Epidemiological and Clinical Characteristics, Antifungal Susceptibility, and MLST-Based Genetic Analysis of Cryptococcus Isolates in Southern Taiwan in 2013–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cryptococcus Strains
2.2. Antifungal Susceptibility Testing (AST)
2.3. Result Interpretation
2.4. Multi-Locus Sequence Typing (MLST) and Phylogenetic Analysis
2.5. Geographical Distribution of STs
2.6. Retrospective Cohort Study
2.7. Statistical Analysis
3. Results
3.1. In Vitro Antifungal Susceptibility
3.2. Molecular and Sequence Types
3.3. Phylogenetic Analysis
3.4. Clinical Cohorts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maziarz, E.K.; Perfect, J.R. Cryptococcosis. Infect. Dis. Clin. N. Am. 2016, 30, 179–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon-Chung, K.J.; Bennett, J.E.; Wickes, B.L.; Meyer, W.; Cuomo, C.A.; Wollenburg, K.R.; Bicanic, T.A.; Castaneda, E.; Chang, Y.C.; Chen, J.; et al. The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. mSphere 2017, 2, e00357-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, I.A.; Spec, A.; Powderly, W.G.; Santos, C.A.Q. Comparative Epidemiology and Outcomes of Human Immunodeficiency virus (HIV), Non-HIV Non-transplant, and Solid Organ Transplant Associated Cryptococcosis: A Population-Based Study. Clin. Infect. Dis. 2018, 66, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Aye, C.; Henderson, A.; Yu, H.; Norton, R. Cryptococcosis-the impact of delay to diagnosis. Clin. Microbiol. Infect. 2016, 22, 632–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marr, K.A.; Sun, Y.; Spec, A.; Lu, N.; Panackal, A.; Bennett, J.; Pappas, P.; Ostrander, D.; Datta, K.; Zhang, S.X.; et al. A Multicenter, Longitudinal Cohort Study of Cryptococcosis in Human Immunodeficiency Virus-negative People in the United States. Clin. Infect. Dis. 2020, 70, 252–261. [Google Scholar] [CrossRef]
- Pyrgos, V.; Seitz, A.E.; Steiner, C.A.; Prevots, D.R.; Williamson, P.R. Epidemiology of cryptococcal meningitis in the US: 1997–2009. PLoS ONE 2013, 8, e56269. [Google Scholar] [CrossRef] [Green Version]
- Williamson, P.R.; Jarvis, J.N.; Panackal, A.A.; Fisher, M.C.; Molloy, S.F.; Loyse, A.; Harrison, T.S. Cryptococcal meningitis: Epidemiology, immunology, diagnosis and therapy. Nat. Rev. Neurol. 2017, 13, 13–24. [Google Scholar] [CrossRef]
- Hamill, R.J.; Sobel, J.D.; El-Sadr, W.; Johnson, P.C.; Graybill, J.R.; Javaly, K.; Barker, D.E. Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis: A randomized, double-blind clinical trial of efficacy and safety. Clin. Infect. Dis. 2010, 51, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Bongomin, F.; Oladele, R.O.; Gago, S.; Moore, C.B.; Richardson, M.D. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses 2018, 61, 290–297. [Google Scholar] [CrossRef]
- Chesdachai, S.; Rajasingham, R.; Nicol, M.R.; Meya, D.B.; Bongomin, F.; Abassi, M.; Skipper, C.; Kwizera, R.; Rhein, J.; Boulware, D.R. Minimum Inhibitory Concentration Distribution of Fluconazole against Cryptococcus Species and the Fluconazole Exposure Prediction Model. Open Forum. Infect. Dis. 2019, 6, ofz369. [Google Scholar] [CrossRef] [PubMed]
- Bicanic, T.; Harrison, T.; Niepieklo, A.; Dyakopu, N.; Meintjes, G. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: The role of fluconazole resistance and immune reconstitution. Clin. Infect. Dis. 2006, 43, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Bouklas, T.; Fries, B.C. Replicative Aging in Pathogenic Fungi. J. Fungi 2020, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Oliveira, N.K.; Savitt, A.G.; Silva, V.K.A.; Krausert, R.B.; Ghebrehiwet, B.; Fries, B.C. Low Glucose Mediated Fluconazole Tolerance in Cryptococcus neoformans. J. Fungi 2021, 7, 489. [Google Scholar] [CrossRef] [PubMed]
- Carlson, T.; Lupinacci, E.; Moseley, K.; Chandrasekaran, S. Effects of environmental factors on sensitivity of Cryptococcus neoformans to fluconazole and amphotericin B. FEMS Microbiol. Lett. 2021, 368, fnab040. [Google Scholar] [CrossRef] [PubMed]
- Bastos, R.W.; Carneiro, H.C.S.; Oliveira, L.V.N.; Rocha, K.M.; Freitas, G.J.C.; Costa, M.C.; Magalhaes, T.F.F.; Carvalho, V.S.D.; Rocha, C.E.; Ferreira, G.F.; et al. Environmental Triazole Induces Cross-Resistance to Clinical Drugs and Affects Morphophysiology and Virulence of Cryptococcus gattii and C. neoformans. Antimicrob. Agents Chemother. 2018, 62, e01179-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikawa, M.M.; Almeida-Paes, R.; Brito-Santos, F.; Nascimento, C.R.; Fialho, M.M.; Trilles, L.; Morales, B.P.; da Silva, S.A.; Santos, W.; Santos, L.O.; et al. Comparative antifungal susceptibility analyses of Cryptococcus neoformans VNI and Cryptococcus gattii VGII from the Brazilian Amazon Region by the Etest, Vitek 2, and the Clinical and Laboratory Standards Institute broth microdilution methods. Med. Mycol. 2019, 57, 864–873. [Google Scholar] [CrossRef]
- Yang, C.; Bian, Z.; Blechert, O.; Deng, F.; Chen, H.; Li, Y.; Yang, Y.; Chen, M.; Zhan, P. High Prevalence of HIV-Related Cryptococcosis and Increased Resistance to Fluconazole of the Cryptococcus neoformans Complex in Jiangxi Province, South Central China. Front. Cell. Infect. Microbiol. 2021, 11, 723251. [Google Scholar] [CrossRef]
- Lin, K.H.; Lin, Y.P.; Ho, M.W.; Chen, Y.C.; Chung, W.H. Molecular epidemiology and phylogenetic analyses of environmental and clinical isolates of Cryptococcus gattii sensu lato in Taiwan. Mycoses 2021, 64, 324–335. [Google Scholar] [CrossRef]
- Carvajal, J.G.; Alaniz, A.J.; Carvajal, M.A.; Acheson, E.S.; Cruz, R.; Vergara, P.M.; Cogliati, M. Expansion of the Emerging Fungal Pathogen Cryptococcus bacillisporus Into America: Linking Phylogenetic Origin, Geographical Spread and Population Under Exposure Risk. Front. Microbiol. 2020, 11, 2117. [Google Scholar] [CrossRef]
- Danesi, P.; Falcaro, C.; Schmertmann, L.J.; de Miranda, L.H.M.; Krockenberger, M.; Malik, R. Cryptococcus in Wildlife and Free-Living Mammals. J. Fungi 2021, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Schmertmann, L.J.; Danesi, P.; Monroy-Nieto, J.; Bowers, J.; Engelthaler, D.M.; Malik, R.; Meyer, W.; Krockenberger, M.B. Jet-Setting Koalas Spread Cryptococcus gattii VGII in Australia. mSphere 2019, 4, e00216-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilas-Boas, A.M.; Andrade-Silva, L.E.; Ferreira-Paim, K.; Mora, D.J.; Ferreira, T.B.; Santos, D.A.; Borges, A.S.; Melhem, M.S.C.; Silva-Vergara, M.L. High genetic variability of clinical and environmental Cryptococcus gattii isolates from Brazil. Med. Mycol. 2020, 58, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. In Approved Standard—Third Edition; CLSI Document M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Lee, C.H.; Chang, T.Y.; Liu, J.W.; Chen, F.J.; Chien, C.C.; Tang, Y.F.; Lu, C.H. Correlation of anti-fungal susceptibility with clinical outcomes in patients with cryptococcal meningitis. BMC Infect. Dis. 2012, 12, 361. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Turnidge, J. The role of epidemiological cutoff values (ECVs/ECOFFs) in antifungal susceptibility testing and interpretation for uncommon yeasts and moulds. Rev. Iberoam. Micol. 2016, 33, 63–75. [Google Scholar] [CrossRef]
- Li, Y.; Zou, M.; Yin, J.; Liu, Z.; Lu, B. Microbiological, epidemiological, and clinical characteristics of patients with cryptococcal meningitis at a tertiary hospital in China: A 6-year retrospective analysis. Front. Microbiol. 2020, 11, 1837. [Google Scholar] [CrossRef]
- Tseng, H.K.; Liu, C.P.; Ho, M.W.; Lu, P.L.; Lo, H.J.; Lin, Y.H.; Cho, W.L.; Chen, Y.C.; Taiwan Infectious Diseases Study Network for Cryptococcosis. Microbiological, epidemiological, and clinical characteristics and outcomes of patients with cryptococcosis in Taiwan, 1997–2010. PLoS ONE 2013, 8, e61921. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Xiao, M.; Chen, S.; Kong, F.; Dou, H.T.; Wang, H.; Xiao, Y.L.; Kang, M.; Sun, Z.Y.; Hu, Z.D.; et al. Predominance of Cryptococcus neoformans var. grubii multilocus sequence type 5 and emergence of isolates with non-wild-type minimum inhibitory concentrations to fluconazole: A multi-centre study in China. Clin. Microbiol. Infect. 2016, 22, 887.e1–887.e9. [Google Scholar] [CrossRef] [Green Version]
- Day, J.N.; Qihui, S.; Thanh, L.T.; Trieu, P.H.; Van, A.D.; Thu, N.H.; Chau, T.T.H.; Lan, N.P.H.; Chau, N.V.V.; Ashton, P.M.; et al. Comparative genomics of Cryptococcus neoformans var. grubii associated with meningitis in HIV infected and uninfected patients in Vietnam. PLoS Negl. Trop. Dis. 2017, 11, e0005628. [Google Scholar] [CrossRef]
- Ferreira-Paim, K.; Andrade-Silva, L.; Fonseca, F.M.; Ferreira, T.B.; Mora, D.J.; Andrade-Silva, J.; Khan, A.; Dao, A.; Reis, E.C.; Almeida, M.T.; et al. MLST-Based Population Genetic Analysis in a Global Context Reveals Clonality amongst Cryptococcus neoformans var. grubii VNI Isolates from HIV Patients in Southeastern Brazil. PLoS Negl. Trop. Dis. 2017, 11, e0005223. [Google Scholar] [CrossRef]
- Umeyama, T.; Ohno, H.; Minamoto, F.; Takagi, T.; Tanamachi, C.; Tanabe, K.; Kaneko, Y.; Yamagoe, S.; Kishi, K.; Fujii, T.; et al. Determination of epidemiology of clinically isolated Cryptococcus neoformans strains in Japan by multilocus sequence typing. Jpn. J. Infect. Dis. 2013, 66, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perfect, J.R. Cryptococcosis (Cryptococcus neoformans and Cryptococcus gattii). In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases E-Book; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019; pp. 3146–3161. [Google Scholar]
- Powderly, W.G.; Cloud, G.A.; Dismukes, W.E.; Saag, M.S. Measurement of cryptococcal antigen in serum and cerebrospinal fluid: Value in the management of AIDS-associated cryptococcal meningitis. Clin. Infect. Dis. 1994, 18, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Perfect, J.R.; Dismukes, W.E.; Dromer, F.; Goldman, D.L.; Graybill, J.R.; Hamill, R.J.; Harrison, T.S.; Larsen, R.A.; Lortholary, O.; Nguyen, M.H.; et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 291–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govender, N.P.; Meintjes, G.; Mangena, P.; Nel, J.; Potgieter, S.; Reddy, D.; Rabie, H.; Wilson, D.; Black, J.; Boulware, D.; et al. Southern African HIV Clinicians Society guideline for the prevention, diagnosis and management of cryptococcal disease among HIV-infected persons: 2019 update. S. Afr. J. HIV Med. 2019, 20, 1030. [Google Scholar] [CrossRef]
Cryptococcus Species, No. of Isolates, Antifungal Agent | MIC (μg/mL) | ||
---|---|---|---|
Broth Dilution | |||
GM | MIC50/MIC90 | Range | |
C. neoformans, N = 109 | |||
Amphotericin B | 0.09 | 0.06/0.25 | 0.03–0.5 |
Flucytosine | 1.31 | 1/2 | 0.5–4 |
Fluconazole | 2.55 | 2/4 | 0.25–16 |
Posaconazole | 0.04 | 0.03/0.25 | 0.015–0.5 |
Voriconazole | 0.05 | 0.06/0.12 | 0.015/0.25 |
C. gattii, N = 6 | |||
Amphotericin B | 0.10 | 0.06/0.25 | 0.06–0.25 |
Flucytosine | 1.12 | 1/4 | 0.25–4 |
Fluconazole | 1.78 | 1/8 | 0.5–8 |
Posaconazole | 0.10 | 0.06/0.5 | 0.015–0.5 |
Voriconazole | 0.07 | 0.12/0.25 | 0.015–0.25 |
Species (No. of Isolates) | Antifungal Agent | N of Isolates with MIC (μg/mL) of the Tested Antifungal Agents | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.015 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | ||
C. neoformans (N = 109) | Amphotericin B | 13 | 44 | 36 | 14 | 2 | ||||||
Flucytosine | 11 | 50 | 42 | 6 | ||||||||
Fluconazole | 1 | 4 | 9 | 44 | 45 | 5 | 1 | |||||
Posaconazole | 33 | 26 | 23 | 11 | 15 | 1 | ||||||
Voriconazole | 6 | 30 | 62 | 9 | 2 | |||||||
C. gattii (N = 6) | Amphotericin B | 3 | 2 | 1 | ||||||||
Flucytosine | 1 | 3 | 1 | 1 | ||||||||
Fluconazole | 2 | 1 | 2 | 1 | ||||||||
Posaconazole | 1 | 1 | 1 | 1 | 2 | |||||||
Voriconazole | 2 | 3 | 1 |
All | Survivors | Non-Survivors | p-Value | |
---|---|---|---|---|
Total No. (%) | 47 (100) | 35 (74.5) | 12 (25.5) | |
Age (mean ± SD), years | 62 ± 18 | 58 ± 18 | 73 ± 12 | <0.01 |
Female sex | 14 (29.8) | 9 (25.7) | 5 (41.7) | 0.47 |
Time to diagnosis from presentation (mean ± SD), days | 8.0 ± 8.6 | 6.6 ± 7.1 | 12.0 ± 11.5 | 0.06 |
CSF CrAg titer > 1024 | 16 (34) | 6 (17.1) | 10 (83.3) | <0.01 |
Cryptococcemia | 14 (29.8) | 8 (22.9) | 6 (50.0) | 0.14 |
C. gattii | 6 (12.8) | 6 (17.1) | 0 | 0.32 |
HIV infection | 4 (8.5) | 4 (11.4) | 0 | 0.56 |
Hematologic disease/malignancy | 7 (14.9) | 5 (14.3) | 2 (16.7) | >0.99 |
Liver cirrhosis | 4 (8.5) | 2 (5.7) | 2 (16.7) | 0.27 |
Solid-organ transplantation | 2 (4.3) | 2 (5.7) | 0 | >0.99 |
Solid-organ malignancy | 8 (17.0) | 5 (14.3) | 3 (25.0) | 0.40 |
Autoimmune disease | 5 (10.6) | 3 (8.6) | 2 (16.7) | 0.59 |
Known immunocompromised status | 26 (55.3) | 17 (48.6) | 9 (75.0) | 0.11 |
2013–2020 Cohort | 2000–2010 Cohort | p-Value | |
---|---|---|---|
Total No. | 47 | 46 | |
Age (mean ± SD), years | 62 ± 18 | 51 ± 19 | <0.01 |
Female sex | 14 (29.8) | 14 (30.4) | >0.99 |
Time to diagnosis from presentation (mean ± SD), days | 8.0 ± 8.6 | 7.1 ± 10.2 | 0.66 |
Inpatient mortality | 12 (25.5) | 18 (39.1) | 0.16 |
CSF CrAg titer > 1024 | 16 (34) | 10 (21.7) | 0.17 |
Cryptococcemia | 14 (29.8) | 12 (26.1) | 0.69 |
C. gattii | 6 (12.8) | 4 (8.7) | 0.74 |
HIV infection | 4 (8.5) | 6 (13.0) | 0.52 |
Hematologic disease/malignancy | 7 (14.9) | 4 (8.7) | 0.36 |
Liver cirrhosis | 4 (8.5) | 5 (10.9) | 0.74 |
Solid-organ transplantation | 2 (4.3) | 1 (2.2) | >0.99 |
Solid-organ malignancy | 8 (17.0) | 6 (13.0) | 0.59 |
Autoimmune disease | 5 (10.6) | 1 (2.2) | 0.20 |
Standard induction therapy | 47 (100) | 1 (2.2) | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Kuo, S.-F.; Lin, S.-Y.; Lin, Y.-S.; Lee, C.-H. Epidemiological and Clinical Characteristics, Antifungal Susceptibility, and MLST-Based Genetic Analysis of Cryptococcus Isolates in Southern Taiwan in 2013–2020. J. Fungi 2022, 8, 287. https://doi.org/10.3390/jof8030287
Chen Y-C, Kuo S-F, Lin S-Y, Lin Y-S, Lee C-H. Epidemiological and Clinical Characteristics, Antifungal Susceptibility, and MLST-Based Genetic Analysis of Cryptococcus Isolates in Southern Taiwan in 2013–2020. Journal of Fungi. 2022; 8(3):287. https://doi.org/10.3390/jof8030287
Chicago/Turabian StyleChen, Yi-Chun, Shu-Fang Kuo, Shang-Yi Lin, Yin-Shiou Lin, and Chen-Hsiang Lee. 2022. "Epidemiological and Clinical Characteristics, Antifungal Susceptibility, and MLST-Based Genetic Analysis of Cryptococcus Isolates in Southern Taiwan in 2013–2020" Journal of Fungi 8, no. 3: 287. https://doi.org/10.3390/jof8030287