38.3 | 48.6 | 1.2 | 0.25 |
Biosolids | 69.8 | 27.6 | 3.6 | 0.58 |
Sawdust | 32.8 | 49.7 | 0.6 | 0.3 |
Cotton | 8.1 | 43.6 | 0.3 | 0.3 |
Water | 100 | 0 | 0 | 1 |
Trial 1—Control | Trial 2 | Trial 3 | Trial 4 | |||||
---|---|---|---|---|---|---|---|---|
Feed Stock | Weight (kg) | Carbon Content (kg) | Weight (kg) | Carbon Content (kg) | Weight (kg) | Carbon Content (kg) | Weight (kg) | Carbon Content (kg) |
Leaves | 4.50 | 2.19 | 4.40 | 2.14 | 4.30 | 2.09 | 4.20 | 2.04 |
Biosolids | 7.52 | 2.07 | 7.52 | 2.07 | 7.52 | 2.07 | 7.52 | 2.07 |
Sawdust | 11.25 | 5.59 | 11.25 | 5.59 | 11.25 | 5.59 | 11.25 | 5.59 |
Cotton | - | - | 0.10 | 0.04 | 0.20 | 0.09 | 0.30 | 0.13 |
Water | 5.00 | - | 5.00 | - | 5.00 | - | 5.00 | - |
Total | 28.27 | 9.85 | 28.27 | 9.85 | 28.27 | 9.84 | 28.27 | 9.84 |
Feed Stock | Moisture Content (kg) | Nitrogen Content (kg) |
---|---|---|
Leaves | 1.72 | 0.05 |
Biosolids | 5.25 | 0.27 |
Sawdust | 3.69 | 0.07 |
Cotton | - | - |
Water | 5.00 | - |
Total | 15.66 | 0.39 |
Sample ID | C/N ratio |
---|---|
Trial 1 | 14.5 |
Trial 2 | 13.7 |
Trial 3 | 14.3 |
Trial 4 | 15.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Wyatt, J.; Zoungrana, A.; Yuan, Q. Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling 2022, 7, 10. https://doi.org/10.3390/recycling7010010
Singh V, Wyatt J, Zoungrana A, Yuan Q. Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling. 2022; 7(1):10. https://doi.org/10.3390/recycling7010010
Chicago/Turabian StyleSingh, Vijaypal, Jordan Wyatt, Ali Zoungrana, and Qiuyan Yuan. 2022. "Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source" Recycling 7, no. 1: 10. https://doi.org/10.3390/recycling7010010