Streptomyces pratensis S10 Promotes Wheat Plant Growth and Induces Resistance in Wheat Seedlings against Fusarium graminearum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Exploration of Plant Growth-Promoting Properties of S10 In Vitro
2.2.1. Siderophore Production
2.2.2. Indole-3-acetic Acid (IAA) Production
2.2.3. 1-Aminocyclopropane-1-carboxylate Deaminase (ACC) Detection
2.2.4. Nitrogen Fixation Assay
2.2.5. Phosphate Dissolution
2.2.6. Hydrogen Cyanide Production
2.2.7. Ammonia Production
2.3. Assessment of Plant Growth-Promoting Ability of S10
2.3.1. Pot Experiment
2.3.2. Analysis of Root Activity
2.3.3. Chlorophyll Content
2.4. Resistance-Inducing Assay
2.5. Callose Deposition Detection
2.6. ROS Staining and Determination of H2O2
2.7. Detection of Defense-Related Enzyme Activity
2.8. RNA Isolation and qRT-PCR
2.9. Statistical Analysis
3. Results
3.1. Plant Growth-Promoting Traits of S10 In Vitro
3.2. S. pratensis S10 Promoted Wheat Plant Growth
3.3. Genome Mining of Genes Potentially Contributing to Plant Growth Promotion
3.3.1. Plant Hormones
3.3.2. Siderophore Biosynthesis and Iron Absorption
3.3.3. Phosphate Solubilization
3.3.4. Nitrate Reduction
3.4. S10 Induced Wheat Seedling Resistance against F. graminearum Infection
3.5. S10 Induced ROS Accumulation and Callose Deposition
3.6. S10 Enhanced Plant Defense Enzyme Activity
3.7. S10 Induced the Expression of Defense-Related Genes in Wheat Seedlings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, A.; Han, X.; Liu, C.; Zhou, Y.; Ren, Y.; Shen, X.; Shim, W.B.; Chai, Y.; Ma, Z.; Chen, Y. Profiling of Deubiquitinases that Control Virulence in the Pathogenic Plant Fungus Fusarium graminearum. New Phytol. 2024, 242, 192–210. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Sorahinobar, M.; Safaie, N.; Moradi, B. Salicylic Acid Seed Priming Enhanced Resistance in Wheat Against Fusarium graminearum Seedling Blight. J. Plant Biol. 2022, 65, 423–434. [Google Scholar] [CrossRef]
- Zhou, F.; Li, D.X.; Hu, H.Y.; Song, Y.L.; Fan, Y.C.; Guan, Y.Y.; Song, P.W.; Wei, Q.C.; Yan, H.F.; Li, C.W. Biological Characteristics and Molecular Mechanisms of Fludioxonil Resistance in Fusarium graminearum in China. Plant Dis. 2020, 104, 2426–2433. [Google Scholar] [CrossRef] [PubMed]
- Cuozzo, S.; de Moreno de LeBlanc, A.; LeBlanc, J.G.; Hoffmann, N.; Tortella, G.R. Streptomyces Genus as a Source of Probiotics and Its Potential for Its Use in Health. Microbio. Res. 2023, 266, 127248. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wei, Y.; Cai, B.; Zhou, D.; Qi, D.; Zhang, M.; Zhao, Y.; Li, K.; Wedge, D.E.; Pan, Z.; et al. Discovery of Niphimycin C from Streptomyces yongxingensis sp. nov. as a Promising Agrochemical Fungicide for Controlling Banana Fusarium Wilt by Destroying the Mitochondrial Structure and Function. J. Agric. Food Chem. 2022, 70, 12784–12795. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Duan, Y.; Bian, C.; Pan, X.; Yao, C.; Wang, J.; Zhou, M. Effects of Validamycin in Controlling Fusarium Head Blight Caused by Fusarium graminearum: Inhibition of DON Biosynthesis and Induction of Host Resistance. Pestic. Biochem. Physiol. 2019, 153, 152–160. [Google Scholar] [CrossRef]
- Chen, J.; Hu, L.F.; Chen, N.; Jia, R.M.; Ma, Q.; Wang, Y. The Biocontrol and Plant Growth-Promoting Properties of Streptomyces alfalfae XN-04 Revealed by Functional and Genomic Analysis. Front. Microbiol. 2021, 12, 745766. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.M.; Xiao, K.Y.; Yu, L.G.; Chen, J.; Hu, L.F.; Wang, Y. A Potential Biocontrol Agent Streptomyces tauricus XF for Managing Wheat Stripe Rust. Phytopathol. Res. 2023, 5, 14. [Google Scholar] [CrossRef]
- Ge, B.B.; Cheng, Y.; Liu, Y.; Liu, B.H.; Zhang, K.C. Biological Control of Botrytis cinerea on Tomato Plants Using Streptomyces ahygroscopicus Strain CK-15. Lett. Appl. Microbiol. 2015, 61, 596–602. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, W.; Lv, Z.; Shi, L.; Zhang, K.; Ge, B. Induced Defense Response in Soybean to Sclerotinia sclerotiorum Using Wuyiencin from Streptomyces albulus CK-15. Plant Dis. 2023, 107, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Liu, N.; Fan, Z.; Liu, M.; Zhang, X.; Tian, J.; Yu, Y.; Lin, H.; Huang, Y.; Kong, Z. A Novel PGPR Strain, Streptomyces lasalocidi JCM 3373(T), Alleviates Salt Stress and Shapes Root Architecture in Soybean by Secreting Indole-3-Carboxaldehyde. Plant Cell Environ. 2024, 47, 1941–1956. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Babalola, O.O. Streptomyces: Implications and Interactions in Plant Growth Promotion. Appl. Microbiol. Biotechnol. 2019, 103, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Rey, T.; Dumas, B. Plenty Is No Plague: Streptomyces Symbiosis with Crops. Trends Plant Sci. 2017, 22, 30–37. [Google Scholar] [CrossRef]
- Vurukonda, S.; Giovanardi, D.; Stefani, E. Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Iida, T.; Yoshida, R.; Furumai, T. Pteridic Acids A and B, Novel Plant Growth Promoters with Auxin-Like Activity from Streptomyces hygroscopicus TP-A0451. J. Antibiot. 2002, 55, 764–767. [Google Scholar] [CrossRef]
- El-Tarabily, K.A. Promotion of Tomato (Lycopersicon esculentum Mill.) Plant Growth by Rhizosphere Competent 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Producing Streptomycete Actinomycetes. Plant Soil 2008, 308, 161–174. [Google Scholar] [CrossRef]
- Sasirekha, B.; Shivakumar, S. Siderophore Production by Pseudomonas aeruginosa FP6, a Biocontrol Strain for Rhizoctonia solani and Colletotrichum gloeosporioides Causing Diseases in Chilli. Agric. Nat. Resour. 2016, 50, 250–256. [Google Scholar] [CrossRef]
- Khamna, S.; Yokota, A.; Lumyong, S. Actinomycetes Isolated from Medicinal Plant Rhizosphere Soils: Diversity and Screening of Antifungal Compounds, Indole-3-acetic Acid and Siderophore Production. World J. Microbiol. Biotechnol. 2009, 25, 649–655. [Google Scholar] [CrossRef]
- Nie, P.; Li, X.; Wang, S.; Guo, J.; Zhao, H.; Niu, D. Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis. Front. Plant Sci. 2017, 8, 238. [Google Scholar] [CrossRef]
- De Kesel, J.; Conrath, U.; Flors, V.; Luna, E.; Mageroy, M.H.; Mauch-Mani, B.; Pastor, V.; Pozo, M.J.; Pieterse, C.M.J.; Ton, J.; et al. The Induced Resistance Lexicon: Do’s and Don’ts. Trends Plant Sci. 2021, 26, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hou, Z.; Zhou, D.; Jia, M.; Lu, S.; Yu, J. A Plant Growth-Promoting Bacteria Priestia megaterium JR48 Induces Plant Resistance to the Crucifer Black Rot via a Salicylic Acid-Dependent Signaling Pathway. Front. Plant Sci. 2022, 13, 1046181. [Google Scholar] [CrossRef]
- Salas-Marina, M.A.; Silva-Flores, M.A.; Uresti-Rivera, E.E.; Castro-Longoria, E.; Herrera-Estrella, A.; Casas-Flores, S. Colonization of Arabidopsis Roots by Trichoderma atroviride Promotes Growth and Enhances Systemic Disease Resistance Through Jasmonic Acid/Ethylene and Salicylic Acid Pathways. Eur. J. Plant Pathol. 2011, 131, 15–26. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Hu, L.F.; Jia, R.M.; Ma, Q.; Tang, J.; Wang, Y. Antagonistic Action of Streptomyces pratensis S10 on Fusarium graminearum and Its Complete Genome Sequence. Environ. Microbiol. 2021, 23, 1925–1940. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.J.; Tang, H.Y.; Wang, W.Q.; Yuan, T.L.; Wei, W.Q.; Pang, B.; Gong, X.M.; Wang, S.F.; Li, Y.J.; Zhang, D.; et al. A Linear Nonribosomal Octapeptide from Fusarium graminearum Facilitates Cell-to-Cell Invasion of Wheat. Nat. Commun. 2019, 10, 922. [Google Scholar] [CrossRef] [PubMed]
- Gaind, S. Phosphate Dissolving Fungi: Mechanism and Application in Alleviation of Salt Stress in Wheat. Microbiol. Res. 2016, 193, 94–102. [Google Scholar] [CrossRef]
- Bonaldi, M.; Chen, X.; Kunova, A.; Pizzatti, C.; Saracchi, M.; Cortesi, P. Colonization of Lettuce Rhizosphere and Roots by Tagged Streptomyces. Front. Microbiol. 2015, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.M.; Chen, J.; Hu, L.F.; Liu, X.R.; Xiao, K.Y.; Wang, Y. Alcaligenes faecalis Juj3 Alleviates Plasmodiophora brassicae Stress to Cabbage via Promoting Growth and Inducing Resistance. Front. Sustainable Food Syst. 2022, 6, 942409. [Google Scholar] [CrossRef]
- Magnucka, E.G.; Pietr, S.J. Various Effects of Fluorescent Bacteria of the Genus Pseudomonas Containing ACC Deaminase on Wheat Seedling Growth. Microbiol. Res. 2015, 181, 112–119. [Google Scholar] [CrossRef]
- Puri, A.; Padda, K.P.; Chanway, C.P. In Vitro and In Vivo Analyses of Plant-Growth-Promoting Potential of Bacteria Naturally Associated with Spruce Trees Growing on Nutrient-Poor Soils. Appl. Soil Ecol. 2020, 149, 103538. [Google Scholar] [CrossRef]
- Boubekri, K.; Soumare, A.; Mardad, I.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. The Screening of Potassium- and Phosphate-Solubilizing Actinobacteria and the Assessment of Their Ability to Promote Wheat Growth Parameters. Microorganisms 2021, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Comas, L.H.; Eissenstat, D.M.; Lakso, A.N. Assessing Root Death and Root System Dynamics in a Study of Grape Canopy Pruning. New Phytol. 2000, 147, 171–178. [Google Scholar] [CrossRef]
- Zhai, Q.H.; Pan, Z.Q.; Zhang, C.; Yu, H.I.; Zhang, M.; Gu, X.H.; Zhang, X.H.; Pan, H.Y.; Zhang, H. Colonization by Klebsiella variicola FH-1 Stimulates Soybean Growth and Alleviates the Stress of Sclerotinia sclerotiorum. J. Integr. Agric. 2023, 22, 2729–2745. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Carvalhais, L.C.; Percy, C.D.; Prakash Verma, J.; Schenk, P.M.; Singh, B.K. Evidence for the Plant Recruitment of Beneficial Microbes to Suppress Soil-Borne Pathogens. New Phytol. 2021, 229, 2873–2885. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.F.; Jia, R.M.; Sun, Y.; Chen, J.; Chen, N.; Zhang, J.; Wang, Y. Streptomyces pratensis S10 Controls Fusarium Head Blight by Suppressing Different Stages of the Life Cycle and ATP Production. Plant Dis. 2023, 107, 1442–1451. [Google Scholar] [CrossRef]
- Hu, L.F.; Guo, C.; Chen, J.; Jia, R.M.; Sun, Y.; Cao, S.; Xiang, P.; Wang, Y. Venturicidin A is a Potential Fungicide for Controlling Fusarium Head Blight by Affecting Deoxynivalenol Biosynthesis, Toxisome Formation, and Mitochondrial Structure. J. Agric. Food Chem. 2023, 71, 12440–12451. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, Z.H.; Zu, X.; Yu, X.Y.; Zhu, H.J.; Li, X.J.; Zhong, J.; Liu, E.M. Efficacy of Plant Growth-Promoting Bacteria Bacillus cereus YN917 for Biocontrol of Rice Blast. Front. Microbiol. 2021, 12, 684888. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, F.X.; Hernandez, A.G.; Glick, B.R.; Rossi, M.J. The Extreme Plant-Growth-Promoting Properties of Pantoea phytobeneficialis MSR2 Revealed by Functional and Genomic Analysis. Environ. Microbiol. 2020, 22, 1341–1355. [Google Scholar] [CrossRef]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of Action of Microbial Biocontrol in the Phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef]
- Etesami, H.; Maheshwari, D.K. Use of Plant Growth Promoting Rhizobacteria (PGPRs) with Multiple Plant Growth Promoting Traits in Stress Agriculture: Action Mechanisms and Future Prospects. Ecotoxicol. Environ. Saf. 2018, 156, 225–246. [Google Scholar] [CrossRef]
- Dimkpa, C.; Svatos, A.; Merten, D.; Büchel, G.; Kothe, E. Hydroxamate Siderophores Produced by Streptomyces acidiscabies E13 bind Nickel and Promote Growth in Cowpea (Vigna unguiculata L.) Under Nickel Stress. Can. J. Microbiol. 2008, 54, 163–172. [Google Scholar] [CrossRef]
- Crowley, D.E.; Wang, Y.C.; Reid, C.; Szaniszlo, P.J. Mechanisms of Iron Acquisition from Siderophores by Microorganisms and Plants. Plant Soil 1991, 130, 179–198. [Google Scholar] [CrossRef]
- Hamdali, H.; Hafidi, M.; Virolle, M.J.; Ouhdouch, Y. Rock Phosphate-Solubilizing Actinomycetes: Screening for Plant Growth-Promoting Activities. World J. Microb. Biot. 2008, 24, 2565–2575. [Google Scholar] [CrossRef]
- Ahn, I.P.; Lee, S.W.; Suh, S.C. Rhizobacteria-Induced Priming in Arabidopsis is Dependent on Ethylene, Jasmonic Acid, and NPR1. Mol. Plant Microbe Interact. 2007, 20, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Fan, B.; Zhu, C.; Chen, Z. Regulation and Function of Defense-Related Callose Deposition in Plants. Int. J. Mol. Sci. 2021, 22, 239. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Chen, X.; Wang, F.; Hsiao, C.Y.; Yang, C.Y.; Lin, S.T.; Wu, L.H.; Chen, Y.K.; Liang, Y.S.; Lin, Y.H. Bacillus amyloliquefaciens Strains Control Strawberry Anthracnose Through Antagonistic Activity and Plant Immune Response Intensification. Biol. Control 2021, 157, 104592. [Google Scholar] [CrossRef]
- Choi, H.W.; Kim, Y.J.; Lee, S.C.; Hong, J.K.; Hwang, B.K. Hydrogen Peroxide Generation by the Pepper Extracellular Peroxidase CaPO2 Activates Local and Systemic Cell Death and Defense Response to Bacterial Pathogens. Plant Physiol. 2007, 145, 890–904. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive Oxygen Gene Network of Plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Xu, J.; Xie, J.; Yan, C.; Zou, X.; Ren, D.; Zhang, S. A Chemical Genetic Approach Demonstrates that MPK3/MPK6 Activation and NADPH Oxidase-Mediated Oxidative Burst are Two Independent Signaling Events in Plant Immunity. Plant J. 2014, 77, 222–234. [Google Scholar] [CrossRef]
- Stout, M.J.; Fidantsef, A.L.; Duffey, S.S.; Bostock, R.M. Signal Interactions in Pathogen and Insect Attack: Systemic Plant-Mediated Interactions Between Pathogens and Herbivores of the Tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 1999, 54, 115–130. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Dong, X. Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annu. Rev. Plant Biol. 2013, 64, 839–863. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.F.; Wu, J.J.; Xue, A.; Li, W.B.; Chen, W.Y.; Wei, L.; Lv, H.Y.; Lin, S.F.; Fan, S.J.; Li, N.H.; et al. Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. J. Integr. Agric. 2012, 11, 368–377. [Google Scholar] [CrossRef]
- Van Oosten, V.R.; Bodenhausen, N.; Reymond, P.; Van Pelt, J.A.; Van Loon, L.C.; Dicke, M.; Pieterse, C.M.J. Differential Effectiveness of Microbially Induced Resistance Against Herbivorous Insects in Arabidopsis. Mol. Plant Microbe Interact. 2008, 21, 919–930. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Hu, L.; Jia, R.; Cao, S.; Sun, Y.; Dong, X.; Wang, Y. Streptomyces pratensis S10 Promotes Wheat Plant Growth and Induces Resistance in Wheat Seedlings against Fusarium graminearum. J. Fungi 2024, 10, 578. https://doi.org/10.3390/jof10080578
Tian X, Hu L, Jia R, Cao S, Sun Y, Dong X, Wang Y. Streptomyces pratensis S10 Promotes Wheat Plant Growth and Induces Resistance in Wheat Seedlings against Fusarium graminearum. Journal of Fungi. 2024; 10(8):578. https://doi.org/10.3390/jof10080578
Chicago/Turabian StyleTian, Xiaoman, Lifang Hu, Ruimin Jia, Shang Cao, Yan Sun, Xiaomin Dong, and Yang Wang. 2024. "Streptomyces pratensis S10 Promotes Wheat Plant Growth and Induces Resistance in Wheat Seedlings against Fusarium graminearum" Journal of Fungi 10, no. 8: 578. https://doi.org/10.3390/jof10080578