Quality Characteristics of Karst Plateau Tea (Niaowang) in Southwest China and Their Relationship with Trace Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Researched Region
2.2. Sample Collection and Preparation
2.3. Measurement of Tea Quality and Trace Elements
2.4. Data Processing
3. Results
3.1. Analysis of Differences in Total Catechins between Summer and Autumn Niaowang Tea
3.2. Analysis of Differences in Contents of Catechin Monomers in Summer and Autumn
3.3. Principal Component Analysis of Catechins in Niaowang Tea
3.4. Trace Element Analysis in Niaowang Tea Leaves
3.5. Analysis of Correlations between Catechin Monomers and Trace Elements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, S.; Nie, Q.; Tai, H.; Song, X.; Tong, Y.; Zhang, L.; Wu, X.; Lin, Z.; Zhang, Y.; Ye, D.; et al. Tea and tea drinking: China’s outstanding contributions to the mankind. Chin. Med. 2022, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, Q.; Achal, V.; Liu, Y. A comparison of the potential health risk of aluminum and trace elements in tea leaves and tea infusion of commercially available green tea in Jiangxi, China. Environ. Monit. Assess. 2015, 187, 228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Lin, S.; Cui, D.; Lin, C. Soil Micronutrient Content and Profile Characteristics under Different Ecological Environments in Niaowang Tea Producing Area in Guizhou, Southwest China. J. Agric. Sci. 2015, 28, 663–669. (In Chinese) [Google Scholar]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef]
- Kerio, L.; Wachira, F.; Wanyoko, J.; Rotich, M. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars. Food Chem. 2013, 136, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-M.; Chen, B.-Y.; Huang, X.-X.; Teng, H.; Ai, C.; Chen, L. Ultrasound-assisted free radical modification on the structural and functional properties of ovalbumin-epigallocatechin gallate (EGCG) conjugates. Ultrason. Sonochem. 2023, 95, 106396. [Google Scholar] [CrossRef]
- Hirai, M.; Hotta, Y.; Ishikawa, N.; Wakida, Y.; Fukuzawa, Y.; Isobe, F.; Nakano, A.; Chiba, T.; Kawamura, N. Protective effects of EGCg or GCg, a green tea catechin epimer, against postischemic myocardial dysfunction in guinea-pig hearts. Ultrason. Sonochem. 2007, 80, 1020–1032. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Ding, Z.; Zhang, Y.; Wang, Y. Component and its change of chemical quality factors of Laoshan green tea in different picking period. J. Qingdao Agric. Univ. (Nat. Sci.) 2009, 26, 212–214. (In Chinese) [Google Scholar]
- Yang, J.; Wang, Y.; Song, F.; Xie, D.; Chen, Y.; Sun, C. The Protection and Exploitation of Germ Plasm Resource of Guiding Yunwu Tribute. Tea Seed 2012, 31, 67–68. (In Chinese) [Google Scholar]
- Li, F.; Chen, C.; Tian, Y.; Yang, X.; Jin, N.; Li, M. Seasonal Variation of Biochemical Components of Different Cultivars of Camellia sinensis var. assamica in Yunnan. J. Food Sci. Biotechnol. 2022, 41, 88–95. [Google Scholar]
- Zhang, J.; Yang, R.-D.; Chen, R.; Peng, Y.; Wen, X.-F.; Wen, X.-F.; Gao, L. Accumulation of Trace elements in Tea Leaves and Potential Health Risk Assessment: A Case Study from Puan County, Guizhou Province, China. Intern. J. Environ. Res. Public Health 2018, 15, 133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-M.; Zhou, Y.-C.; Huang, F.-F. Factors Influencing the Evolution of Human-driven Rocky Desertification in Karst Areas. Land Degrad. Dev. 2020, 31, 2506–2513. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Wu, X.-L.; Liu, H.-J. systematic review of microplastics in the environment: Sampling, separation, characterization and coexistence mechanisms with pollutants. Sci. Total Environ. 2023, 859, 160151. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-Y.; Yang, R.-D.; Zhang, J.; Gao, L.; Ni, X.-R. Distribution and dispersion of trace elements in the rock–soil–moss system of the black shale areas in the southeast of Guizhou Province, China. Environ. Sci. Pollut. Res. 2022, 29, 854–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-M.; Zhou, Y.-T.; Huang, X.-F. Spatial heterogeneity of soil organic carbon in a karst region under different land use patterns. Ecosphere 2020, 11, e03077. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yi, L.; Shi, Y.; Ma, L.; Ruan, J. Research progress of soil properties in tea gardens and the absorption and translocation mechanisms of nutrients and other elements in tea plant. J. Tea Sci. 2015, 35, 110–120. (In Chinese) [Google Scholar]
- Zhou, Y.; Wang, L.; Xiao, F.; Chen, H.; She, Y.; Zhou, C.; Yin, L.; Liu, J.; Wang, J. Legacy of multiple trace element(loid)s contamination and ecological risks in farmland soils from a historical artisanal zinc smelting area. Sci. Total Environ. 2020, 720, 137541. [Google Scholar] [CrossRef]
- Hong, H.-H.; He, H.-T.; Lin, X.-Q.; Hayuehashi, T.; Xu, J.; Zhang, J.-J.; Xu, Y.-D.; Tong, T.; Lu, Y.-Q.; Zhou, Z. Cadmium exposure suppresses insulin secretion through mtROS-mediated mitochondrial dysfunction and inflammatory response in pancreatic beta cells. J. Trace Elem. Med. Biol. 2022, 71, 126952. [Google Scholar] [CrossRef]
- Telisman, S.; Cvikovic, P.; Jurasovic, J.; Pizent, A.; Gavella, M.; Rocic, B. Semen Quality and Reproductive Endocrine Function in Relation to Biomarkers of Lead, Cadmium, Zinc, and Copper in Men. Environ. Health Perspect. 2000, 108, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Shameem, K.; Abdul, M.; Jayasinghe, S.-S.; Chandana, E.; Jayasumana, C.; Silva, P. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar]
- Elena, A.; Amandine, C.; Christelle, H. Mutual interference of Cu and Zn ions in Alzheimer’s disease: Perspectives at the molecular level. Dalton Trans. 2017, 46, 12750. [Google Scholar]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Trace element accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Li, W.-B.; Cheng, H.-Y.; Mu, Y.-J.; Xu, A.; Wang, F.; Xu, P. Occurrence, accumulation, and risk assessment of trace metals in tea (Camellia sinensis): A national reconnaissance. Sci. Total Environ. 2021, 792, 148354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-H.; Lu, Y.; Lin, S.-X.; Long, Z.-b.; Lin, C.-H. Soil trace element pollution and enrichment in tea leaves in typical famous tea producing areas in Guizhou Province. Jiangsu Agric. Sci. 2012, 8, 292–294. (In Chinese) [Google Scholar]
- Zhang, J.; Zhou, Y.; Li, C.; Zhou, X.; Hong, J.; Zhang, Q.; Zhang, Z. Study on the Characteristics of Harvest and Tea Quality under Different Leaf Types and Season of Niaowang Tea in Guizhou. J. Sichuan Agric. Univ. 2021, 39, 35–40. [Google Scholar]
- Wu, X.; Zhang, D.; Wang, F.; Luo, L.; Chen, Y.; Lu, S. Risk assessment of metal(loid)s in tea from seven producing provinces in China. Sci. Total Environ. 2023, 856, 159140. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Wei, X.-H.; Dai, W.-D.; Lin, Z. Study of enrichment difference of 64 elements among white tea subtypes and tea leaves of different maturity using inductively coupled plasma mass spectrometry. Food Res. Int. 2019, 126, 108655. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Huang, X.; Cui, M.; Wu, X.; Liu, H. Adsorption and desorption characteristics of metal(oid)s in the yellow soils of a typical karst area, southwest China. Soil Sediment Contam. 2022, 31, 834–854. [Google Scholar] [CrossRef]
- Wang, H.-F.; Provan, G.; Helliwell, K. HPLC determination of catechins in tea leaves and tea extracts using relative response factors. Food Chem. 2003, 81, 307–312. [Google Scholar] [CrossRef]
- Alnaimat, A.; Alonso, M.; Hermelo, P.; Gonzalez, D.; Bermejo-Barrera, P. In vitro assessment of major and trace element bioaccessibility in tea samples. Talanta 2021, 225, 122083. [Google Scholar] [CrossRef]
- Tang, J.; Guo, Y.; Wang, T.; Zeng, Y.; Tang, Q. Study on Biochemical Composition of Yingjing Loquat Wild Tea Plants in Sichuan. J. Sichuan Agric. Univ. 2012, 30, 424–428. (In Chinese) [Google Scholar]
- Jin, X.; Jia, S.; Shi, Y.; Cao, D.; Gong, Z. Content of Ester Catechins in Local Tea Plant Germplasm Resources from Hubei Province, Chinese. J. Trop. Crops 2014, 35, 438–442. [Google Scholar]
- Zhang, R.; Gu, Z.-R.; Guo, Y.; Qi, M.; Lv, X.; Mao, X.-W.; Ge, B. Content Difference of Effective Components of Cynomorii Herba Between Different Producing Areas and Its Response to Environmental Factors. Chin. J. Exp. Tradit. Med. 2022, 7, 142–150. [Google Scholar]
- Li, S.; Jiang, X.-F.; Zhang, J.-G.; Tong, Z.-F.; Niu, Y.-L.; Jiang, H.-Y.; Shi, X.-P. Research on quality component changes of tea resource based on different altitude ranges in Lushan. J. Food Saf. Qual. 2022, 9, 2886–2891. [Google Scholar]
- Li, N.; Taylor, L.; Ferruzzi, M.; Mauer, L. Kinetic Study of Catechin Stability: Effects of pH, Concentration, and Temperature. J. Agric. Food Chem. 2012, 60, 12531–12539. [Google Scholar] [CrossRef]
- Wen, X.-M.; Zhang, Z.-M.; Huang, X.-F. Trace elements in karst tea garden soils under different ecological environments in southwestern China. Int. Soc. Trop. Ecol. 2022, 63, 495–505. [Google Scholar] [CrossRef]
- Han, W.; Wang, C.; Peng, M.; Wang, Q.; Yang, F.; Xu, R. Characteristics and Origins of Trace elements in Soil and Crops in Mountain Area of Southern Sichuan. Environ. Sci. 2021, 42, 2480–2489. (In Chinese) [Google Scholar]
- He, X.; Liu, K.; Lu, Y. Study on Safety Threshold and Environmental Risk Assessment of Soil Trace element Based on Crop Enrichment Factor. J. Southwest Univ. 2022, 44, 146–157. (In Chinese) [Google Scholar]
- Zwolak, L. Epigallocatechin Gallate for Management of Trace Element-Induced Oxidative Stress: Mechanisms of Action, Efficacy, and Concerns. Int. J. Mol. Sci. 2021, 22, 4027. [Google Scholar] [CrossRef]
- Yuan, D.-G.; Deng, Y.-G.; Pu, L.; He, G.; Zhang, J.-S.; Weng, Q.; Wang, C.-Q. Release Kinetics of Si, Al, Fe, and Mn from Acid Soils in the Presence of EGCG. Commun. Soil Sci. Plant Anal. 2017, 48, 1184–1193. [Google Scholar] [CrossRef]
- Kumamoto, M.; Sonda, T.; Nagayama, K.; Tabata, M. Effects of pH and Metal Ions on Antioxidative Activities of Catechins. Biosci. Biotechnol. Biochem. 2021, 1, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Points | Mature Leaves Number | Tender Leaves Number | Latitude and Longitude | Slope | Parent Material |
---|---|---|---|---|---|
Shangba town | 8 | 8 | 107°01.811 E, 26°12.564 N | 25–40 | Sticky yellow soil |
Gongchabei | 2 | 2 | 107°01.584 E, 26°11.916 N | 15–30 | Sand shale |
Gaozhai town | 2 | 2 | 107°01.603 E, 26°12.042 N | 10–40 | Sandstone |
Nongye station | 2 | 2 | 107°03.060 E, 26°13.518 N | 15–30 | Sticky yellow soil |
Shuili station | 6 | 6 | 107°03.437 E, 26°13.656 N | 15–40 | Sticky yellow soil |
Fangjia | 6 | 6 | 107°03.609 E, 26°13.732 N | 10–30 | Sandstone |
Tiechang | 2 | 2 | 107°06.433 E, 26°13.217 N | 15–25 | Sticky yellow soil |
Summer | Autumn | |||
---|---|---|---|---|
Tender Leaves | Mature Leaves | Tender Leaves | Mature Leaves | |
Total catechins | 3558.15 ± 841.81 a | 2226.52 ± 291.50 b | 2454.02 ± 845.40 b | 912.07 ± 623.89 c |
Ester-type catechins | 2469.43 ± 721.82 a | 1609.30 ± 260.60 b | 905.61 ± 315.82 b | 423.40 ± 278.78 c |
Non-ester-type catechins | 1088.71 ± 210.19 a | 617.16 ± 139.51 b | 1548.41 ± 602.06 a | 488.67 ± 356.63 b |
Variable | Principal Component | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
EGCG | −0.96 | 0.08 | 0.05 |
GCG | 0.92 | −0.02 | 0.01 |
EC | 0.86 | 0.18 | 0.05 |
C | 0.80 | −0.09 | 0.01 |
ECG | 0.69 | 0.46 | 0.39 |
EGC | 0.16 | −0.84 | 0.17 |
GA | −0.31 | 0.81 | 0.27 |
GC | 0.25 | 0.30 | −0.87 |
Eigenvalue | 3.80 | 1.71 | 1.02 |
Percentage of Variance (%) | 47.51 | 21.42 | 12.80 |
Cumulative (%) | 47.51 | 68.93 | 81.73 |
Summer | Autumn | |
---|---|---|
As | 0.02 ± 0.01 | 0.28 ± 0.13 |
Hg | 0.12 ± 0.04 | 0.25 ± 0.15 |
Se | 0.14 ± 0.06 | 0.97 ± 0.23 |
Pb | 1.25 ± 0.34 | 13.43 ± 3.25 |
Ni | 3.55 ± 1.23 | 8.86 ± 3.22 |
Zn | 23.66 ± 6.73 | 30.07 ± 8.36 |
Mn | 250.3 ± 55.47 | 423.43 ± 120.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zhang, Z.; Zhang, J. Quality Characteristics of Karst Plateau Tea (Niaowang) in Southwest China and Their Relationship with Trace Elements. Toxics 2023, 11, 502. https://doi.org/10.3390/toxics11060502
Jiang Y, Zhang Z, Zhang J. Quality Characteristics of Karst Plateau Tea (Niaowang) in Southwest China and Their Relationship with Trace Elements. Toxics. 2023; 11(6):502. https://doi.org/10.3390/toxics11060502
Chicago/Turabian StyleJiang, Yongcheng, Zhenming Zhang, and Jiachun Zhang. 2023. "Quality Characteristics of Karst Plateau Tea (Niaowang) in Southwest China and Their Relationship with Trace Elements" Toxics 11, no. 6: 502. https://doi.org/10.3390/toxics11060502