Mobile Microfluidics
Abstract
:1. The Premises of Microfluidics as Micro-Laboratories
2. The Future: Mobile Microfluidics
3. Current Trends in Microfluidics Research
3.1. Fluid Actuation on Microfluidic Platforms
3.2. From Fluid Actuation to Bio-Protocol
3.3. Candidates for Mobile Biochips
4. The Roadmap to Mobile Microfluidics
4.1. Technical Challenges
4.1.1. First Challenge: Robustness under Shaking and Tilting
4.1.2. Second Challenge: Reducing Costs
4.1.3. Third Challenge: Reducing the Size
4.1.4. Fourth Challenge: Safety
4.2. Usability Challenges
4.3. Society Challenges
5. Discussion and Conclusions
Funding
Conflicts of Interest
References
- NuGEN Ovation Target Enrichment, Illumina Inc. March 2018. Available online: https://emea.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/nugen-technologies-inc-nugen-ovation-target-enrichment.html (accessed on 4 April 2018).
- Mark, D.; Haeberle, S.; Roth, G.; Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 1153–1182. [Google Scholar] [CrossRef] [PubMed]
- Einav, S.; Gerber, D.; Bryson, P.D.; Sklan, E.H.; Elazar, M.; Maerkl, S.J.; Glenn, J.S.; Quake, S.R. Discovery of a Hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat. Biotechnol. 2008, 12, 1019–1027. [Google Scholar] [CrossRef]
- Chin, C.D.; Laksanasopin, T.; Cheung, Y.K.; Steinmiller, D.; Linder, V.; Parsa, H.; Wang, J.; Moore, H.; Rouse, R.; Umviligihozo, G.; et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 2011, 17, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.C.; Blumenfeld, Y.J.; Chitkara, U.; Hudgins, L.; Quake, S.R. Non-invasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. USA 2008, 105, 16266–16271. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Elizarov, A.; Shu, C.J.; Shin, Y.S.; Dooley, A.N. Multistep synthesis of a radio-labeled imaging probe using integrated microfluidics. Science 2005, 310, 1793–1796. [Google Scholar] [CrossRef]
- Hong, J.W.; Chen, Y.; Anderson, W.F.; Quake, S.R. Molecular biology on a microfluidic chip. J. Phys. Condens. Matter 2006, 18, 691–701. [Google Scholar] [CrossRef]
- Hansen, C.L.; Sommer, M.O.A.; Quake, S.R. Systematic investigation of protein phase behavior with a microfluidic formulator. Proc. Natl. Acad. Sci. USA 2004, 101, 14431–14436. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.W.; Studer, V.; Hang, J.W.; Anderson, W.F.; Quake, S.R. A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 2004, 22, 435–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, J.S.; Anderson, W.F.; Quake, S.R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 2006, 78, 3084–3089. [Google Scholar] [CrossRef]
- Araci, I.E.; Quake, S.R. Microfluidic very large scale integration (mvlsi) with integrated micromechanical valves. Lab Chip 2012, 12, 2803–2806. [Google Scholar] [CrossRef]
- Unger, M.A.; Chou, H.P.; Thorsen, T.; Scherer, A.; Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000, 288, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; DeVoe, D.L. Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluidics 2009, 6, 1–16. [Google Scholar] [CrossRef]
- Eddings, M.A.; Johnson, M.A.; Gale, B.K. Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 2008, 18, 067001. [Google Scholar] [CrossRef]
- Lee, Y.S.; Bhattacharjee, N.; Folch, A. 3D-printed Quake-style microvalves and micropumps. Lab Chip 2018, 18, 1207–1214. [Google Scholar] [CrossRef]
- Rogers, C.I.; Qaderi, K.; Woolley, A.T.; Nordin, G.P. 3D-printed microfluidic devices with integrated valves. Biomicrofluidics 2015, 9, 016501. [Google Scholar] [CrossRef]
- Au, A.K.; Bhattacharjee, N.; Horowitz, L.F.; Chang, T.C.; Folch, A. 3D-printed microfluidic automation. Lab Chip 2015, 15, 1934–1941. [Google Scholar] [CrossRef] [Green Version]
- Keating, S.J.; Gariboldi, M.I.; Patrick, W.G.; Sharma, S.; Kong, D.S.; Oxman, N. 3D-printed multimaterial microfluidic valve. PLoS ONE 2016, 11, e0160624. [Google Scholar] [CrossRef]
- Gong, H.; Woolley, A.T.; Nordin, G.P. High density 3D-printed microfluidic valves, pumps, and multiplexers. Lab Chip 2016, 16, 2450–2458. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Evans, R.D.; Welch, E.; Hsu, B.N.; Madison, A.C.; Fair, R.B. Low voltage electrowetting-on-dielectric platform using multi-layer insulators. Sens. Actuators B Chem. 2010, 150, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Ashtiani, D.; Venugopal, H.; Belousoff, M.; Spicer, B.; Mak, J.; Neild, A.; de Marco, A. Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation. J. Struct. Biol. 2018, 203, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Sista, R.; Hua, Z.; Thwar, P.; Sudarsan, A.; Srinivasan, V.; Eckhardt, A.; Pollack, M.; Pamula, V. Development of a digital microfluidic platform for point of care testing. Lab Chip 2008, 8, 2091–2104. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lin, B.; Tian, T.; Xu, X.; Wang, W.; Ruan, Q.A.; Guo, J.; Zhu, Z.; Yang, C.J. Recent progress in microfluidics-based biosensing. Anal. Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Berkenpas, E.; Bitla, S.; Millard, P.; da Cunha, M.P. Pure shear horizontal SAW biosensor on langasite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1404–1411. [Google Scholar] [CrossRef]
- Gray, E.R.; Turbé, V.; Lawson, V.E.; Page, R.H.; Cook, Z.C.; Ferns, R.B.; Nastouli, E.; Pillay, D.; Yatsuda, H.; Athey, D.; McKendry, R.A. Ultra-rapid, sensitive and specific digital diagnosis of HIV with a dual-channel SAW biosensor in a pilot clinical study. Dig. Med. 2018, 1, 35. [Google Scholar] [CrossRef]
- Yoshida, J.-I. Flash chemistry: Flow microreactor synthesis based on high-resolution reaction time control. Chem. Rec. 2010, 10, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chakrabarty, K.; Ho, T.-Y. Real-time error recovery in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 1839–1852. [Google Scholar] [CrossRef]
- Millington, D.S.; Sista, R.; Eckhardt, A.; Rouse, J.; Bali, D.; Goldberg, R.; Cotten, M.; Buckley, R.; Pamula, V. Digital microfluidics: A future technology in the newborn screening laboratory? Semin. Perinatol. 2010, 34, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Sista, R.; Eckhardt, A.; Wang, T.; Graham, C.; Rouse, J.; Norton, S.; Srinivasan, S.; Pollack, M.G.; Tolun, A.A.; Bali, D.; et al. Digital microfluidic platform for multiplexing enzyme assays: Implications for lysosomal storage disease screening in newborns. Clin. Chem. 2011, 57, 1444–1451. [Google Scholar] [CrossRef]
- Liu, R.H.; Yang, J.; Lenigk, R.; Bonanno, J.; Grodzinski, P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 2004, 76, 1824–1831. [Google Scholar] [CrossRef]
- Huang, J.D.; Liu, C.H.; Chiang, T.W. Reactant minimization during sample preparation on digital microfluidic biochips using skewed mixing trees. In Proceedings of the 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 5–8 November 2012; pp. 377–383. [Google Scholar]
- Li, Z.; Lai, K.Y.T.; Chakrabarty, K.; Ho, T.Y.; Lee, C.Y. Sample preparation on micro-electrode-dot-array digital microfluidic biochips. In Proceedings of the 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 3–5 July 2017; pp. 146–151. [Google Scholar]
- Goldstine, H.H.; Goldstine, A. The electronic numerical integrator and computer (eniac). Math. Tables Other Aids Comput. 1946, 2, 97–110. [Google Scholar] [CrossRef]
- Lucero, A.; Clawson, J.; Lyons, K.; Fischer, J.E.; Ashbrook, D.; Robinson, S. Mobile collocated interactions: from smartphones to wearables. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; ACM: New York, NY, USA, 2015; pp. 2437–2440. [Google Scholar]
- Ng, A.H.; Fobel, R.; Fobel, C.; Lamanna, J.; Rackus, D.G.; Summers, A.; Dixon, C.; Dryden, M.D.; Lam, C.; Ho, M.; et al. A digital microfluidic system for serological immunoassays in remote settings. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Warkiani, M.E.; Tay, A.K.P.; Khoo, B.L.; Xiaofeng, X.; Han, J.; Lim, C.T. Malaria detection using inertial microfluidics. Lab Chip 2015, 15, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Collovinni, A. Development of an On-Chip Malaria Diagnostic Test Based on Electrical Impedance Detection. Ph.D. Thesis, Politesi, Politecnico Milano, Milan, Italy, December 2017. [Google Scholar]
- Liu, C.; Mauk, M.G.; Hart, R.; Bonizzoni, M.; Yan, G.; Bau, H.H. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes. PLoS ONE 2012, 7, e42222. [Google Scholar] [CrossRef] [PubMed]
- Esfandyarpour, R.; DiDonato, M.J.; Yang, Y.; Durmus, N.G.; Harris, J.S.; Davis, R.W. Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis. Proc. Natl. Acad. Sci. USA 2017, 114, E1306–E1315. [Google Scholar] [CrossRef] [PubMed]
- Alistar, M.; Gaudenz, U. OpenDrop: An integrated do-it-yourself platform for personal use of biochips. Bioengineering 2017, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, W.; Donlin, L.T.; Butler, A.; Rozo, C.; Bracken, B.; Rashidfarrokhi, A.; Goodman, S.M.; Ivashkiv, L.B.; Bykerk, V.P.; Orange, D.E.; et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nature Commun. 2018, 9, 791. [Google Scholar] [CrossRef]
- DigiBio B.V. Available online: https://digi.bio/ (accessed on 16 November 2018).
- Fobel, R.; Fobel, C.; Wheeler, A.R. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 2013, 102, 193513. [Google Scholar] [CrossRef]
- Turingan, R.S.; Kaplun, L.; Krautz-Peterson, G.; Norsworthy, S.; Zolotova, A.; Joseph, S.J.; Read, T.D.; Dean, D.; Tan, E.; Selden, R.F. Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic PCR assay. PLoS ONE 2017, 12, e0178653. [Google Scholar] [CrossRef]
- Matthews, D.R.; Bown, E.; Watson, A.; Holman, R.R.; Steemson, J.; Hughes, S.; Scott, D. Pen-sized digital 30-second blood glucose meter. Lancet 1987, 329, 778–779. [Google Scholar] [CrossRef]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef] [PubMed]
- An, B.W.; Shin, J.H.; Kim, S.Y.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y.G.; Cho, E.; et al. Smart sensor systems for wearable electronic devices. Polymers 2017, 9, 8. [Google Scholar] [CrossRef]
- Lo, J.F.; Brennan, M.; Merchant, Z.; Chen, L.; Guo, S.; Eddington, D.T.; DiPietro, L.A. Microfluidic wound bandage: Localized oxygen modulation of collagen maturation. Wound Repair Regen. 2013, 21, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165. [Google Scholar] [CrossRef] [PubMed]
- Laksanasopin, T.; Guo, T.W.; Nayak, S.; Sridhara, A.A.; Xie, S.; Olowookere, O.O.; Cadinu, P.; Meng, F.; Chee, N.H.; Kim, J.; et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci. Transl. Med. 2015, 7, 273re1. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Wei, Q.; Kim, D.H.; Tseng, D.; Zhang, J.; Pan, E.; Garner, O.; Ozcan, A.; Di Carlo, D. Enzyme-free nucleic acid amplification assay using a cellphone-based well plate fluorescence reader. Anal. Chem. 2018, 90, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Barnes, L.; Heithoff, D.M.; Mahan, S.P.; Fox, G.N.; Zambrano, A.; Choe, J.; Fitzgibbons, L.N.; Marth, J.D.; Fried, J.C.; Soh, H.T.; et al. Smartphone-based pathogen diagnosis in urinary sepsis patients. EBioMedicine 2018, 36, 73–82. [Google Scholar] [CrossRef]
- Mudanyali, O.; Dimitrov, S.; Sikora, U.; Padmanabhan, S.; Navruz, I.; Ozcan, A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 2012, 12, 2678–2686. [Google Scholar] [CrossRef] [Green Version]
- Streets, A.M.; Huang, Y. Microfluidics for biological measurements with single-molecule resolution. Curr. Opin. Biotechnol. 2014, 25, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Geng, S.; Huang, Y. From Mouth Pipetting to Microfluidics: The evolution of technologies for picking healthy single cells. Adv. Biosyst. 2018, 2, 1800099. [Google Scholar] [CrossRef]
- Xue, R.; Li, R.; Bai, F. Single cell sequencing: Technique, application, and future development. Sci. Bull. 2015, 60, 33–42. [Google Scholar] [CrossRef]
- Lagoy, R.C.; Albrecht, D.R. Microfluidic devices for behavioral analysis, microscopy, and neuronal imaging in Caenorhabditis elegans. In C. elegans; Humana Press: Totowa, NJ, USA, 2015; pp. 159–179. [Google Scholar]
- Ghorashian, N.; Gökçe, S.K.; Ben-Yakar, A. Microfluidic systems for whole-animal screening with C. elegans. In Micro-and Nanosystems for Biotechnology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; p. 2. [Google Scholar]
- Liu, Y.; Lu, H. Microfluidics in systems biology—Hype or truly useful? Curr. Opin. Biotechnol. 2016, 39, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Ong, L.J.Y.; Islam, A.B.; DasGupta, R.; Iyer, N.G.; Leo, H.L.; Toh, Y.C. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication 2017, 9, 045005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckwith, A.L.; Borenstein, J.T.; Velásquez-García, L.F. Monolithic, 3D-Printed Microfluidic Platform for Recapitulation of Dynamic Tumor Microenvironments. J. Microelectromechanical Syst. 2018, 27, 1009–1022. [Google Scholar] [CrossRef]
- Chiu, D.T.; Di Carlo, D.; Doyle, P.S.; Hansen, C.; Maceiczyk, R.M.; Wootton, R.C. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2017, 2, 201–223. [Google Scholar] [CrossRef]
- Huang, N.T.; Chen, W.; Oh, B.R.; Cornell, T.T.; Shanley, T.P.; Fu, J.; Kurabayashi, K. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip 2012, 12, 4093–4101. [Google Scholar] [CrossRef]
- Ng, A.H.; Wheeler, A.R. Next-generation microfluidic point-of-care diagnostics. Clin. Chem. 2015, 61, 1233–1234. [Google Scholar] [CrossRef]
- Sharma, S.; Zapatero-Rodríguez, J.; Estrela, P.; O’Kennedy, R. Point-of-care diagnostics in low resource settings: Present status and future role of microfluidics. Biosensors 2015, 5, 577–601. [Google Scholar] [CrossRef]
- Su, W.; Gao, X.; Jiang, L.; Qin, J. Microfluidic platform towards point-of-care diagnostics in infectious diseases. J. Chromatogr. A 2015, 1377, 13–26. [Google Scholar] [CrossRef]
- Jung, W.; Han, J.; Choi, J.W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Streets, A.M.; Huang, Y. Chip in a lab: Microfluidics for next generation life science research. Biomicrofluidics 2013, 7, 011302. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Mao, S.; Khan, M.; Lin, J.M. Single-cell assay on microfluidic devices. Analyst 2018. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, W. High-throughput magnetic particle washing in nanoliter droplets using serial injection and splitting. Micro Nano Syst. Lett. 2018, 6, 3. [Google Scholar] [CrossRef]
- Lee, J.J.; Jeong, K.J.; Hashimoto, M.; Kwon, A.H.; Rwei, A.; Shankarappa, S.A.; Tsui, J.H.; Kohane, D.S. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 2013, 14, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Super, M.; Yung, C.W.; Cooper, R.M.; Domansky, K.; Graveline, A.R.; Mammoto, T.; Berthet, J.B.; Tobin, H.; Cartwright, M.J.; et al. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med. 2014, 20, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Yung, C.W.; Fiering, J.; Mueller, A.J.; Ingber, D.E. Micromagnetic–microfluidic blood cleansing device. Lab Chip 2009, 9, 1171–1177. [Google Scholar] [CrossRef]
- Grimmer, A.; Haselmayr, W.; Wille, R. Automated dimensioning of networked labs-on-chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018. [Google Scholar] [CrossRef]
- Wille, R.; Li, B.; Drechsler, R.; Schlichtmann, U. Automatic design of microfluidic devices. In Proceedings of the 2018 Forum on Specification & Design Languages (FDL), Garching, Germany, 10–12 September 2018; pp. 5–16. [Google Scholar]
- Winkler, A.; Menzel, S.; Schmidt, H. SAW-grade SiO2 for advanced microfluidic devices. In Smart Sensors, Actuators, and MEMS IV. Int. Soc. Opt. Photonics 2009, 7362, 73621Q. [Google Scholar]
- Sesen, M.; Alan, T.; Neild, A. Microfluidic plug steering using surface acoustic waves. Lab Chip 2015, 15, 3030–3038. [Google Scholar] [CrossRef]
- Bruus, H.; Karlsen, J.T. Acoustic forces acting on particles and fluids in microscale acoustofluidics. J. Acoust. Soc. Am. 2016, 139, 2071–2072. [Google Scholar] [CrossRef]
- Ledbetter, A.D.; Shekhani, H.N.; Binkley, M.M.; Meacham, J.M. Tuning the coupled-domain response for efficient ultrasonic droplet generation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1893–1904. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Yang, C.; Zhang, F.; Shang, Z.; Xu, Y.; Chen, Y.; Chen, M.; Mu, X. A high sensitive SH-SAW biosensor based 36° YX black LiTaO3 for label-free detection of Pseudomonas Aeruginosa. Sens. Actuators B Chem. 2018, 281, 757–764. [Google Scholar] [CrossRef]
- Turbé, V.; Gray, E.R.; Lawson, V.E.; Nastouli, E.; Brookes, J.C.; Weiss, R.A.; Pillay, D.; Emery, V.C.; Verrips, C.T.; Yatsuda, H.; Athey, D. Towards an ultra-rapid smartphone-connected test for infectious diseases. Sci. Rep. 2017, 7, 11971. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M. Infectious pathogens meet point-of-care diagnostics. Biosens. Bioelectron. 2018, 106, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Fair, R.B. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluid. Nanofluidics 2007, 3, 245–281. [Google Scholar] [CrossRef]
- Choi, K.; Ng, A.H.; Fobel, R.; Wheeler, A.R. Digital microfluidics. Annu. Rev. Anal. Chem. 2012, 5, 413–440. [Google Scholar] [CrossRef] [PubMed]
- Pollack, M.; Shenderov, A.; Fair, R.B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2002, 2, 96–101. [Google Scholar] [CrossRef]
- Srinivasan, V.; Pamula, V.; Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 2004, 4, 310–315. [Google Scholar] [CrossRef]
- Jang, I.; Ko, H.; You, G.; Lee, H.; Paek, S.; Chae, H.; Lee, J.H.; Choi, S.; Kwon, O.S.; Shin, K.; et al. Application of paper EWOD (electrowetting-on-dielectrics) chip: Protein tryptic digestion and its detection using MALDI-TOF mass spectrometry. BioChip J. 2017, 11, 146–152. [Google Scholar] [CrossRef]
- Lu, S.Y.; Lu, Y.; Jin, M.; Bao, S.; Li, W.; Yu, L. Design and fabrication of highly sensitive and stable biochip for glucose biosensing. Appl. Surf. Sci. 2017, 422, 900–904. [Google Scholar] [CrossRef]
- Park, J.; Kwon, S.; Jun, S.I.; Mcknight, T.E.; Melechko, A.V.; Simpson, M.L.; Dhindsa, M.; Heikenfeld, J.; Rack, P.D. Active-matrix microelectrode arrays integrated with vertically aligned carbon nanofibers. Electron Device Lett. 2009, 30, 254–257. [Google Scholar] [CrossRef]
- Srinivasan, V.; Pamula, V.; Pollack, M.; Fair, R.B. A digital microfluidic biosensor for multianalyte detection. In Proceedings of the Micro Electro Mechanical Systems, Kyoto, Japan, 23 January 2003; pp. 327–330. [Google Scholar]
- Hadwen, B.; Broder, G.R.; Morganti, D.; Jacobs, A.; Brown, C.; Hector, J.R.; Kubota, Y.; Morgan, H. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays. Lab Chip 2012, 12, 3305–3313. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.L.; Ho, T.Y.; Chakrabarty, K. Design methodology for sample preparation on digital microfluidic biochips. In Proceedings of the 30th International Conference on Computer Design (ICCD), Montreal, QC, Canada, 30 September–3 October 2012; pp. 189–194. [Google Scholar]
- Madison, A.C.; Royal, M.W.; Vigneault, F.; Chen, L.; Griffin, P.B.; Horowitz, M.; Church, G.M.; Fair, R.B. A scalable device for automated microbial electroporation in a digital microfluidic platform. ACS Synth. Biol. 2017, 6, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Araci, I.E.; Brisk, P. Recent developments in microfluidic large-scale integration. Curr. Opin. Biotechnol. 2014, 25, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, K.; Fair, R.B.; Zeng, J. Design tools for digital microfluidic biochips: Toward functional diversification and more than Moore. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2010, 29, 1001–1017. [Google Scholar] [CrossRef]
- Huang, T.W.; Lin, C.H.; Ho, T.Y. A contamination aware droplet routing algorithm for digital microfluidic biochips. In Proceedings of the International Conference on Computer-Aided Design (ICCD), San Jose, CA, USA, 2–5 November 2009; pp. 151–156. [Google Scholar]
- Zhao, Y.; Chakrabarty, K. Synchronization of washing operations with droplet routing for cross-contamination avoidance in digital microfluidic biochips. In Proceedings of the Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 635–640. [Google Scholar]
- Alistar, M.; Pop, P. Synthesis of biochemical applications on digital microfluidic biochips with operation execution time variability. Integr. VLSI J. 2015, 51, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Chakrabarty, K.; Sturmer, R.; Pamula, V. Optimization techniques for the synchronization of concurrent fluidic operations in pin-constrained digital microfluidic biochips. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2012, 20, 1132–1145. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, T.; Chakrabarty, K. Integrated control-path design and error recovery in the synthesis of digital microfluidic lab-on-chip. J. Emerg. Technol. Comput. Syst. (JETC) 2010, 6, 11. [Google Scholar] [CrossRef]
- Luo, Y.; Bhattacharya, B.B.; Ho, T.Y.; Chakrabarty, K. Optimization of polymerase chain reaction on a cyberphysical digital microfluidic biochip. In Proceedings of the International Conference on Computer-Aided Design, San Jose, CA, USA, 18–21 November 2013; pp. 622–629. [Google Scholar]
- Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Pop, P.; Alistar, M.; Stuart, E.; Madsen, J. Fault-Tolerant Digital Microfuidic Biochips; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Gaudi Labs. Available online: http://www.gaudi.ch/OpenDrop/ (accessed on 16 November 2018).
- Sci-Bots Inc. Available online: https://sci-bots.com/ (accessed on 16 November 2018).
- Aquanatura Water Tests. Available online: http://aquanatura.de/en/watertests (accessed on 16 November 2018).
- Fan, S.K.; Yang, H.; Hsu, W. Droplet-on-a-wristband: Chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules. Lab Chip 2011, 11, 343–347. [Google Scholar] [CrossRef]
- Wang, G.; Teng, D.; Fan, S.K. Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnol. 2011, 5, 152–160. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Pun, C.C.; Tsai, C.Y.; Chen, P.H. An array-based CMOS biochip for electrical detection of DNA with multilayer self-assembly gold nanoparticles. Sens. Actuators B Chem. 2005, 109, 249–255. [Google Scholar] [CrossRef]
Fluid Propulsion | Example | Size | Programmable | Off-Grid | At-Home |
---|---|---|---|---|---|
Capillary | Pregnancy test | Small | No | Yes | Yes |
(10 × 2 cm) | (>106 users) | ||||
Pressure | MiniDrops [42] | Medium | Yes | Not | Not |
(15 × 15 × 10 cm3) | explored | Tested | |||
Quake-valve chips [11] | Very small | Yes | No | Not | |
(5 × 3 × 1 cm3) | Tested | ||||
Acoustic | SAW biochips [26] | Very small | Yes | Not | Not |
(2.5 cm) | explored | Tested | |||
Electrical | DigiBio Unit [43] | Large | Yes | No | Yes |
(15 × 25 × 15 cm3) | (<10 users) | ||||
DropBot [44] | Medium | Yes | Not | Yes | |
(15 × 20 × 10 cm3) | explored | (<20 users) | |||
OpenDrop [41] | Small | Yes | Yes, we tested | Yes | |
(10 × 15 × 3 cm3) | (>70 users) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alistar, M. Mobile Microfluidics. Bioengineering 2019, 6, 5. https://doi.org/10.3390/bioengineering6010005
Alistar M. Mobile Microfluidics. Bioengineering. 2019; 6(1):5. https://doi.org/10.3390/bioengineering6010005
Chicago/Turabian StyleAlistar, Mirela. 2019. "Mobile Microfluidics" Bioengineering 6, no. 1: 5. https://doi.org/10.3390/bioengineering6010005