Roasting Conditions and Coffee Flavor: A Multi-Study Empirical Investigation
Abstract
:1. Introduction
- 1
- Compare the overall impact of roast colour modulation versus roast timing modulation on the sensory profile of coffee;
- 2
- Assess the effect (magnitude and direction) of colour modulations on individual sensory attributes;
- 3
- Assess the effect (magnitude and direction) of timing modulations on individual sensory attributes, with a focus on distinct phases of the roasting process.
2. Materials and Methods
2.1. Overview of Studies
2.2. Roasting Conditions
2.3. Sensory Descriptive Analysis
2.3.1. Sample Preparation
2.3.2. Experimental Procedures
2.4. Data Analysis
3. Results and Discussion
3.1. Relative Impact of Roast Colour and Timing on Coffee Flavour
3.2. Impact of Timing Variation: Which Roasting Phase Is Most Important?
3.3. Limitations and Future Research
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nair, K.P. The Agronomy and Economy of Important Tree Crops of the Developing World; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Ponte, S. The ‘latte revolution’? Regulation, markets and consumption in the global coffee chain. World Dev. 2002, 30, 1099–1122. [Google Scholar] [CrossRef]
- Chambers IV, E.; Sanchez, K.; Phan, U.X.; Miller, R.; Civille, G.V.; Di Donfrancesco, B. Development of a “living” lexicon for descriptive sensory analysis of brewed coffee. J. Sens. Stud. 2016, 31, 465–480. [Google Scholar] [CrossRef]
- Hayakawa, F.; Kazami, Y.; Wakayama, H.; Oboshi, R.; Tanaka, H.; Maeda, G.; Hoshino, C.; Iwawaki, H.; Miyabayashi, T. Sensory lexicon of brewed coffee for Japanese consumers, untrained coffee professionals and trained coffee tasters. J. Sens. Stud. 2010, 25, 917–939. [Google Scholar] [CrossRef]
- Bhumiratana, N.; Adhikari, K.; Chambers, E. Evolution of sensory aroma attributes from coffee beans to brewed coffee. LWT-Food Sci. Technol. 2011, 44, 2185–2192. [Google Scholar] [CrossRef] [Green Version]
- Buffo, R.A.; Cardelli-Freire, C. Coffee flavour: An overview. Flavour Fragr. J. 2004, 19, 99–104. [Google Scholar] [CrossRef]
- Poisson, L.; Blank, I.; Dunkel, A.; Hofmann, T. The Chemistry of Roasting—Decoding Flavor Formation. In The Craft and Science of Coffee; Elsevier: Amsterdam, The Netherlands, 2017; pp. 273–309. [Google Scholar]
- Giacalone, D.; Fosgaard, T.R.; Steen, I.; Münchow, M. Quality does not sell itself: Divergence between objective product quality and preference for coffee in naïve consumers. Br. Food J. 2016, 118, 2462–2474. [Google Scholar] [CrossRef]
- Cheng, B.; Furtado, A.; Smyth, H.E.; Henry, R.J. Influence of genotype and environment on coffee quality. Trends Food Sci. Technol. 2016, 57, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Illy, A.; Viani, R. Espresso Coffee: The Science of Quality; Elsevier Academic Press: San Diego, CA, USA, 2005. [Google Scholar]
- Heo, J.; Choi, K.S.; Wang, S.; Adhikari, K.; Lee, J. Cold Brew Coffee: Consumer Acceptability and Characterization Using the Check-All-That-Apply (CATA) Method. Foods 2019, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Coffee, tea, cocoa. In Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009; pp. 938–970. [Google Scholar]
- Clarke, R.; Vitzthum, O. Coffee: Recent Developments; John Wiley & Sons: Oxford, UK, 2008. [Google Scholar]
- Schenker, S.; Handschin, S.; Frey, B.; Perren, R.; Escher, F. Pore structure of coffee beans affected by roasting conditions. J. Food Sci. 2000, 65, 452–457. [Google Scholar] [CrossRef]
- Hofmann, T.; Frank, O.; Blumberg, S.; Kunert, C.; Zehentbauer, G. Molecular insights into the chemistry producing harsh bitter taste compounds of strongly roasted coffee. In Recent Highlights in Flavor Chemistry and Biology; Deutsche Forschungsanstalt für Lebensmittelchemie: Reising, Germany, 2008; pp. 154–159. [Google Scholar]
- Purdon, M.P.; McCamey, D.A. Use of a 5-caffeoylquinic acid/caffeine ratio to monitor the coffee roasting process. J. Food Sci. 1987, 52, 1680–1683. [Google Scholar] [CrossRef]
- Yeretzian, C.; Jordan, A.; Badoud, R.; Lindinger, W. From the green bean to the cup of coffee: Investigating coffee roasting by on-line monitoring of volatiles. Eur. Food Res. Technol. 2002, 214, 92–104. [Google Scholar] [CrossRef]
- Schenker, S.; Heinemann, C.; Huber, M.; Pompizzi, R.; Perren, R.; Escher, R. Impact of roasting conditions on the formation of aroma compounds in coffee beans. J. Food Sci. 2002, 67, 60–66. [Google Scholar] [CrossRef]
- Bicho, N.C.; Leitão, A.E.; Ramalho, J.C.; de Alvarenga, N.B.; Lidon, F.C. Impact of roasting time on the sensory profile of Arabica and Robusta coffee. Ecol. Food Nutr. 2013, 52, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Baggenstoss, J.; Poisson, L.; Kaegi, R.; Perren, R.; Escher, F. Coffee roasting and aroma formation: Application of different time- temperature conditions. J. Agric. Food Chem. 2008, 56, 5836–5846. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, S.; Frank, O.; Hofmann, T. Quantitative studies on the influence of the bean roasting parameters and hot water percolation on the concentrations of bitter compounds in coffee brew. J. Agric. Food Chem. 2010, 58, 3720–3728. [Google Scholar] [CrossRef]
- Lyman, D.J.; Benck, R.; Dell, S.; Merle, S.; Murray-Wijelath, J. FTIR-ATR analysis of brewed coffee: Effect of roasting conditions. J. Agric. Food Chem. 2003, 51, 3268–3272. [Google Scholar] [CrossRef]
- Wang, X.; Lim, L.T. A kinetics and modeling study of coffee roasting under isothermal conditions. Food Bioprocess Technol. 2014, 7, 621–632. [Google Scholar] [CrossRef]
- Schenker, S.; Rothgeb, T. The roast—Creating the Beans’ signature. In The Craft and Science of Coffee; Elsevier: Amsterdam, The Netherlands, 2017; pp. 245–271. [Google Scholar]
- Maier, H. Zur Zusammensetzung kurzeitgerösteter Kaffees. Lebensm.-Chem. Gerichtl. Chem 1985, 35, 25–33. [Google Scholar]
- Giacalone, D.; Degn, T.K.; Yang, N.; Liu, C.; Fisk, I.; Münchow, M. Common roasting defects in coffee: Aroma composition, sensory characterization and consumer perception. Food Qual. Prefer. 2019, 71, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Liu, C.; Liu, X.; Degn, T.K.; Munchow, M.; Fisk, I. Determination of volatile marker compounds of common coffee roast defects. Food Chem. 2016, 211, 206–214. [Google Scholar] [CrossRef]
- Roast. Book of Roast the Craft of Coffee Roasting from Bean to Business; Roast Magazine: Portland, OR, USA, 2017. [Google Scholar]
- Folmer, B. The Craft and Science of Coffee; Academic Press: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Kim, K.J.; Park, S.K. Changes in major chemical constituents of green coffee beans during the roasting. Korean J. Food Sci. Technol. 2006, 38, 153–158. [Google Scholar]
- Dmowski, P.; Dabrowska, J. Comparative study of sensory properties and color in different coffee samples depending on the degree of roasting. Zesz. Nauk. Akad. Morskiej W Gdyni 2014, 84, 28–36. [Google Scholar]
- Feria-Morales, A.M. Examining the case of green coffee to illustrate the limitations of grading systems/expert tasters in sensory evaluation for quality control. Food Qual. Prefer. 2002, 13, 355–367. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Steen, I.; Waehrens, S.S.; Petersen, M.A.; Münchow, M.; Bredie, W.L. Influence of serving temperature on flavour perception and release of Bourbon Caturra coffee. Food Chem. 2017, 219, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Di Donfrancesco, B.; Gutierrez Guzman, N.; Chambers, E. Comparison of results from cupping and descriptive sensory analysis of Colombian brewed coffee. J. Sens. Stud. 2014, 29, 301–311. [Google Scholar] [CrossRef] [Green Version]
- SCAA. SCAA Protocols—Cupping for Specialty Coffee; Specialty Coffee Association of America and Europe: Chelmsford, UK, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Nebesny, E.; Budryn, G. Evaluation of sensory attributes of coffee brews from robusta coffee roasted under different conditions. Eur. Food Res. Technol. 2006, 224, 159–165. [Google Scholar] [CrossRef]
- Giacalone, D.; Steen, I.; Alstrup, J.; Münchow, M. Inter-rater reliability of ‘clean cup’ scores by coffee experts. J. Sens. Stud. 2020. under review. [Google Scholar]
- Chapko, M.J.; Seo, H.S. Characterizing product temperature-dependent sensory perception of brewed coffee beverages: Descriptive sensory analysis. Food Res. Int. 2019, 121, 612–621. [Google Scholar] [CrossRef]
1. | When considering significance (p) and mean squared error (MSE) values across the panel and attributes in the PanelCheck software, the values (averaged across all attributes) in Samples 1–5 were and , whereas for Samples 6–10, the values were and . |
2. | Given the number of observations (), the chosen level of (5%), and the observed standard deviation for this attribute (), the probability of detecting a 0.5 cm change was over 99%. |
Study ID | N Assessors | Roast Profile Modulation | Green Coffee |
---|---|---|---|
1 | 10 | Col, 1st crack, Dev | Kenyan, Ndaroini, Washed |
2 | 10 | Col, Dev | Colombia, Horizontes, Washed |
3 | 10 | 1st crack, Dev | Colombia, Horizontes, Washed |
4 | 7 | Dev | Colombia, Horizontes, Washed |
5 | 10 | 1st crack, Dev | Ethiopia, Sidamo, Washed |
6 | 11 | Dev | Ethiopia, Sidamo, Washed |
7 | 49 | Dev | Colombia, Horizontes, Washed |
8 | 46 | Dev | Colombia, Horizontes, Washed |
Study ID | Sample | 1st Crack | Dev | End | Col | Start Temperature (C) |
---|---|---|---|---|---|---|
1 | 1 | 5:41 | 1:50 | 7:40 | 66 | 275 |
2 | 10:20 | 6:20 | 18.00 | 68 | 230 | |
3 | 17:58 | 2:30 | 20:20 | 75 | 135 | |
4 | 9:03 | 2:40 | 11:25 | 74 | 210 | |
5 | 8:01 | 0:10 | 8:40 | 117 | 210 | |
6 | 9:10 | 4:45 | 13:45 | 46 | 220 | |
2 | 1 | 8:45 | 1:20 | 10:05 | 75 | 200 |
2 | 9:22 | 2:13 | 11:35 | 75 | 200 | |
3 | 9:20 | 4:12 | 13:32 | 76 | 200 | |
4 | 9:27 | 5:09 | 14:36 | 76 | 200 | |
5 | 9:35 | 6:45 | 16:20 | 75 | 200 | |
6 | 9:30 | 2:08 | 11:38 | 64 | 200 | |
7 | 9:15 | 2:20 | 11:35 | 47 | 200 | |
8 | 9:30 | 2:00 | 11:30 | 90 | 200 | |
9 | 9:20 | 2:04 | 11:24 | 99 | 200 | |
10 | 9:08 | 2:20 | 11:28 | 76 | 200 | |
3 | 1 | 7:21 | 1:34 | 8:55 | 92 | 200 |
2 | 7:58 | 4:04 | 12:02 | 87 | 200 | |
3 | 6:56 | 2:04 | 9:00 | 93 | 200 | |
4 | 7:07 | 1:49 | 8:56 | 92 | 200 | |
5 | 6:36 | 1:51 | 8:27 | 88 | 200 | |
6 | 8:37 | 1:23 | 10:00 | 90 | 200 | |
4 | 1 | 8:28 | 1:46 | 10:14 | 71 | 200 |
2 | 8:33 | 3:12 | 11:45 | 73 | 200 | |
3 | 8:30 | 5:21 | 13:51 | 74 | 200 | |
5 | 1 | 9:17 | 1:30 | 10:47 | 92 | 200 |
2 | 9:21 | 2:15 | 11:36 | 88 | 200 | |
3 | 9:17 | 1:50 | 11:07 | 93 | 200 | |
4 | 8:50 | 1:48 | 10:38 | 92 | 200 | |
5 | 9:52 | 1:54 | 11:46 | 93 | 200 | |
6 | 1 | 9:13 | 1:23 | 10:36 | 94 | 160 |
2 | 9:07 | 2:09 | 11:16 | 89 | 160 | |
3 | 9:14 | 1:48 | 11:02 | 92 | 160 | |
4 | 8:25 | 1:53 | 10:18 | 96 | 160 | |
5 | 9:25 | 1:55 | 11:20 | 92 | 160 | |
7 | 1 | 9:19 | 1:56 | 11:15 | 75 | 200 |
2 | 10:07 | 4:00 | 14:07 | 76 | 200 | |
3 | 9:33 | 2:20 | 11:53 | 78 | 200 | |
8 | 1 | 8:52 | 1:31 | 10:22 | 77 | 200 |
2 | 9:08 | 2:23 | 11:31 | 77 | 200 | |
3 | 9:49 | 4:32 | 14:21 | 75 | 200 | |
4 | 9:31 | 6:30 | 16:01 | 76 | 200 |
Sensory Modality | Attribute | Definition | Reference Material |
---|---|---|---|
Aroma | Roasted bread | Aroma associated with roasted bread | Roasted white toast bread |
Fruity | Aroma associated with a mix of fruits | Mix of fruits | |
Cocoa | Aroma associated with cocoa beans | 100% chocolate | |
Nutty/chocolate | Aroma associated with nuts and chocolate | ||
Basic taste | Acidity | Sour taste associated with citric acid solution | 0.6 g citric acid/L water |
Bitterness | Bitter taste associated with caffeine solution | 0.54 g caffeine/L water | |
Sweetness | Sweet taste associated with sucrose solution | 24 g sucrose/L water | |
Mouthfeel | Body | Fullness of the coffee in the mouth | Coffee with milk (Studies 1, 3–7) |
Xanthan gum in water (0.07, 0.1 and 0.02 g/L) (Studies 2 and 8) | |||
Aftertaste | Aftertaste | The length of lingering flavour after spitting out the sample | |
Other | Balance | How well the flavours are balanced | |
Clean cup | No interfering negative impressions; no non-coffee like tastes or aromas |
Study 1 | |||||||
---|---|---|---|---|---|---|---|
Acidity | Bitterness | Sweetness | Body | Roasted bread | Fruity | Average | |
Col | - | ||||||
Dev | - | ||||||
1st Crack | - | ||||||
End | - | ||||||
Study 2 | |||||||
Acidity | Bitterness | Sweetness | Body | Roasted bread | Fruity | Average | |
Col | |||||||
Dev |
Attribute | Time to 1st Crack | Development Time | ||
---|---|---|---|---|
Slope | p | Slope | p | |
Acidity | ||||
Bitterness | ||||
Sweetness | ||||
Body | ||||
Balance | ||||
Clean Cup | ||||
Roasted bread | ||||
Fruitiness | ||||
Aftertaste |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Münchow, M.; Alstrup, J.; Steen, I.; Giacalone, D. Roasting Conditions and Coffee Flavor: A Multi-Study Empirical Investigation. Beverages 2020, 6, 29. https://doi.org/10.3390/beverages6020029
Münchow M, Alstrup J, Steen I, Giacalone D. Roasting Conditions and Coffee Flavor: A Multi-Study Empirical Investigation. Beverages. 2020; 6(2):29. https://doi.org/10.3390/beverages6020029
Chicago/Turabian StyleMünchow, Morten, Jesper Alstrup, Ida Steen, and Davide Giacalone. 2020. "Roasting Conditions and Coffee Flavor: A Multi-Study Empirical Investigation" Beverages 6, no. 2: 29. https://doi.org/10.3390/beverages6020029
APA StyleMünchow, M., Alstrup, J., Steen, I., & Giacalone, D. (2020). Roasting Conditions and Coffee Flavor: A Multi-Study Empirical Investigation. Beverages, 6(2), 29. https://doi.org/10.3390/beverages6020029