Halophilomyces hongkongensis, a Novel Species and Genus in the Lulworthiaceae with Antibacterial Potential, Colonizing the Roots and Rhizomes of the Seagrass Halophila ovalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Pretreatment
2.2. Fungal Isolation and Molecular Identification
2.3. Morphological Characterization and Teleomorph Induction
2.4. Phylogenetic Analysis
2.5. Preliminary Antibacterial Assay
2.6. Fungal ITS2 Illumina Sequencing and Data Processing
3. Results
3.1. Fungal Isolates and Microscopy
3.2. Phylogeny
3.3. Taxonomy
3.4. Teleomorph Induction of Halophilomyces hongkongensis
3.5. Antibacterial Assay
3.6. Fungal Community Structure
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kohlmeyer, J.; Spatafora, J.W.; Volkmann-Kohlmeyer, B. Lulworthiales, a New Order of Marine Ascomycota. Mycologia 2000, 92, 453–458. [Google Scholar] [CrossRef]
- Jones, E.B.G.; Pang, K.-L.; Abdel-Wahab, M.A.; Scholz, B.; Hyde, K.D.; Boekhout, T.; Ebel, R.; Rateb, M.E.; Henderson, L.; Sakayaroj, J.; et al. An Online Resource for Marine Fungi. Fungal Divers. 2019, 96, 347–433. [Google Scholar] [CrossRef]
- Wijayawardene, N. Outline of Fungi and Fungus-like Taxa. Mycosphere 2020, 11, 1060–1456. [Google Scholar] [CrossRef]
- Poli, A.; Bovio, E.; Ranieri, L.; Varese, G.C.; Prigione, V. Fungal Diversity in the Neptune Forest: Comparison of the Mycobiota of Posidonia oceanica, Flabellia petiolata, and Padina pavonica. Front. Microbiol. 2020, 11, 933. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.F.M.; Abreu, A.C.; Hilário, S.; Alves, A. Diversity of Marine Fungi Associated with Wood Baits in the Estuary Ria de Aveiro, with Descriptions of Paralulworthia halima, Comb. Nov., Remispora submersa, sp. Nov., and Zalerion pseudomaritima, sp. Nov. Mycologia 2021, 113, 664–683. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Prigione, V.; Bovio, E.; Perugini, I.; Varese, G.C. Insights on Lulworthiales Inhabiting the Mediterranean Sea and Description of Three Novel Species of the Genus Paralulworthia. J. Fungi 2021, 7, 940. [Google Scholar] [CrossRef] [PubMed]
- Raghukumar, S. Fungi in Coastal and Oceanic Marine Ecosystems; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-54303-1. [Google Scholar]
- Index Fungorum. Available online: https://indexfungorum.org/ (accessed on 20 December 2023).
- Campbell, J.; Volkmann-Kohlmeyer, B.; Grafenhan, T.; Spatafora, J.W.; Kohlmeyer, J. A Re-Evaluation of Lulworthiales: Relationships Based on 18S and 28S rDNA. Mycol. Res. 2005, 109, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.B.J.; Sakayaroj, J.; Suetrong, S.; Somrithipol, S.; Pang, K.-L. Classification of Marine Ascomycota, Anamorphic Taxa and Basidiomycota. Fungal Divers. 2009, 35, 187. [Google Scholar]
- Nakagiri, A. Two New Species of Lulworthia and Evaluation of Genera-Delimiting Characters between Lulworthia and Lindra (Halosphaeriaceae). Trans. Mycol. Soc. Jpn. 1984, 25, 377–388. [Google Scholar]
- Nakagiri, A.; Tubaki, K. Lindra Obtusa, A New Marine Ascomycete and Its Anguillospora Anamorph. Mycologia 1983, 75, 487–497. [Google Scholar] [CrossRef]
- Zhao, G.Z.; Liu, X.Z.; Wu, W.P. Helicosporous Hyphomycetes from China. Fungal Divers. 2007, 26, 313–524. [Google Scholar]
- Su, Y.-Y.; Qi, Y.-L.; Cai, L. Induction of Sporulation in Plant Pathogenic Fungi. Mycology 2012, 3, 195–200. [Google Scholar] [CrossRef]
- Velez, P.; Walker, A.K.; Gasca-Pineda, J.; Barrios, A.; Divanli, D.; González, M.C.; Nakagiri, A. Fine-Scale Temporal Variation of Intertidal Marine Fungal Community Structure: Insights from an Impacted Baja California Sandy Beach in Mexico. Mar. Biodivers. 2021, 51, 6. [Google Scholar] [CrossRef]
- Conte, C.; Rotini, A.; Manfra, L.; D’Andrea, M.; Winters, G.; Migliore, L. The Seagrass Holobiont: What We Know and What We Still Need to Disclose for Its Possible Use as an Ecological Indicator. Water 2021, 13, 406. [Google Scholar] [CrossRef]
- Shoemaker, G.; Wyllie-Echeverria, S. Occurrence of Rhizomal Endophytes in Three Temperate Northeast Pacific Seagrasses. Aquat. Bot. 2013, 111, 71–73. [Google Scholar] [CrossRef]
- Vohník, M.; Borovec, O.; Kolaříková, Z.; Sudová, R.; Réblová, M. Extensive Sampling and High-Throughput Sequencing Reveal Posidoniomyces atricolor Gen. et sp. Nov. (Aigialaceae, Pleosporales) as the Dominant Root Mycobiont of the Dominant Mediterranean Seagrass Posidonia oceanica. MycoKeys 2019, 55, 59–86. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Varese, G.C.; Garzoli, L.; Prigione, V. Seagrasses, Seaweeds and Plant Debris: An Extraordinary Reservoir of Fungal Diversity in the Mediterranean Sea. Fungal Ecol. 2022, 60, 101156. [Google Scholar] [CrossRef]
- Torta, L.; Burruano, S.; Giambra, S.; Conigliaro, G.; Piazza, G.; Mirabile, G.; Pirrotta, M.; Calvo, R.; Bellissimo, G.; Calvo, S.; et al. Cultivable Fungal Endophytes in Roots, Rhizomes and Leaves of Posidonia oceanica (L.) Delile along the Coast of Sicily, Italy. Plants 2022, 11, 1139. [Google Scholar] [CrossRef]
- Vohník, M. Are Lulworthioid Fungi Dark Septate Endophytes of the Dominant Mediterranean Seagrass Posidonia oceanica? Plant Biol. 2022, 24, 127–133. [Google Scholar] [CrossRef]
- Supaphon, P.; Phongpaichit, S.; Rukachaisirikul, V.; Sakayaroj, J. Antimicrobial Potential of Endophytic Fungi Derived from Three Seagrass Species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE 2013, 8, e72520. [Google Scholar] [CrossRef]
- Qader, M.M.; Hamed, A.A.; Soldatou, S.; Abdelraof, M.; Elawady, M.E.; Hassane, A.S.I.; Belbahri, L.; Ebel, R.; Rateb, M.E. Antimicrobial and Antibiofilm Activities of the Fungal Metabolites Isolated from the Marine Endophytes Epicoccum nigrum M13 and Alternaria alternata 13A. Mar. Drugs 2021, 19, 232. [Google Scholar] [CrossRef] [PubMed]
- Tasdemir, D.; Scarpato, S.; Utermann-Thüsing, C.; Jensen, T.; Blümel, M.; Wenzel-Storjohann, A.; Welsch, C.; Echelmeyer, V.A. Epiphytic and Endophytic Microbiome of the Seagrass Zostera marina: Do They Contribute to Pathogen Reduction in Seawater? Sci. Total Environ. 2024, 908, 168422. [Google Scholar] [CrossRef] [PubMed]
- Alva, P.; McKenzie, E.H.C.; Pointing, S.B.; Pena-Muralla, R.; Hyde, K.D. Do Sea Grasses Harbour Endophytes? Fungal Divers. Res. Ser. 2002, 7, 167–178. [Google Scholar]
- Kwok, W.; Yang, J.; Tong, P.; Lam, C.P. Distribution of Seagrasses in Hong Kong. Hong Kong Biodivers. 2005, 8, 12–14. [Google Scholar]
- Supaphon, P.; Phongpaichit, S.; Sakayaroj, J.; Rukachaisirikul, V.; Kobmoo, N.; Spatafora, J.W. Phylogenetic Community Structure of Fungal Endophytes in Seagrass Species. Bot. Mar. 2017, 60, 489–501. [Google Scholar] [CrossRef]
- Devarajan, P.T.; Suryanarayanan, T.S.; Geetha, V. Endophytic Fungi Associated with the Tropical Seagrass Halophila ovalis (Hydrocharitaceae). Indian J. Mar. Sci. 2002, 31, 73–74. [Google Scholar]
- Venkatachalam, A. Endophytic Fungi of Marine Algae and Seagrasses: A Novel Source of Chitin Modifying Enzymes. Mycosphere 2015, 6, 345–355. [Google Scholar] [CrossRef]
- Raja, S.; Subhashini, P.; Thangaradjou, T. Differential Methods of Localisation of Fungal Endophytes in the Seagrasses. Mycology 2016, 7, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Quek, Z.B.R.; Zahn, G.; Lee, N.L.Y.; Ooi, J.L.S.; Lee, J.N.; Huang, D.; Wainwright, B.J. Biogeographic Structure of Fungal Communities in Seagrass Halophilia ovalis across the Malay Peninsula. Environ. Microbiol. Rep. 2021, 13, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Pan, X.; Kubicek, C.; Druzhinina, I.; Chenthamara, K.; Labbé, J.; Yuan, Z. Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth. Front. Microbiol. 2017, 8, 158. [Google Scholar] [CrossRef]
- Edwards, J.; Santos-Medellín, C.; Sundaresan, V. Extraction and 16S rRNA Sequence Analysis of Microbiomes Associated with Rice Roots. Bio-Protoc. 2018, 8, e2884. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Volkmann-Kohlmeyer, B.; Kohlmeyer, J. Independent Terrestrial Origins of the Halosphaeriales (Marine Ascomycota). Am. J. Bot. 1998, 85, 1569–1580. [Google Scholar] [CrossRef]
- Wang, X.; Pecoraro, L. Analysis of Soil Fungal and Bacterial Communities in Tianchi Volcano Crater, Northeast China. Life 2021, 11, 280. [Google Scholar] [CrossRef]
- Pecoraro, L.; Girlanda, M.; Kull, T.; Perini, C.; Perotto, S. Molecular Identification of Root Fungal Associates in Orchis pauciflora Tenore. Plant Biosyst. 2012, 146, 985–991. [Google Scholar] [CrossRef]
- Wang, X.; Pecoraro, L. Diversity and Co-Occurrence Patterns of Fungal and Bacterial Communities from Alkaline Sediments and Water of Julong High-Altitude Hot Springs at Tianchi Volcano, Northeast China. Biology 2021, 10, 894. [Google Scholar] [CrossRef]
- Pecoraro, L.; Caruso, T.; Cai, L.; Gupta, V.K.; Liu, Z.J. Fungal Networks and Orchid Distribution: New insights from above- and below-ground analyses of fungal communities. IMA Fungus 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Senanayake, I. Morphological Approaches in Studying Fungi: Collection, Examination, Isolation, Sporulation and Preservation. Mycosphere 2020, 11, 2678–2754. [Google Scholar] [CrossRef]
- Azevedo, E.; Barata, M.; Marques, M.I.; Caeiro, M.F. Lulworthia atlantica: A New Species Supported by Molecular Phylogeny and Morphological Analysis. Mycologia 2017, 109, 287–295. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Abascal, F.; Zardoya, R.; Posada, D. ProtTest: Selection of Best-Fit Models of Protein Evolution. Bioinformatics 2005, 21, 2104–2105. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Nested Polymerase Chain Reaction (PCR). Cold Spring Harb. Protoc. 2019, 2019, pdb.prot095182. [Google Scholar] [CrossRef]
- Yao, H.; Sun, X.; He, C.; Maitra, P.; Li, X.-C.; Guo, L.-D. Phyllosphere Epiphytic and Endophytic Fungal Community and Network Structures Differ in a Tropical Mangrove Ecosystem. Microbiome 2019, 7, 57. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, M.; Rhu, Y.H.; Yoon, H.; Woo, J.R.; Lee, G.M.; Kim, J.G. Genetic Diversity of Endophytic Fungi Isolated from the Roots of Halophytes Naturally Growing in Suncheon Bay. Korean J. Mycol. 2012, 40, 7–10. [Google Scholar] [CrossRef]
- Li, M.; Raza, M.; Song, S.; Hou, L.; Zhang, Z.-F.; Gao, M.; Huang, J.-E.; Liu, F.; Cai, L. Application of Culturomics in Fungal Isolation from Mangrove Sediments. Microbiome 2023, 11, 272. [Google Scholar] [CrossRef]
- Pang, K.-L.; Chen, I.-A.; Ju, W.-T.; Guo, S.-Y. A Checklist of Marine Fungi of Hong Kong. Fungal Sci. 2016, 31, 7–17. [Google Scholar]
- Jenssen, M.; Rainsford, P.; Juskewitz, E.; Andersen, J.H.; Hansen, E.H.; Isaksson, J.; Rämä, T.; Hansen, K.Ø. Lulworthinone, a New Dimeric Naphthopyrone From a Marine Fungus in the Family Lulworthiaceae with Antibacterial Activity Against Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Front. Microbiol. 2021, 12, 730740. [Google Scholar] [CrossRef]
- Dighton, J. Mycorrhizae. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 153–162. ISBN 978-0-12-373944-5. [Google Scholar]
- Stapel, J.; Aarts, T.; Van Duynhoven, B.; De Groot, J.; Van Den Hoogen, P.; Hemminga, M. Nutrient Uptake by Leaves and Roots of the Seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar. Ecol. Prog. Ser. 1996, 134, 195–206. [Google Scholar] [CrossRef]
- Brundrett, M.C. Global Diversity and Importance of Mycorrhizal and Nonmycorrhizal Plants. In Biogeography of Mycorrhizal Symbiosis; Tedersoo, L., Ed.; Ecological Studies; Springer International Publishing: Cham, Switzerland, 2017; Volume 230, pp. 533–556. ISBN 978-3-319-56362-6. [Google Scholar]
- Mitchison-Field, L.; Gladfelter, A. Culturing and Multiplexed Time-Lapse Imaging of Fungal Isolates from Marine and Coastal Environments. Curr. Protoc. 2021, 1, e94. [Google Scholar] [CrossRef]
- Leach, C.M. Sporulation of Diverse Species of Fungi under Near-Ultraviolet Radiation. Can. J. Bot. 1962, 40, 151–161. [Google Scholar] [CrossRef]
- Turgeon, B.G.; Yoder, O.C. Proposed Nomenclature for Mating Type Genes of Filamentous Ascomycetes. Fungal Genet. Biol. 2000, 31, 1–5. [Google Scholar] [CrossRef]
- Yun, S.-H.; Arie, T.; Kaneko, I.; Yoder, O.C.; Turgeon, B.G. Molecular Organization of Mating Type Loci in Heterothallic, Homothallic, and Asexual Gibberella/Fusarium Species. Fungal Genet. Biol. 2000, 31, 7–20. [Google Scholar] [CrossRef]
- Schmidt, H.; Gutz, H. The Mating-Type Switch in Yeasts. In Growth, Differentiation and Sexuality; Wessels, J.G.H., Meinhardt, F., Eds.; The Mycota; Springer: Berlin/Heidelberg, Germany, 1994; pp. 283–294. ISBN 978-3-662-11908-2. [Google Scholar]
Isolate ID | Isolation Source | ITS | SSU | LSU | |||
---|---|---|---|---|---|---|---|
GenBank Code | Best Match(es) Information | GenBank Code | Best Match(es) Information | GenBank Code | Best Match(es) Information | ||
HOMAR1 to HOMAR10 (10 strains) | Roots and rhizomes | PP350734–PP350743 | All isolates matched with Lulwoana uniseptata strain Cs/1/10/1S3 (JQ801457.1), with identity ranging from 99.81% to 100%. | PP347844–PP347853 | All isolates matched with Lulwoana uniseptata strain CBS 167.60 (AY879034.1), with identity of 99.45%. | PP347858–PP347867 | All isolates matched with Lulworthiaceae sp. strain SLF 0120.1411 and strain SLF 0117.0203 (OR672790.1 and OR672789.1), with identity ranging from 98.63% to 98.77%. |
Seo et al. 2012 [50] | Campbell et al. 2005 [9] | Unpublished |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Pecoraro, L.; Chen, J.; Tang, Y.; Lee, S.; Chen, S.; Liu, H. Halophilomyces hongkongensis, a Novel Species and Genus in the Lulworthiaceae with Antibacterial Potential, Colonizing the Roots and Rhizomes of the Seagrass Halophila ovalis. J. Fungi 2024, 10, 474. https://doi.org/10.3390/jof10070474
Wang X, Pecoraro L, Chen J, Tang Y, Lee S, Chen S, Liu H. Halophilomyces hongkongensis, a Novel Species and Genus in the Lulworthiaceae with Antibacterial Potential, Colonizing the Roots and Rhizomes of the Seagrass Halophila ovalis. Journal of Fungi. 2024; 10(7):474. https://doi.org/10.3390/jof10070474
Chicago/Turabian StyleWang, Xiao, Lorenzo Pecoraro, Jiawei Chen, Yang Tang, Sangwook Lee, Sheng Chen, and Hongbin Liu. 2024. "Halophilomyces hongkongensis, a Novel Species and Genus in the Lulworthiaceae with Antibacterial Potential, Colonizing the Roots and Rhizomes of the Seagrass Halophila ovalis" Journal of Fungi 10, no. 7: 474. https://doi.org/10.3390/jof10070474