Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany
Abstract
:1. Summary
- Multitemporal detection of the spatial distribution of renewable electricity generation and electricity transport infrastructure (location of renewable energy power plants (on-shore wind turbines, photovoltaic field systems, bioenergy, hydro power) and transmission networks) and the identification of environmental and sociotechnological conflicts related to them;
- Derivation of appropriate indicators for monitoring the impact of past and future expansion of renewable energies;
- Derivation of recommendations for policy and planning.
2. Data Description
- Point data of the wind turbines for Germany installed between 1955 and 2015 (except the city states);
- Polygon data of photovoltaic field systems for Germany installed between 1988 and 2015;
- Point data of bioenergy plants for Germany installed between 1966 and 2015 and point data of river hydro power plants installed between 1900 and 2015.
3. Methods and Results
3.1. Wind Power
3.1.1. Data Source and Accessibility
3.1.2. Data Generation Process
3.1.3. Resulting Dataset and Validation
3.2. Photovoltaic Field Systems
3.2.1. Data Source and Accessibility
- (a)
- Energymap register;
- (b)
- pv-relevant openstreetmap data;
- (c)
- Installation register of the Bundesnetzagentur (BNetzA).
3.2.2. Data Generation Process
- “Corine Landcover (CLC)” dataset of the European Environmental Agency (EEA) of 2012;
- OSM record “buildings”;
- OSM settlement areas with the tag: landuse = residential.
- A solar park consisting of several polygons can be assigned to one entry (m:1);
- Several register entries (Energymap) are assigned to a solar park polygon (1:n);
- Several register entries (Energymap) can be assigned to several solar park polygons (m:n)
3.2.3. Resulting Dataset and Validation
- 6752 with geo coordinates (including duplicates);
- 5653 with polygons (including duplicates);
- 7050 with information on the rated output;
- 7055 with a commissioning date.
- 874 without attribute information;
- 3265 with attribute information;
3.3. Bioenergy
3.3.1. Data Source and Accessibility
3.3.2. Data Generation Process
3.3.3. Resulting Dataset and Validation
3.4. River Hydro Power
3.4.1. Data Source and Accessibility
- (a)
- Power plant list/plant register of the Federal Network Agency 2016 (BNetzA 2016);
- (b)
- Plant master data and transaction data of the Federal Network Agency as of 2015 (BNetzA);
- (c)
- Large hydropower (>1 MW) in-house database, Ingenieurbüro Floecksmühle GmbH;
- (d)
- Plant master data and transaction data of the Federal Network Agency as of 2009 (EEG 2007 and 2009);
- (e)
- Central databases of the federal states.
3.4.2. Data Generation Process
3.4.3. Resulting Dataset and Validation
4. User Notes
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Spatial Scale | Source | Availability | |
---|---|---|---|
Wind Power | Baden-Württemberg | Landesanstalt für Umwelt | http://udo.lubw.baden-wuerttemberg.de/public/pages/home/welcome.xhtml |
Bavaria | Energieatlas Bayern | http://geoportal.bayern.de/energieatlas-karten/?wicket-crypt=ZS6RSNnuWcA&theme=61 | |
Brandenburg | Landesamt für Umwelt Brandenburg | http://www.metaver.de/trefferanzeige?cmd=doShowDocument&docuuid=45C506E5-3E9D-4DE2-9073-C3DB636CE7CF&plugid=/ingrid-group:dsc-BB | |
Hesse | Landesamt für Naturschutz, Umwelt und Geologie | http://atlas.umwelt.hessen.de/atlas/ | |
Mecklenburg-Vorpommern | Landesamt für Umwelt, Naturschutz und Geologie | http://www.umweltkarten.mv-regierung.de/atlas/script/index.php | |
Lower Saxony | Energieatlas Niedersachsen | http://www.energieatlas.niedersachsen.de/startseite/daten/daten-135073.html | |
North Rhine- Westphalia | Landesamt für Natur, Umwelt und Verbraucherschutz | The data was provided by the Climate Change Coordination Unit and Climate Change on request. | |
Rhineland Palatinate | Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung | The data were provided by the Department of Energy and Transport Infrastructure, Geoinformation on request. | |
Saarland | Landesamt für Umwelt und Arbeitsschutz | The data was provided by Division 3 “Nature and Environmental Protection” Department 3.5 “Circular Economy” on request. | |
Saxony | Landesamt für Umwelt, Landwirtschaft und Geologie | The data was provided by the unit for immission protection and noise on request. | |
Saxony-Anhalt | Ministerium für Landesentwicklung und Verkehr | The data was provided by the Regional Development, Regional Observation and Spatial Planning Board on request. | |
Schleswig- Holstein | Landesamt für Landwirtschaft, Umwelt und ländliche Räume | The data was provided by the Department of Specialized Information System and Reporting on request. | |
Thuringia | Landesverwaltungsamt | The data was provided by the Department of Planning and Spatial Observation on request. | |
Berlin, Hamburg, Bremen | For the city states, no information is available. The data situation was not examined there in depth. | ||
Open Field Photo- Voltaics | Germany | BNetzA EEG-Anlagenstammdaten 2015. | |
Bioenergy | Germany | BNetzA (2016): EEG-Stamm- und Bewegungsdaten 2015. | |
Scheftelowitz, M.; Becker, R.; Thrän, D.: Improved power provision from biomass. A retrospective on the impacts of German energy policy. Biomass and Bioenergy, 2018. | |||
River- Hydro- Power | Germany | WasserWirtschaft 10/2004 | |
https://de.wikipedia.org/wiki/Wasserkraftwerk_Pielweichs, Aufruf 25/09/2018 | |||
https://de.wikipedia.org/wiki/Illerkraftwerke_der_EnBW; Aufruf 27/06/2018 | |||
http://www.enalpin.ch/enalpin/wasserkraftwerke/rheinkraftwerk-neuhausen-ag/Aufruf 25/09/2018 | |||
EnBW; Aufruf 14/11/2017 | |||
BNetzA (2015): EEG-Anlagenstammdaten 2015 | |||
Weserkraftwerk-Bremen, Abruf 14/11/2017 | |||
Süwag, Broschüre: Strom aus Wasserkraft, Abruf 14/11/2017 | |||
BnetzA Kraftwerkliste; Aufruf 02/02/2018 | |||
https://www.enbw.com; Aufruf 27/06/2018 | |||
https://www.verbund.com/de-at/ueber-verbund/kraftwerke/unsere-kraftwerke/gars; Aufruf 27/06/2018 | |||
https://de.wikipedia.org/wiki/Staustufe_Eddersheim; Aufruf 02/07/2018 | |||
https://www.enbw.com/unternehmen/konzern/energieerzeugung/neubau-und-projekte/rheinkraftwerk-iffezheim/, Aufruf 16.11.2017 | |||
https://de.wikipedia.org/wiki/Kraftwerk_Obernach; Aufruf 25/09/2018 | |||
geoview.info; Aufruf 14/11/2017 | |||
https://www.verbund.com/de-de/ueber-verbund/kraftwerke/unsere-kraftwerke/wasserburg, Aufruf 25/09/2018 | |||
http://www.ruhrverb and.de/fluesse-seen/energie-aus-wasserkraft/kraftwerke-an-stauseen/Aufruf 25/09/2018 |
References
- Bellos, E. Sustainable energy development: How can the tension between energy security and energy transition be measured and managed in South Africa? J. Clean. Prod. 2018, 205, 738–753. [Google Scholar] [CrossRef]
- Chapman, A.J.; Itaoka, K. Energy transition to a future low-carbon energy society in Japan’s liberalizing electricity market: Precedents, policies and factors of successful transition. Renew. Sustain. Energy Rev. 2018, 81, 2019–2027. [Google Scholar] [CrossRef]
- Child, M.; Koskinen, O.; Linnanen, L.; Breyer, C. Sustainability guardrails for energy scenarios of the global energy transition. Renew. Sustain. Energy Rev. 2018, 91, 321–334. [Google Scholar] [CrossRef]
- Geels, F.W.; Schwanen, T.; Sorrell, S.; Jenkins, K.; Sovacool, B.K. Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Res. Soc. Sci. 2018, 40, 23–35. [Google Scholar] [CrossRef]
- Vidadili, N.; Suleymanov, E.; Bulut, C.; Mahmudlu, C. Transition to renewable energy and sustainable energy development in Azerbaijan. Renew. Sustain. Energy Rev. 2017, 80, 1153–1161. [Google Scholar] [CrossRef]
- IPCC. Global warming of 1.5 °C. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 29 January 2019).
- Diesendorf, M.; Elliston, B. The feasibility of 100% renewable electricity systems: A response to critics. Renew. Sustain. Energy Rev. 2018, 93, 318–330. [Google Scholar] [CrossRef]
- Holma, A.; Leskinen, P.; Myllyviita, T.; Manninen, K.; Sokka, L.; Sinkko, T.; Pasanen, K. Environmental impacts and risks of the national renewable energy targets—A review and a qualitative case study from Finland. Renew. Sustain. Energy Rev. 2018, 82, 1433–1441. [Google Scholar] [CrossRef]
- Tolli, M.; Recanatesi, F.; Piccinno, M.; Leone, A. The assessment of aesthetic and perceptual aspects within environmental impact assessment of renewable energy projects in Italy. Environ. Impact Assess. Rev. 2016, 57, 10–17. [Google Scholar] [CrossRef]
- Quek, A.; Ee, A.; Ng, A.; Wah, T.Y. Challenges in Environmental Sustainability of renewable energy options in Singapore. Energy Policy 2018, 122, 388–394. [Google Scholar] [CrossRef]
- Akella, A.K.; Saini, R.P.; Sharma, M.P. Social, economical and environmental impacts of renewable energy systems. Renew. Energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Chiabrando, R.; Fabrizio, E.; Garnero, G. The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk. Renew. Sustain. Energy Rev. 2009, 13, 2441–2451. [Google Scholar] [CrossRef]
- Dai, K.; Bergot, A.; Liang, C.; Xiang, W.N.; Huang, Z. Environmental issues associated with wind energy—A review. Renew. Energy 2015, 75, 911–921. [Google Scholar] [CrossRef]
- Kourkoumpas, D.S.; Benekos, G.; Nikolopoulos, N.; Karellas, S.; Grammelis, P.; Kakaras, E. A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions. Appl. Energy 2018, 231, 380–398. [Google Scholar] [CrossRef]
- Sangiuliano, S.J. Analysing the potentials and effects of multi-use between tidal energy development and environmental protection and monitoring: A case study of the inner sound of the Pentland Firth. Mar. Policy 2018, 96, 120–132. [Google Scholar] [CrossRef]
- UFZ_DMP, Spatial Distribution of Overhead Power Lines and Underground Cables in Germany in 2016. Available online: http://www.ufz.de/record/dmp/archive/5467 (accessed on 29 January 2018).
- Becker, R.; Thrän, D. Completion of wind turbine datasets for wind integration studies applying random forests and k-nearest neighbors. Appl. Energy 2017, 208, 252–262. [Google Scholar] [CrossRef]
- Scheftelowitz, M.; Thrän, D.; Hennig, C.; Krautz, A.; Lenz, V.; Liebetrau, J.; Daniel-Gromke, J.; Denysenko, V.; Hillebrand, K.; Naumann, K. Entwicklung der Förderung der Stromerzeugung aus Biomasse im Rahmen des EEG (DBFZ Report Nr. 21); Deutsches Biomasseforschungszentrum DBFZ: Leipzig, Germany, 2014; p. 46. [Google Scholar]
- Scheftelowitz, M.; Becker, R.; Thrän, D. Improved power provision from biomass: A retrospective on the impacts of German energy policy. Biomass Bioenergy 2018, 111, 1–12. [Google Scholar] [CrossRef]
- Mauro, G.; Lughi, V. Mapping land use impact of photovoltaic farms via crowdsourcing in the Province of Lecce (Southeastern Italy). Sol. Energy 2017, 155, 434–444. [Google Scholar] [CrossRef]
- Tempesta, T.; Vecchiato, D.; Girardi, P. The landscape benefits of the burial of high voltage power lines: A study in rural areas of Italy. Landsc. Urban Plan. 2014, 126, 53–64. [Google Scholar] [CrossRef]
- Haubaum, V.C.; Roth, M. Gis-gestützte Sichtbarkeitsanalysen von Hochspannungsleitungen: Grundlage zur landschaftsästhetischen Beurteilung von Energietrassen. [Gis-based analysis on the visual impact of power lines—Base for the evaluation of landscape aesthetics of transmission lines]. Naturschutz und Landschaftsplanung 2015, 47, 209–214. [Google Scholar]
- Möst, D.; Fichtner, W. Renewable energy sources in European energy supply and interactions with emission trading. Energy Policy 2010, 38, 2898–2910. [Google Scholar] [CrossRef]
- Biberacher, M. GIS based modeling approach for energy systems. Int. J. Energy Sect. Manag. 2008, 2, 368–384. [Google Scholar] [CrossRef]
- Scholz, Y. Renewable energy Based Electricity Supply at Low Costs—Development of the REMix Model and Application for Europe. Master’s Thesis, University Stuttgart, Stuttgart, Germany, 1 June 2012. [Google Scholar]
- Held, A.M. Modelling the Future Development of Renewable Energy Technologies in the European Electricity Sector Using Agent-Based Simulation; Fraunhofer Institute for Systems and Innovation Research ISI, Fraunhofer Verlag: Karlsruhe, Germany, 2010. [Google Scholar]
- Rauner, S.; Eichhorn, M.; Thrän, D. The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision. Appl. Energy 2016, 184, 1038–1050. [Google Scholar] [CrossRef]
- Killinger, S.; Mainzer, K.; McKenna, R.; Kreifels, N.; Fichtner, W. A regional optimisation of renewable energy supply from wind and photovoltaics with respect to three key energy-political objectives. Energy 2015, 84, 563–574. [Google Scholar] [CrossRef]
- Arent, D.; Pless, J.; Mai, T.; Wiser, R.; Hand, M.; Baldwin, S.; Heatha, G.; Macknicka, J.; Baziliana, M.; Schlosserd, A.; et al. Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply. Appl. Energy 2014, 123, 368–377. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eichhorn, M.; Scheftelowitz, M.; Reichmuth, M.; Lorenz, C.; Louca, K.; Schiffler, A.; Keuneke, R.; Bauschmann, M.; Ponitka, J.; Manske, D.; et al. Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany. Data 2019, 4, 29. https://doi.org/10.3390/data4010029
Eichhorn M, Scheftelowitz M, Reichmuth M, Lorenz C, Louca K, Schiffler A, Keuneke R, Bauschmann M, Ponitka J, Manske D, et al. Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany. Data. 2019; 4(1):29. https://doi.org/10.3390/data4010029
Chicago/Turabian StyleEichhorn, Marcus, Mattes Scheftelowitz, Matthias Reichmuth, Christian Lorenz, Kyriakos Louca, Alexander Schiffler, Rita Keuneke, Martin Bauschmann, Jens Ponitka, David Manske, and et al. 2019. "Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany" Data 4, no. 1: 29. https://doi.org/10.3390/data4010029