Effect of Aging Vessel (Clay-Tinaja versus Oak Barrel) on the Volatile Composition, Descriptive Sensory Profile, and Consumer Acceptance of Red Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Volatile Compounds
2.3. Descriptive Sensory Analysis
2.4. Affective Sensory Analysis
- (i)
- Spain: 41% and 59% female and male, respectively; 34% (18–24 years old group), 44% (24–39 years old group), 20% (40–59 years old group) and 2% (60–74 years old group). Spanish consumers were used as model for wine drinkers highly accustomed to complex and intense red wine with intense oaky notes [18].
- (ii)
- Poland: 44% and 56% female and male, respectively; 30% (18–24 years old group), 49% (24–39 years old group), 17% (40–59 years old group) and 3% (60–74 years old group). Polish consumers were selected considering that they are used to drink sour and fresh white wines.
2.5. Statistical Analysis
3. Results and Discussion
3.1. Volatile Profile and Composition
3.2. Descriptive Sensory Analysis with Trained Panel
3.3. Affective Sensory Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Díaz, C.; Laurie, V.F.; Molina, A.M.; Bücking, M.; Fischer, R. Characterization of selected organic and mineral components of qvevri wines. Am. J. Enol. Vitic. 2013, 64, 532–537. [Google Scholar] [CrossRef]
- Bene, Z.; Kállay, M. Polyphenol contents of skin-contact fermented white wines. Acta Aliment. 2019, 48, 515–524. [Google Scholar] [CrossRef]
- Baiano, A.; Mentana, A.; Quinto, M.; Centonze, D.; Longobardi, F.; Ventrella, A.; Agostiano, A.; Varva, G.; De Gianni, A.; Terracone, C.; et al. The effect of in-amphorae aging on oenological parameters, phenolic profile and volatile composition of Minutolo white wine. Food Res. Int. 2015, 74, 294–305. [Google Scholar] [CrossRef]
- Foley, B.P.; Hansson, M.C.; Kourkoumelis, D.P.; Theodoulou, T.A. Aspects of ancient Greek trade re-evaluated with amphora DNA evidence. J. Archaeol. Sci. 2012, 39, 389–398. [Google Scholar] [CrossRef]
- Romanus, K.; Baeten, J.; Poblome, J.; Accardo, S.; Degryse, P.; Jacobs, P.; De Vos, D.; Waelkens, M. Wine and olive oil permeation in pitched and non-pitched ceramics: Relation with results from archaeological amphorae from Sagalassos, Turkey. J. Archaeol. Sci. 2009, 36, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Garcia, R.; Mendes, D.; Costa Freitas, A.M.; da Silva, M.G.; Cabrita, M.J. An ancient winemaking technology: Exploring the volatile composition of amphora wines. LWT 2018, 96, 288–295. [Google Scholar] [CrossRef]
- Picuno, P. Use of traditional material in farm buildings for a sustainable rural environment. Int. J. Sustain. Built Environ. 2016, 5, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Ferreras, V.; Capelli, C.; Cabella, R.; Prieto, X.N. From Hispania Tarraconensis (NE Spain) to Gallia Narbonensis (S France). New data on Pascual 1 amphora trade in the Augustan period. Appl. Clay Sci. 2013, 82, 70–78. [Google Scholar] [CrossRef]
- Estreicher, S.K. A brief history of wine in Spain. Eur. Rev. 2013, 21, 209–239. [Google Scholar] [CrossRef]
- Fuentes, J.M.; Gallego, E.; García, A.I.; Ayuga, F. New uses for old traditional farm buildings: The case of the underground wine cellars in Spain. Land Use Policy 2010, 27, 738–748. [Google Scholar] [CrossRef]
- Baiano, A.; Varva, G.; De Gianni, A.; Viggiani, I.; Terracone, C.; Del Nobile, M.A. Influence of type of amphora on physico-chemical properties and antioxidant capacity of ’Falanghina’ white wines. Food Chem. 2014, 146, 226–233. [Google Scholar] [CrossRef]
- International Organization of Standardization. ISO 8586:2012. Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. Available online: https://www.iso.org/standard/45352.html (accessed on 8 May 2021).
- Issa-Issa, H.; Ivanišová, E.; Noguera-Artiaga, L.; Kántor, A.; López-Lluch, D.; Kačániová, M.; Szumny, A.; Carbonell-Barrachina, Á.A. Effect of the herbs used in the formulation of a Spanish herb liqueur, Herbero de la Sierra de Mariola, on its chemical and functional compositions and antioxidant and antimicrobial activities. Eur. Food Res. Technol. 2019, 245, 1197–1206. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Guclu, G.; Noguera-Artiaga, L.; López-Lluch, D.; Poveda, R.; Kelebek, H.; Selli, S.; Carbonell-Barrachina, Á.A. Aroma-active compounds, sensory profile, and phenolic composition of Fondillón. Food Chem. 2020, 316, 126353. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Noguera-Artiaga, L.; Sendra, E.; Pérez-López, A.J.; Burló, F.; Carbonell-Barrachina, A.A.; López-Lluch, D. Volatile Composition, Sensory Profile, and Consumers’ Acceptance of Fondillón. J. Food Qual. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT 2019, 103, 139–146. [Google Scholar] [CrossRef]
- International Organization of Standardization. ISO/IEC 17065:2012. Conformity Assessment—Requirements for Bodies Certifying Products, Processes and Services. Available online: https://www.iso.org/standard/46568.html (accessed on 8 May 2021).
- Sáenz-Navajas, M.P.; Ballester, J.; Pêcher, C.; Peyron, D.; Valentin, D. Sensory drivers of intrinsic quality of red wines. Effect of culture and level of expertise. Food Res. Int. 2013, 54, 1506–1518. [Google Scholar] [CrossRef]
- Lorenzo, C.; Pardo, F.; Zalacain, A.; Alonso, G.L.; Rosario Salinas, M. Complementary effect of Cabernet Sauvignon on Monastrell wines. J. Food Compos. Anal. 2008, 21, 54–61. [Google Scholar] [CrossRef]
- Moreno-Olivares, J.D.; Paladines-Quezada, D.; Fernández-Fernández, J.I.; Bleda-Sánchez, J.A.; Martínez-Moreno, A.; Gil-Muñoz, R. Study of aromatic profile of different crosses of Monastrell white wines. J. Sci. Food Agric. 2020, 100, 38–49. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chem. 2013, 139, 1052–1061. [Google Scholar] [CrossRef]
- Ziegler, M.; Wegmann-Herr, P.; Schmarr, H.G.; Gök, R.; Winterhalter, P.; Fischer, U. Impact of Rootstock, Clonal Selection, and Berry Size of Vitis vinifera sp. Riesling on the Formation of TDN, Vitispiranes, and Other Volatile Compounds. J. Agric. Food Chem. 2020, 68, 3834–3849. [Google Scholar] [CrossRef]
- Blanco, M. Characterization of Terracotta Wines; Universidad Miguel Hernandez: Alicante, Spain, 2015. [Google Scholar]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Sigma-Aldrich. Flavors & Fragrances; Sigma-Aldrich: Saint Louis, MO, USA, 2012. [Google Scholar]
- National Institute of Standards and Technology (NIST). NIST Chemistry Webbook. Available online: https://webbook.nist.gov/chemistry/ (accessed on 8 May 2021).
Code | Volatile Compounds | Chemical Family | Odor Threshold † | Odor Descriptor ‡ | RT | Retention Index | ANOVA ξ | Wine A | Wine B | Wine C | |
---|---|---|---|---|---|---|---|---|---|---|---|
(µg L−1) | |||||||||||
(µg L−1) | (min) | Exp. | Lit. ¥ | Tukey Multiple Range Test ψ | |||||||
V1 | Isoamyl acetate | Esters | 30 | Banana, pear | 3.640 | 879 | 878 | * | 140 b | 205 a | 214 a |
V2 | Benzaldehyde | Aldehydes | 2000 | Almond, cherry, sweet | 5.282 | 973 | 971 | NS | 7 | 4 | 9 |
V3 | Ethyl hexanoate | Esters | 14 | Apple, banana, pineapple | 5.719 | 998 | 998 | *** | 73 c | 246 a | 210 a |
V4 | Hexanoic acid | Acids | 420 | Cheese, fatty, sour | 5.783 | 1001 | 1006 | NS | 27 | 21 | 19 |
V5 | Hexyl acetate | Esters | 670 | Apple, cherry, floral, pear | 5.938 | 1007 | 1007 | NS | 5 | 5 | 5 |
V6 | Limonene | Terpenes | 200 | Citrus, herbaceous, sweet | 6.625 | 1033 | 1033 | *** | 228 a | 102 b | 61 c |
V7 | Benzyl alcohol | Alcohols | 200,000 | Berry, cherry, citrus | 7.072 | 1050 | 1052 | NS | 14 | 13 | 5 |
V8 | 1-Octanol | Alcohols | 120 | Citrus, fatty, woody, waxy | 7.758 | 1076 | 1076 | NS | 10 | 24 | 18 |
V9 | Nonanal | Aldehydes | 1 | Apple, coconut, grape | 8.727 | 1109 | 1108 | NS | 11 | 9 | 10 |
V10 | Phenethyl alcohol | Alcohols | 14,000 | Honey, rose | 9.520 | 1132 | 1130 | ** | 664 b | 733 ab | 934 a |
V11 | Diethyl butanedioate | Esters | - | Fruity | 11.413 | 1185 | 1188 | ** | 215 b | 510 ab | 569 a |
V12 | Ethyl octanoate | Esters | 5 | Apricot, floral, pear, pineapple | 11.991 | 1201 | 1200 | ** | 736 b | 1830 a | 1857 a |
V13 | Octanoic acid | Acids | 500 | Oily | 13.011 | 1226 | 1210 | ** | 708 a | 299 b | 321 b |
V14 | Isoamyl hexanoate | Esters | - | Apple, green, pineapple | 14.034 | 1250 | 1251 | NS | 3 | 9 | 6 |
V15 | Phenylethyl acetate | Esters | 250 | Floral | 14.477 | 1261 | 1260 | NS | 28 | 18 | 26 |
V16 | 2-Decenal | Aldehydes | - | Oily, orange, floral, citrus | 14.921 | 1272 | 1270 | NS | 4 | 9 | 12 |
V17 | Vitispirane | Norisoprenoid | - | Woody, spicy | 15.532 | 1287 | 1286 | * | 5 b | 83 a | 46 a |
V18 | Nonanoic acid | Acids | - | Cheese, waxy | 15.791 | 1293 | 1293 | NS | 7 | 8 | 7 |
V19 | Ethyl nonanoate | Esters | - | Oily, fruity, nutty | 15.993 | 1298 | 1297 | NS | 14 | 11 | 14 |
V20 | Tridecane | Alkanes | - | Floral | 16.873 | 1318 | 1300 | NS | 5 | 16 | 10 |
V21 | Methyl decanoate | Esters | - | Oily, fruity | 17.279 | 1328 | 1326 | NS | 2 | 4 | 8 |
V22 | Isobutyl caprylate | Esters | - | Fruity | 18.090 | 1347 | 1345 | NS | 2 | 9 | 8 |
V23 | t-2-Undecenal | Aldehydes | - | Fruity | 19.016 | 1368 | 1367 | NS | 1 | 0 | 1 |
V24 | Ethyl 9-decenoate | Esters | - | Fruity | 19.856 | 1388 | 1390 | ** | 43 b | 63 ab | 122 a |
V25 | Ethyl decanoate | Esters | 200 | Grape, oily, pear | 20.337 | 1399 | 1397 | ** | 1609 a | 1294 b | 1539 ab |
V26 | Decanoic acid | Acids | 1000 | Fatty, citrus | 20.588 | 1405 | 1404 | ** | 180 a | 68 b | 86 b |
V27 | Dodecanal | Aldehydes | - | Herbaceous, floral, sweet | 20.873 | 1412 | 1411 | NS | 18 | 11 | 23 |
V28 | Isoamyl octanoate | Esters | 125 | Apple, coconut, fruity | 22.324 | 1447 | 1446 | NS | 21 | 21 | 18 |
V29 | Ethyl dodecanoate | Esters | 1500 | Coconut, creamy, soapy | 28.508 | 1601 | 1598 | ** | 212 a | 126 b | 93 b |
TOTAL | 4990 | 5751 | 6250 |
Attribute | ANOVA † | Wine A | Wine B | Wine C |
---|---|---|---|---|
Tukey Multiple Range Test ‡ | ||||
Appearance | ||||
Color | ** | 5.0 b | 9.5 a | 8.0 a |
Odor | ||||
Alcohol | ** | 5.5 ab | 6.0 a | 5.0 b |
Fruity | ** | 5.0 b | 6.0 ab | 7.0 a |
Floral | NS | 2.0 | 2.0 | 2.0 |
Vegetable | ** | 2.5 b | 4.5 a | 3.5 ab |
Spicy | *** | 2.0 b | 4.0 a | 4.0 a |
Animal | NS | 2.00 | 2.50 | 2.50 |
Mineral | *** | 0.5 b | 3.0 a | 0.0 b |
Toasted | *** | 0.0 b | 0.5 b | 4.0 a |
Basic Taste | ||||
Sweetness | ** | 1.5 b | 2.0 ab | 3.5 a |
Sourness | ** | 6.0 a | 6.5 a | 4.0 b |
Bitterness | *** | 4.0 a | 2.5 b | 1.5 b |
Flavor | ||||
Alcohol | ** | 5.5 b | 6.5 ab | 7.0 a |
Fruity | ** | 4.5 b | 6.0 a | 6.0 a |
Floral | ** | 2.0 b | 2.0 b | 3.0 a |
Vegetable | *** | 2.0 b | 5.0 a | 4.0 ab |
Spicy | *** | 1.5 b | 2.0 b | 4.5 a |
Animal | NS | 1.0 | 1.0 | 1.0 |
Mineral | *** | 1.0 b | 6.0 a | 1.5 b |
Toasted | *** | 0.5 b | 0.5 b | 4.5 a |
Astringency | ** | 4.5 ab | 5.5 a | 4.0 b |
Aftertaste | *** | 3.5 c | 6.0 b | 7.5 a |
Overall | Color | Alcohol (o) ¶ | Fruity (o) ¶ | Sweetness | Sourness | Astringency | Alcohol (f) ¶ | Fruity (f) ¶ | Mineral (f) ¶ | Aftertaste | |
---|---|---|---|---|---|---|---|---|---|---|---|
ANOVA Test † | |||||||||||
Vessel | * | *** | *** | ** | * | * | * | NS | NS | NS | * |
Country | * | *** | *** | *** | NS | * | NS | * | * | * | * |
Vessel × Country | * | *** | *** | * | * | * | * | * | * | NS | * |
Tukey Multiple Range Test ‡ | |||||||||||
Vessel | |||||||||||
Wine A | 5.6 b | 5.5 b | 5.8 b | 5.8 b | 5.3 a | 5.5 a | 5.5 a | 5.8 | 5.6 | 5.3 | 5.6 ab |
Wine B | 5.8 a | 7.4 a | 6.5 a | 6.1 a | 5.1 b | 5.3 b | 5.1 b | 5.8 | 5.7 | 5.4 | 5.5 b |
Wine C | 5.8 a | 7.3 a | 6.0 ab | 5.9 b | 5.1 b | 5.2 b | 5.3 ab | 5.7 | 5.6 | 5.5 | 5.8 a |
Country | |||||||||||
Spain | 5.6 b | 6.3 b | 5.8 b | 5.6 b | 5.2 | 5.1 b | 5.3 | 5.6 b | 5.5 b | 5.3 b | 5.7 a |
Poland | 5.9 a | 7.1 a | 6.4 a | 6.2 a | 5.1 | 5.6 a | 5.4 | 6.0 a | 5.7 a | 5.5 a | 5.5 b |
Vessel × Country | |||||||||||
Wine A × Spain | 5.1 b | 4.9 d | 5.1 c | 5.3 b | 5.0 ab | 5.0 b | 5.2 ab | 5.4 b | 5.3 b | 5.0 | 5.3 b |
Wine A × Poland | 6.1 a | 6.1 c | 6.5 ab | 6.2 a | 5.6 a | 5.9 a | 5.9 a | 6.1 a | 5.8 a | 5.6 | 5.9 a |
Wine B × Spain | 5.9 ab | 7.0 b | 6.1 b | 5.9 ab | 5.5 a | 5.4 ab | 5.2 ab | 5.7 ab | 5.8 a | 5.5 | 5.8 ab |
Wine B × Poland | 5.8 ab | 7.8 a | 6.8 a | 6.3 a | 4.7 b | 5.3 ab | 5.0 b | 6.0 a | 5.6 ab | 5.4 | 5.2 b |
Wine C × Spain | 5.9 ab | 7.0 b | 6.1 b | 5.8 ab | 5.1 ab | 5.0 b | 5.4 ab | 5.7 ab | 5.4 b | 5.3 | 6.0 a |
Wine C × Poland | 5.7 ab | 7.5 ab | 5.9 b | 6.0 a | 5.1 ab | 5.4 ab | 5.2 ab | 5.8 ab | 5.7 ab | 5.6 | 5.5 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa-Issa, H.; Lipan, L.; Cano-Lamadrid, M.; Nemś, A.; Corell, M.; Calatayud-García, P.; Carbonell-Barrachina, Á.A.; López-Lluch, D. Effect of Aging Vessel (Clay-Tinaja versus Oak Barrel) on the Volatile Composition, Descriptive Sensory Profile, and Consumer Acceptance of Red Wine. Beverages 2021, 7, 35. https://doi.org/10.3390/beverages7020035
Issa-Issa H, Lipan L, Cano-Lamadrid M, Nemś A, Corell M, Calatayud-García P, Carbonell-Barrachina ÁA, López-Lluch D. Effect of Aging Vessel (Clay-Tinaja versus Oak Barrel) on the Volatile Composition, Descriptive Sensory Profile, and Consumer Acceptance of Red Wine. Beverages. 2021; 7(2):35. https://doi.org/10.3390/beverages7020035
Chicago/Turabian StyleIssa-Issa, Hanán, Leontina Lipan, Marina Cano-Lamadrid, Agnieszka Nemś, Mireia Corell, Pablo Calatayud-García, Ángel A. Carbonell-Barrachina, and David López-Lluch. 2021. "Effect of Aging Vessel (Clay-Tinaja versus Oak Barrel) on the Volatile Composition, Descriptive Sensory Profile, and Consumer Acceptance of Red Wine" Beverages 7, no. 2: 35. https://doi.org/10.3390/beverages7020035
APA StyleIssa-Issa, H., Lipan, L., Cano-Lamadrid, M., Nemś, A., Corell, M., Calatayud-García, P., Carbonell-Barrachina, Á. A., & López-Lluch, D. (2021). Effect of Aging Vessel (Clay-Tinaja versus Oak Barrel) on the Volatile Composition, Descriptive Sensory Profile, and Consumer Acceptance of Red Wine. Beverages, 7(2), 35. https://doi.org/10.3390/beverages7020035