Application of Aromatic Ring Quaternary Ammonium and Phosphonium Salts–Carboxylic Acids-Based Deep Eutectic Solvent for Enhanced Sugarcane Bagasse Pretreatment, Enzymatic Hydrolysis, and Cellulosic Ethanol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of DESs
2.3. DES Pretreatment
2.4. Characterization of Solid Fraction
2.5. Enzymatic Saccharification and Fermentation
2.6. Analysis Method
3. Results and Discussion
3.1. Effect of DES Pretreatment on the Component Content of SCB
3.2. Effect of DES Pretreatment on SCB Structure
3.2.1. Morphological Analysis
3.2.2. FT-IR Analysis
3.2.3. X-ray Analysis
3.3. Effect of DES Pretreatment on Enzymatic Saccharification
3.4. Separate Hydrolysis and Fermentation (SHF) on DES-Treated SCB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyman, C.E. Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annu. Rev. Energy Environ. 1999, 24, 189–226. [Google Scholar] [CrossRef]
- Yeboah, O.; Shaik, S. The influence of climate change on the demand for ethanol. Renew. Energy 2021, 164, 1559–1565. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Calderon, O.; Arantes, V. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 2019, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Yu, I.K.M.; Tsang, D.C.W. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresour. Technol. 2017, 238, 716–732. [Google Scholar] [CrossRef]
- Rajeswari, S.; Baskaran, D.; Saravanan, P.; Rajasimman, M.; Rajamohan, N.; Vasseghian, Y. Production of ethanol from biomass—Recent research, scientometric review and future perspectives. Fuel 2022, 317, 123448. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Hebbale, D. Bioethanol from macroalgae: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 117, 109479. [Google Scholar] [CrossRef]
- Lynd, L.R.; Liang, X.Y.; Biddy, M.J.; Allee, A.; Cai, H.; Foust, T.; Himmel, M.E.; Laser, M.S.; Wang, M.; Wyman, C.E. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 2017, 45, 202–211. [Google Scholar] [CrossRef]
- Caporusso, A.; De Bari, I.; Giuliano, A.; Liuzzi, F.; Albergo, R.; Pietrafesa, R.; Siesto, G.; Romanelli, A.; Braccio, G.; Capece, A. Optimization of Wheat Straw Conversion into Microbial Lipids by Lipomyces tetrasporus DSM 70314 from Bench to Pilot Scale. Fermentation 2023, 9, 180. [Google Scholar] [CrossRef]
- Li, Y.R.; Yang, L.T. Sugarcane Agriculture and Sugar Industry in China. Sugar Tech. 2015, 17, 1–8. [Google Scholar] [CrossRef]
- Huang, J.F.; Khan, M.T.; Perecin, D.; Coelho, S.T.; Zhang, M.Q. Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective. Renew. Sustain. Energy Rev. 2020, 133, 110296. [Google Scholar] [CrossRef]
- Chandel, A.K.; da Silva, S.S.; Carvalho, W.; Singh, O.V. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol. 2012, 87, 11–20. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Nigam, P.; Soccol, V.T. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour. Technol. 2000, 74, 69–80. [Google Scholar] [CrossRef]
- Meghana, M.; Shastri, Y. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. Bioresour. Technol. 2020, 303, 122929. [Google Scholar] [CrossRef] [PubMed]
- Sahu, O. Assessment of sugarcane industry: Suitability for production, consumption, and utilization. Ann. Agrar. Sci. 2018, 16, 389–395. [Google Scholar] [CrossRef]
- Ye, G.; Zeng, D.; Zhang, S.; Fan, M.; Zhang, H.; Xie, J. Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading. Bioresour. Technol. 2018, 257, 23–29. [Google Scholar] [CrossRef]
- Moran-Aguilar, M.G.; Costa-Trigo, I.; Calderón-Santoyo, M.; Domínguez, J.M.; Aguilar-Uscanga, M.G. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem. Eng. J. 2021, 172, 108060. [Google Scholar] [CrossRef]
- Da Silva, A.S.; Inoue, H.; Endo, T.; Yano, S.; Bon, E.P. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 2010, 101, 7402–7409. [Google Scholar] [CrossRef] [PubMed]
- Batista, G.; Souza, R.B.A.; Pratto, B.; Dos Santos-Rocha, M.S.R.; Cruz, A.J.G. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresour. Technol. 2019, 275, 321–327. [Google Scholar] [CrossRef]
- Zheng, X.; Xian, X.; Hu, L.; Tao, S.; Zhang, X.; Liu, Y.; Lin, X. Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification. Bioresour. Technol. 2021, 339, 125575. [Google Scholar] [CrossRef]
- Bernier-Oviedo, D.J.; Rincón-Moreno, J.A.; Solanilla-Duqué, J.F.; Muñoz-Hernández, J.A.; Váquiro-Herrera, H.A. Comparison of two pretreatments methods to produce second-generation bioethanol resulting from sugarcane bagasse. Ind. Crops Prod. 2018, 122, 414–421. [Google Scholar] [CrossRef]
- Risanto, L.; Adi, D.T.N.; Fajriutami, T.; Teramura, H.; Fatriasari, W.; Hermiati, E.; Kahar, P.; Kondo, A.; Ogino, C. Pretreatment with dilute maleic acid enhances the enzymatic digestibility of sugarcane bagasse and oil palm empty fruit bunch fiber. Bioresour. Technol. 2023, 369, 128382. [Google Scholar] [CrossRef] [PubMed]
- Dionisio, S.R.; Santoro, D.C.J.; Bonan, C.; Soares, L.B.; Biazi, L.E.; Rabelo, S.C.; Ienczak, J.L. Second-generation ethanol process for integral use of hemicellulosic and cellulosic hydrolysates from diluted sulfuric acid pretreatment of sugarcane bagasse. Fuel 2021, 304, 121290. [Google Scholar] [CrossRef]
- De Carvalho, D.M.; de Queiroz, J.H.; Colodette, J.L. Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind. Crops Prod. 2016, 94, 932–941. [Google Scholar] [CrossRef]
- Yuan, W.; Gong, Z.W.; Wang, G.H.; Zhou, W.T.; Liu, Y.; Wang, X.M.; Zhao, M. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresour. Technol. 2018, 265, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Rocha, E.G.A.; Pin, T.C.; Rabelo, S.C.; Costa, A.C. Evaluation of the use of protic ionic liquids on biomass fractionation. Fuel 2017, 206, 145–154. [Google Scholar] [CrossRef]
- Ambye-Jensen, M.; Balzarotti, R.; Thomsen, S.T.; Fonseca, C.; Kadar, Z. Combined ensiling and hydrothermal processing as efficient pretreatment of sugarcane bagasse for 2G bioethanol production. Biotechnol. Biofuels 2018, 11, 336. [Google Scholar] [CrossRef]
- Guo, H.L.; Zhao, Y.; Chang, J.S.; Lee, D.J. Inhibitor formation and detoxification during lignocellulose biorefinery: A review. Bioresour. Technol. 2022, 361, 127666. [Google Scholar] [CrossRef]
- Xian, X.; Zheng, X.; Huang, J.; Qureshi, N.; Li, B.; Liu, J.; Zeng, Y.; Nichols, N.N.; Lin, X. Detoxification of high solid-liquid hydrothermal pretreated sugar cane bagasse by chromatographic adsorption for cellulosic ethanol production. Ind. Crops Prod. 2023, 202, 117048. [Google Scholar] [CrossRef]
- Abdolmaleki, A.; Nabavizadeh, S.S.; Badbedast, M. 1-(Carboxymethyl)pyridinium chloride as an acidic ionic liquid for rice straw effective pretreatment. Renew. Energy 2021, 177, 544–553. [Google Scholar] [CrossRef]
- Rauf, A.; Shafeeq, A.; Shahzad, K. Delignification of Corn Straw Using the Ionic Liquid Triethylammonium Hydrogen Sulfate. Chem. Eng. Technol. 2022, 45, 1106–1113. [Google Scholar] [CrossRef]
- Ab Rasid, N.S.; Shamjuddin, A.; Abdul Rahman, A.Z.; Amin, N.A.S. Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. J. Clean. Prod. 2021, 321, 129038. [Google Scholar] [CrossRef]
- Chen, H.Y.; Liu, J.B.; Chang, X.; Chen, D.M.; Xue, Y.; Liu, P.; Lin, H.L.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 2017, 160, 196–206. [Google Scholar] [CrossRef]
- Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chem. 2012, 14, 2153–2157. [Google Scholar] [CrossRef]
- Robinson, A.J.; Giuliano, A.; Abdelaziz, O.Y.; Hulteberg, C.P.; Koutinas, A.; Triantafyllidis, K.S.; Barletta, D.; De Bari, I. Techno-economic optimization of a process superstructure for lignin valorization. Bioresour. Technol. 2022, 364, 128004. [Google Scholar] [CrossRef]
- Xu, H.; Peng, J.; Kong, Y.; Liu, Y.; Su, Z.; Li, B.; Song, X.; Liu, S.; Tian, W. Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. Bioresour. Technol. 2020, 310, 123416. [Google Scholar] [CrossRef]
- Hong, S.; Shen, X.-J.; Xue, Z.; Sun, Z.; Yuan, T.-Q. Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation. Green Chem. 2020, 22, 7219–7232. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Xiao, J.; He, X.; Zhang, K.; Yuan, S.; Peng, Z.; Chen, Z.; Lin, X. Enhanced Enzymatic Hydrolysis and Lignin Extraction of Wheat Straw by Triethylbenzyl Ammonium Chloride/Lactic Acid-Based Deep Eutectic Solvent Pretreatment. ACS Omega 2019, 4, 19829–19839. [Google Scholar] [CrossRef]
- Lin, X.Q.; Liu, Y.; Zheng, X.J.; Qureshi, N. High-efficient cellulosic butanol production from deep eutectic solvent pretreated corn stover without detoxification. Ind. Crops Prod. 2021, 162, 113258. [Google Scholar] [CrossRef]
- Bhagia, S.; Nunez, A.; Wyman, C.E.; Kumar, R. Robustness of two-step acid hydrolysis procedure for composition analysis of poplar. Bioresour. Technol. 2016, 216, 1077–1082. [Google Scholar] [CrossRef]
- Guo, Z.W.; Zhang, Q.L.; You, T.T.; Zhang, X.; Xu, F.; Wu, Y.Y. Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chem. 2019, 21, 3099–3108. [Google Scholar] [CrossRef]
- Moran-Aguilar, M.G.; Calderon-Santoyo, M.; Oliveira, R.P.D.; Aguilar-Uscanga, M.G.; Dominguez, J.M. Deconstructing sugarcane bagasse lignocellulose by acid-based deep eutectic solvents to enhance enzymatic digestibility. Carbohydr. Polym. 2022, 298, 120097. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.T.; Ngoh, G.C.; Chua, A.S.M. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresour. Technol. 2019, 281, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zhang, A.P.; Wang, W.; Chen, L.; Bai, R.X.; Zhuang, X.S.; Wang, Q.; Wang, Z.M.; Yuan, Z.H. Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia’ herbal residues. Bioresour. Technol. 2018, 247, 705–710. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Tao, S.; Hu, L.; Zhang, X.; Lin, X. Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renew. Energy 2021, 177, 259–267. [Google Scholar] [CrossRef]
- Xian, X.; Fang, L.; Zhou, Y.; Li, B.; Zheng, X.; Liu, Y.; Lin, X. Integrated Bioprocess for Cellulosic Ethanol Production from Wheat Straw: New Ternary Deep-Eutectic-Solvent Pretreatment, Enzymatic Saccharification, and Fermentation. Fermentation 2022, 8, 371. [Google Scholar] [CrossRef]
Pretreatment | Content (%) | Recovery Yield (%) | Removal Yield (%) | ||||
---|---|---|---|---|---|---|---|
Glucan | Xylan | Lignin | Solid | Glucan | Xylan | Lignin | |
SCB | 40.46 ± 1.79 | 24.76 ± 0.78 | 25.16 ± 1.05 | / | / | / | / |
TEBAC:LA | 81.74 ± 2.35 | 12.93 ± 1.24 | 7.56 ± 0.27 | 48.84 ± 1.97 | 98.67 ± 2.84 | 25.51 ± 2.45 | 85.33 ± 0.52 |
TEBAC:AA | 46.55 ± 0.81 | 12.27 ± 0.71 | 21.20 ± 0.60 | 66.63 ± 0.46 | 103.99 ± 1.34 | 33.03 ± 1.92 | 44.78 ± 0.05 |
TEBAC:LEA | 57.08 ± 1.23 | 20.26 ± 0.84 | 23.30 ± 0.53 | 69.77 ± 1.27 | 98.43 ± 2.12 | 57.09 ± 2.35 | 36.11 ± 1.13 |
BPP:LA | 74.43 ± 2.19 | 14.84 ± 0.50 | 9.66 ± 0.15 | 53.75 ± 1.34 | 98.88 ± 4.34 | 32.21 ± 1.08 | 79.36 ± 0.32 |
BPP:AA | 60.19 ± 0.40 | 15.13 ± 1.05 | 19.55 ± 0.34 | 66.05 ± 0.56 | 98.26 ± 0.65 | 40.36 ± 2.80 | 48.67 ± 0.90 |
BPP:LEA | 53.17 ± 1.60 | 19.69 ± 0.91 | 24.53 ± 0.57 | 77.32 ± 1.12 | 101.60 ± 3.05 | 61.50 ± 2.83 | 24.62 ± 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Qiu, Z.; Huang, J.; Xian, X.; Zheng, X.; Lin, X. Application of Aromatic Ring Quaternary Ammonium and Phosphonium Salts–Carboxylic Acids-Based Deep Eutectic Solvent for Enhanced Sugarcane Bagasse Pretreatment, Enzymatic Hydrolysis, and Cellulosic Ethanol Production. Fermentation 2023, 9, 981. https://doi.org/10.3390/fermentation9110981
Li B, Qiu Z, Huang J, Xian X, Zheng X, Lin X. Application of Aromatic Ring Quaternary Ammonium and Phosphonium Salts–Carboxylic Acids-Based Deep Eutectic Solvent for Enhanced Sugarcane Bagasse Pretreatment, Enzymatic Hydrolysis, and Cellulosic Ethanol Production. Fermentation. 2023; 9(11):981. https://doi.org/10.3390/fermentation9110981
Chicago/Turabian StyleLi, Biying, Ziqi Qiu, Jiale Huang, Xiaoling Xian, Xiaojie Zheng, and Xiaoqing Lin. 2023. "Application of Aromatic Ring Quaternary Ammonium and Phosphonium Salts–Carboxylic Acids-Based Deep Eutectic Solvent for Enhanced Sugarcane Bagasse Pretreatment, Enzymatic Hydrolysis, and Cellulosic Ethanol Production" Fermentation 9, no. 11: 981. https://doi.org/10.3390/fermentation9110981