Chronic Mercury Exposure and GSTP1 Polymorphism in Munduruku Indigenous from Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical and Neurological Evaluation
2.3. Hair Mercury Analysis
2.4. DNA Extraction and GSTP1 Genotyping
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Pub. Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- de Lacerda, L. Updating Global Hg Emissions from Small-Scale Gold Mining and Assessing Its Environmental Impacts. Environ. Geol. 2003, 43, 308–314. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Sánchez, L.E. The Outbreak of Illegal Gold Mining in the Brazilian Amazon Boosts Deforestation. Reg. Environ. Chang. 2021, 21, 28. [Google Scholar] [CrossRef]
- Basta, P.C.; Viana, P.V.D.S.; Vasconcellos, A.C.S.D.; Périssé, A.R.S.; Hofer, C.B.; Paiva, N.S.; Kempton, J.W.; Ciampi de Andrade, D.; Oliveira, R.A.A.D.; Achatz, R.W.; et al. Mercury Exposure in Munduruku Indigenous Communities from Brazilian Amazon: Methodological Background and an Overview of the Principal Results. Int. J. Environ. Res. Public. Health 2021, 18, 9222. [Google Scholar] [CrossRef]
- Vasconcellos, A.C.S.D.; Barrocas, P.R.G.; Ruiz, C.M.V.; Mourão, D.D.S.; Hacon, S.D.S. Burden of Mild Mental Retardation Attributed to Prenatal Methylmercury Exposure in Amazon: Local and Regional Estimates. Ciênc. Saúde Coletiva 2018, 23, 3535–3545. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.A.A.D.; Pinto, B.D.; Rebouças, B.H.; Ciampi de Andrade, D.; Vasconcellos, A.C.S.D.; Basta, P.C. Neurological Impacts of Chronic Methylmercury Exposure in Munduruku Indigenous Adults: Somatosensory, Motor, and Cognitive Abnormalities. Int. J. Environ. Res. Public. Health 2021, 18, 10270. [Google Scholar] [CrossRef]
- Santos, G.M.D.; Santos, A.C.M.D. Sustentabilidade da pesca na Amazônia. Estud. Av. 2005, 19, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Gimenes, T.C.; Penteado, J.O.; dos Santos, M.; da Silva Júnior, F.M.R. Methylmercury in Fish from the Amazon Region—A Review Focused on Eating Habits. Water. Air. Soil Pollut. 2021, 232, 199. [Google Scholar] [CrossRef]
- Chan, P.H.Y.; Chan, K.Y.Y.; Schooling, C.M.; Hui, L.L.; Chan, M.H.M.; Li, A.M.; Cheung, R.C.K.; Lam, H.S. Association between Genetic Variations in GSH-Related and MT Genes and Low-Dose Methylmercury Exposure in Children and Women of Childbearing Age: A Pilot Study. Environ. Res. 2020, 187, 109703. [Google Scholar] [CrossRef] [PubMed]
- Lozano, M.; Murcia, M.; Soler-Blasco, R.; González, L.; Iriarte, G.; Rebagliato, M.; Lopez-Espinosa, M.-J.; Esplugues, A.; Ballester, F.; Llop, S. Exposure to Mercury among 9-Year-Old Children and Neurobehavioural Function. Environ. Int. 2021, 146, 106173. [Google Scholar] [CrossRef]
- Parajuli, R.P.; Goodrich, J.M.; Chan, H.M.; Lemire, M.; Ayotte, P.; Hegele, R.A.; Basu, N. Variation in Biomarker Levels of Metals, Persistent Organic Pollutants, and Omega-3 Fatty Acids in Association with Genetic Polymorphisms among Inuit in Nunavik, Canada. Environ. Res. 2021, 200, 111393. [Google Scholar] [CrossRef]
- Sirivarasai, J.; Chaisungnern, K.; Panpunuan, P.; Chanprasertyothin, S.; Chansirikanjana, S.; Sritara, P. Role of MT1A Polymorphism and Environmental Mercury Exposure on the Montreal Cognitive Assessment (MoCA). Neuropsychiatr. Dis. Treat. 2021, 17, 2429–2439. [Google Scholar] [CrossRef]
- Medina Pérez, O.M.; Flórez-Vargas, O.; Rincón Cruz, G.; Rondón González, F.; Rocha Muñoz, L.; Sánchez Rodríguez, L.H. Glutathione-Related Genetic Polymorphisms Are Associated with Mercury Retention and Nephrotoxicity in Gold-Mining Settings of a Colombian Population. Sci. Rep. 2021, 11, 8716. [Google Scholar] [CrossRef]
- Perini, J.A.; Silva, M.C.; Vasconcellos, A.C.S.D.; Viana, P.V.S.; Lima, M.O.; Jesus, I.M.; Kempton, J.W.; Oliveira, R.A.A.; Hacon, S.S.; Basta, P.C. Genetic Polymorphism of Delta Aminolevulinic Acid Dehydratase (ALAD) Gene and Symptoms of Chronic Mercury Exposure in Munduruku Indigenous Children within the Brazilian Amazon. Int. J. Environ. Res. Public. Health 2021, 18, 8746. [Google Scholar] [CrossRef] [PubMed]
- Ballatori, N.; Clarkson, W. Biliary Secretion of Glutathione and of Glutathione-Metal Complexes. Fundam Appl Toxicol. 1985, 5, 816–831. [Google Scholar] [CrossRef] [PubMed]
- Custodio, H.M.; Broberg, K.; Wennberg, M.; Jansson, J.-H.; Vessby, B.; Hallmans, G.; Stegmayr, B.; Skerfving, S. Polymorphisms in Glutathione-Related Genes Affect Methylmercury Retention. Arch. Environ. Health Int. J. 2004, 59, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione Synthesis. Biochim. Biophys. Acta BBA—Gen. Subj. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strange, R.C.; Jones, P.W.; Fryer, A.A. Glutathione S-Transferase: Genetics and Role in Toxicology. Toxicol. Lett. 2000, 112–113, 357–363. [Google Scholar] [CrossRef]
- Suzuki, T.; Coggan, M.; Shaw, D.C.; Board, P.G. Electrophoretic and Immunological Analysis of Human Glutathione S-Transferase Isozymes. Ann. Hum. Genet. 1987, 51, 95–106. [Google Scholar] [CrossRef]
- Wahlberg, K.; Love, T.M.; Pineda, D.; Engström, K.; Watson, G.E.; Thurston, S.W.; Yeates, A.J.; Mulhern, M.S.; McSorley, E.M.; Strain, J.J.; et al. Maternal Polymorphisms in Glutathione-Related Genes Are Associated with Maternal Mercury Concentrations and Early Child Neurodevelopment in a Population with a Fish-Rich Diet. Environ. Int. 2018, 115, 142–149. [Google Scholar] [CrossRef]
- Parajuli, R.P.; Goodrich, J.M.; Chou, H.-N.; Gruninger, S.E.; Dolinoy, D.C.; Franzblau, A.; Basu, N. Genetic Polymorphisms Are Associated with Hair, Blood, and Urine Mercury Levels in the American Dental Association (ADA) Study Participants. Environ. Res. 2016, 149, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodrich, J.M.; Basu, N. Variants of Glutathione S-Transferase Pi 1 Exhibit Differential Enzymatic Activity and Inhibition by Heavy Metals. Toxicol. In Vitro 2012, 26, 630–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- England, J.D.; Gronseth, G.S.; Franklin, G.; Miller, R.G.; Asbury, A.K.; Carter, G.T.; Cohen, J.A.; Fisher, M.A.; Howard, J.F.; Kinsella, L.J.; et al. Distal Symmetric Polyneuropathy: A Definition for Clinical Research. Neurology 2005, 64, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA). Toxicological Evaluation of Certain Food Additives and Contaminants. In Proceedings of the 33rd Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, Switzerland, 21–30 March 1989; World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Magno, L.A.V.; Talbot, J.; Talbot, T.; Borges Santos, A.M.; Souza, R.P.; Marin, L.J.; Moreli, M.L.; de Melo, P.R.S.; Corrêa, R.X.; Rios Santos, F.; et al. Glutathione S-Transferase Variants in a Brazilian Population. Pharmacology 2009, 83, 231–236. [Google Scholar] [CrossRef]
- Lima Junior, M.M.D.; Reis, L.O.; Ferreira, U.; Cardoso, U.O.; Barbieri, R.B.; Mendonça, G.B.D.; Ward, L.S. Unraveling Brazilian Indian Population Prostate Good Health: Clinical, Anthropometric and Genetic Features. Int. Braz. J. Urol. 2015, 41, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Chagas, B.S.; Gurgel, A.P.A.D.; Júnior, S.S.L.P.; Lima, R.C.P.; Cordeiro, M.N.; Moura, R.R.; Coelho, A.V.C.; Nascimento, K.C.G.; Neto, J.C.S.; Crovella, S.; et al. Research Article Synergic Effect of Oral Contraceptives, GSTP1 Polymorphisms, and High-Risk HPV Infection in Development of Cervical Lesions. Genet. Mol. Res. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Oliveira de Araújo Melo, C.; Cidália Vieira, T.; Duarte Gigonzac, M.A.; Soares Fortes, J.; Moreira Duarte, S.S.; da Cruz, A.D.; Silva, D.D.M.E. Evaluation of Polymorphisms in Repair and Detoxification Genes in Alcohol Drinkers and Non-drinkers Using Capillary Electrophoresis. Electrophoresis 2020, 41, 254–258. [Google Scholar] [CrossRef]
- Ferracini, A.C.; Lopes-Aguiar, L.; Lourenço, G.J.; Yoshida, A.; Lima, C.S.P.; Sarian, L.O.; Derchain, S.; Kroetz, D.L.; Mazzola, P.G. GSTP1 and ABCB1 Polymorphisms Predicting Toxicities and Clinical Management on Carboplatin and Paclitaxel-Based Chemotherapy in Ovarian Cancer. Clin. Transl. Sci. 2021, 14, 720–728. [Google Scholar] [CrossRef]
- Barros, J.B.D.S.; Santos, K.D.F.; Azevedo, R.M.; de Oliveira, R.P.D.; Leobas, A.C.D.; Bento, D.D.C.P.; Santos, R.D.S.; Reis, A.A.D.S. No Association of GSTP1 Rs1695 Polymorphism with Amyotrophic Lateral Sclerosis: A Case-Control Study in the Brazilian Population. PLoS ONE 2021, 16, e0247024. [Google Scholar] [CrossRef]
- de Sousa Barros, J.B.; de Faria Santos, K.; da Cruz Pereira Bento, D.; Prado Assunção, L.D.; da Silva Santos, R.; da Silva Reis, A.A. Influence of GSTP1 Rs1695 Polymorphism on Survival in Male Patients’ Amyotrophic Lateral Sclerosis: A Genetic Association Study in Brazilian Population. Mol. Biol. Rep. 2022, 49, 1655–1659. [Google Scholar] [CrossRef]
- Rossini, A.; Rapozo, D.C.M.; Amorim, L.M.F.; Macedo, J.M.B.; Medina, R.; Neto, J.F.N.; Gallo, C.V.M.; Pinto, L.F.R. Frequencies of GSTM1, GSTT1, and GSTP1 Polymorphisms in a Brazilian Population. Genet. Mol. Res. 2002, 1, 233–240. [Google Scholar] [PubMed]
- Nebert, D.W.; Vasiliou, V. Analysis of the Glutathione S-Transferase (GST) Gene Family. Hum. Genom. 2004, 1, 460. [Google Scholar] [CrossRef] [PubMed]
- Yohannes, Y.B.; Nakayama, S.M.M.; Yabe, J.; Toyomaki, H.; Kataba, A.; Nakata, H.; Muzandu, K.; Ikenaka, Y.; Choongo, K.; Ishizuka, M. Glutathione S-Transferase Gene Polymorphisms in Association with Susceptibility to Lead Toxicity in Lead- and Cadmium-Exposed Children near an Abandoned Lead-Zinc Mining Area in Kabwe, Zambia. Environ. Sci. Pollut. Res. 2022, 29, 6622–6632. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.-S.; Stenberg, G.; Widersten, M.; Mannervik, B. Structure-Activity Relationships and Thermal Stability of Human Glutathione Transferase P1-1 Governed by the H-Site Residue 105. J. Mol. Biol. 1998, 278, 687–698. [Google Scholar] [CrossRef]
- Ali-Osman, F.; Akande, O.; Antoun, G.; Mao, J.-X.; Buolamwini, J. Molecular Cloning, Characterization, and Expression in Escherichia Coli of Full-Length CDNAs of Three Human Glutathione S-Transferase Pi Gene Variants. J. Biol. Chem. 1997, 272, 10004–10012. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xia, H.; Srivastava, S.K.; Herzog, C.; Awasthi, Y.C.; Ji, X.; Zimniak, P.; Singh, S.V. Activity of Four Allelic Forms of Glutathione S-Transferase HGSTP1-1 for Diol Epoxides of Polycyclic Aromatic Hydrocarbons. Biochem. Biophys. Res. Commun. 1997, 238, 397–402. [Google Scholar] [CrossRef]
- Gundacker, C.; Wittmann, K.J.; Kukuckova, M.; Komarnicki, G.; Hikkel, I.; Gencik, M. Genetic Background of Lead and Mercury Metabolism in a Group of Medical Students in Austria. Environ. Res. 2009, 109, 786–796. [Google Scholar] [CrossRef]
- Engström, K.S.; Strömberg, U.; Lundh, T.; Johansson, I.; Vessby, B.; Hallmans, G.; Skerfving, S.; Broberg, K. Genetic Variation in Glutathione-Related Genes and Body Burden of Methylmercury. Environ. Health Perspect. 2008, 116, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Branco, V.; Caito, S.; Farina, M.; Teixeira da Rocha, J.; Aschner, M.; Carvalho, C. Biomarkers of Mercury Toxicity: Past, Present, and Future Trends. J. Toxicol. Environ. Health Part B 2017, 20, 119–154. [Google Scholar] [CrossRef]
- Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Lopes-Araújo, A.; Santos-Sacramento, L.; Takeda, P.Y.; de Matos Macchi, B.; do Nascimento, J.L.M.; Maia, C.S.; Lima, R.R.; Arrifano, G.P. Mercury: What Can We Learn from the Amazon? Environ. Int. 2021, 146, 106223. [Google Scholar] [CrossRef]
- Mann, C.L.A.; Davies, M.B.; Boggild, M.D.; Alldersea, J.; Fryer, A.A.; Jones, P.W.; Ko, C.K.; Young, C.; Strange, R.C.; Hawkins, C.P. Glutathione S-Transferase Polymorphisms in MS: Their Relationship to Disability. Neurology 2000, 54, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, T.A.; Mars, A.E.; Buyske, S.G.; Stenroos, E.S.; Wang, R.; Factura-Santiago, M.F.; Lambert, G.H.; Johnson, W.G. Risk of Autistic Disorder in Affected Offspring of Mothers With a Glutathione S-Transferase P1 Haplotype. Arch. Pediatr. Adolesc. Med. 2007, 161, 356–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Aramoana, J.; Koea, J.; on behalf of the CommNETS Collaboration. An Integrative Review of the Barriers to Indigenous Peoples Participation in Biobanking and Genomic Research. JCO Glob. Oncol. 2020, 6, 83–91. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall (n = 107) | Village | |||
---|---|---|---|---|---|
Poxo Muybu | Sawré Aboy | Sawré Muybu | p-Value 1 | ||
(n = 34) | (n = 23) | (n = 50) | |||
Sex | |||||
Female | 51 (47.7) | 16 (47.1) | 10 (43.5) | 25 (50.0) | 0.87 |
Male | 56 (52.3) | 18 (52.9) | 13 (56.5) | 25 (50.0) | |
Age (years) | |||||
12–19 | 36 (33.6) | 15 (44.1) | 11 (47.8) | 10 (20.0) | 0.05 |
20–24 | 19 (17.8) | 5 (14.7) | 3 (13.0) | 11 (22.0) | |
25–29 | 17 (15.9) | 2 (5.9) | 2 (8.7) | 13 (26.0) | |
≥30 | 35 (32.7) | 12 (35.3) | 7 (30.4) | 16 (32.0) | |
BMI (kg/m2) | |||||
<18.5 | 3 (2.8) | 2 (5.9) | 1 (4.3) | 0 (0.0) | 0.54 |
18.5–24.9 | 66 (61.7) | 19 (55.9) | 16 (69.6) | 31 (62.0) | |
25.0–29.9 | 34 (31.8) | 11 (32.4) | 5 (21.7) | 19 (36.0) | |
≥30.0 | 4 (3.7) | 2 (5.9) | 1 (4.3) | 1 (2.0) | |
Hemoglobin 2 | |||||
≤11.5 | 5 (4.7) | 1 (3.0) | 3 (13.0) | 1 (2.0) | 0.1 |
>11.5 | 101 (95.3) | 32 (97.0) | 20 (87.0) | 49 (98.0) | |
Hg levels (µg/g) 3 | |||||
≤ 6.0 | 32 (30.5) | 10 (29.4) | 1 (4.3) | 21 (43.8) | 0.003 |
> 6.0 | 73 (68.2) | 24 (70.6) | 22 (95.7) | 27 (56.2) | |
≤7.40 | 53 (50.5) | 19 (55.9) | 3 (13.0) | 31 (64.6) | <0.001 |
>7.40 | 52 (49.5) | 15 (44.1) | 20 (87.0) | 17 (35.4) | |
Somatosensory signs | |||||
Normal | 66 (61.7) | 30 (88.2) | 10 (43.5) | 26 (52.0) | <0.001 |
Abnormal | 41 (38.3) | 4 (11.8) | 13 (56.5) | 24 (48.0) | |
Motor functions | |||||
Normal | 85 (79.4) | 30 (88.2) | 17 (73.9) | 38 (76.0) | 0.3 |
Abnormal | 22 (20.6) | 4 (11.8) | 6 (26.1) | 12 (20.4) | |
Cognitive evaluations | |||||
Normal | 68 (63.6) | 23 (67.6) | 9 (39.1) | 36 (72.0) | 0.02 |
Abnormal | 39 (36.4) | 11 (32.4) | 14 (60.9) | 14 (28.0) |
GSTP1 (rs1695) A>G | Hg Levels (µg/g) | ||||
---|---|---|---|---|---|
≤6.0 | >6.0 | p-Value 1 | Crude OR (95% IC) | Adjusted OR 2 (95% IC) | |
(n = 32) | (n = 73) | ||||
Genotypes | |||||
AA | 11 (34.4) | 32 (44.4) | 0.001 | 1 | 1 |
AG | 10 (31.2) | 36 (50.0) | 1.24 (0.47–3.30) | 1.23 (0.46–3.30) | |
GG | 11 (34.4) | 4 (5.6) | 0.13 (0.03–0.48) | 0.13 (0.03–0.49) | |
AA + GG | 21 (65.6) | 68 (94.4) | <0.001 | 1 | 1 |
GG | 11 (34.4) | 4 (5.6) | 0.11 (0.03–0.39) | 0.12 (0.03–0.41) | |
Alleles | |||||
A | 32 (50.0) | 100 (69.4) | 0.007 | 1 | 1 |
G | 32 (50.0) | 44 (30.6) | 0.44 (0.24–0.81) | 0.44 (0.24–0.81) | |
GSTP1 (rs1695) A>G | Hg Levels (µg/g) | ||||
≤7.40 | >7.40 | p-value 1 | Crude OR (95% IC) | Adjusted OR 2 (95% IC) | |
(n = 53) | (n = 52) | ||||
Genotypes | |||||
AA | 21 (39.6) | 22 (43.1) | 0.05 | 1 | 1 |
AG | 20 (37.7) | 26 (51.0) | 1.24 (0.54–2.86) | 1.24 (0.54–2.86) | |
GG | 12 (22.6) | 3 (5.9) | 0.24 (0.06–0.97) | 0.24 (0.06–0.99) | |
AA + GG | 41 (77.4) | 48 (94.1) | 0.02 | 1 | 1 |
GG | 12 (22.6) | 3 (5.9) | 0.21 (0.06–0.81) | 0.22 (0.06–0.83) | |
Alleles | |||||
A | 62 (58.5) | 70 (68.6) | 0.13 | 1 | 1 |
G | 44 (41.5) | 32 (31.4) | 0.64 (0.37–1.14) | 0.65 (0.37–1.14) |
GSTP1 (rs1695) A>G 1 | ||||
---|---|---|---|---|
Somatosensory Signs | AA | AG | GG | p-Value 2 |
Distal pinprick perception | ||||
Normal | 37 (45.7) | 33 (40.7) | 11 (13.6) | 0.15 |
Abnormal | 6 (24.0) | 15 (60.0) | 4 (16.0) | |
ORc (95% IC) | 1 | 2.80 (0.97–8.06) | 2.24 (0.54–9.40) | |
ORa 3 (95% IC) | 1 | 3.16 (1.07–9.31) | 1.81 (0.39–8.43) | |
Distal thermal sensitivity | ||||
Normal | 37 (42.0) | 38 (43.2) | 13 (14.8) | 0.63 |
Abnormal | 6 (33.3) | 10 (55.6) | 2 (11.1) | |
ORc (95% IC) | 1 | 1.62 (0.54–4.92) | 0.95 (0.17–5.30) | |
ORa 3 (95% IC) | 1 | 1.79 (0.58–5.53) | 0.67 (0.11–4.12) | |
Hallux or thumb vibration sensitivity | ||||
Normal | 39 (41.1) | 44 (46.3) | 12 (12.6) | 0.41 |
Abnormal | 4 (36.4) | 4 (36.4) | 3 (27.3) | |
ORc (95% IC) | 1 | 0.89 (0.21–3.78) | 2.44 (0.48–12.45) | |
ORa3 (95% IC) | 1 | 0.98 (0.22–4.37) | 1.84 (0.29–11.84) | |
Feet mechanical detection threshold | ||||
Normal | 39 (42.9) | 39 (42.9) | 13 (14.3) | 0.43 |
Abnormal | 4 (26.7) | 9 (60.0) | 2 (13.3) | |
ORc (95% IC) | 1 | 2.25 (0.64–7.92) | 1.50 (0.25–9.16) | |
ORa 3 (95% IC) | 1 | 2.50 (0.70–9.00) | 1.05 (0.15–7.18) | |
Clinical signs of polyneuropathy4 | ||||
No | 34 (48.6) | 26 (37.1) | 10 (14.3) | 0.04 |
Yes | 9 (25.0) | 22 (61.1) | 5 (13.9) | |
ORc (95% IC) | 1 | 3.20 (1.26–8.09) | 1.89 (0.51–6.94) | |
ORa 3 (95% IC) | 1 | 3.67 (1.42–9.53) | 1.41 (0.35–5.68) |
GSTP1 (rs1695) A>G 1 | ||||
---|---|---|---|---|
Functions | AA | AG | GG | p-Value 2 |
Motor | ||||
Toe amyotrophy | ||||
Normal | 43 (42.6) | 43 (42.6) | 15 (14.9) | 0.04 |
Abnormal | 0 (0.0) | 5 (100.0) | 0 (0.0) | |
ORc (95% IC) | 1 | - | - | |
ORa 3 (95% IC) | 1 | - | - | |
Ankle jerk reflex | ||||
Normal | 36 (40.9) | 40 (45.5) | 12 (13.6) | 0.94 |
Abnormal | 7 (38.9) | 8 (44.4) | 3 (16.7) | |
ORc (95% IC) | 1 | 1.03 (0.34–3.12) | 1.29 (0.29–5.77) | |
ORa 3 (95% IC) | 1 | 1.13 (0.36–3.52) | 0.97 (0.19–4.99) | |
Cognitive | ||||
BCSB 4 | ||||
Normal | 33 (40.2) | 41 (50.0) | 8 (9.8) | 0.04 |
Abnormal | 10 (41.7) | 7 (29.2) | 7 (29.2) | |
ORc (95% IC) | 1 | 0.56 (0.19–1.64) | 2.89 (0.84–9.95) | |
ORa 3 (95% IC) | 1 | 0.58 (0.20–1.73) | 3.51 (0.86–14.31) | |
Verbal fluency test | ||||
Normal | 29 (38.7) | 35 (46.7) | 11 (14.7) | 0.83 |
Abnormal | 14 (45.2) | 13 (41.9) | 4 (12.9) | |
ORc (95% IC) | 1 | 0.77 (0.31–1.89) | 0.75 (0.20–2.79) | |
ORa 3 (95% IC) | 1 | 0.79 (0.32–1.98) | 1.05 (0.25–4.34) | |
Stick design test | ||||
Normal | 42 (40.4) | 47 (45.2) | 15 (14.4) | 0.84 |
Abnormal | 1 (50.0) | 1 (50.0) | 0 (0.0) | |
ORc (95% IC) | 1 | 0.89 (0.05–14.74) | - | |
ORa 3 (95% IC) | 1 | 0.89 (0.05–14.87) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.C.d.; Oliveira, R.A.A.d.; Vasconcellos, A.C.S.d.; Rebouças, B.H.; Pinto, B.D.; Lima, M.d.O.; Jesus, I.M.d.; Machado, D.E.; Hacon, S.S.; Basta, P.C.; et al. Chronic Mercury Exposure and GSTP1 Polymorphism in Munduruku Indigenous from Brazilian Amazon. Toxics 2023, 11, 138. https://doi.org/10.3390/toxics11020138
Silva MCd, Oliveira RAAd, Vasconcellos ACSd, Rebouças BH, Pinto BD, Lima MdO, Jesus IMd, Machado DE, Hacon SS, Basta PC, et al. Chronic Mercury Exposure and GSTP1 Polymorphism in Munduruku Indigenous from Brazilian Amazon. Toxics. 2023; 11(2):138. https://doi.org/10.3390/toxics11020138
Chicago/Turabian StyleSilva, Mayara Calixto da, Rogério Adas Ayres de Oliveira, Ana Claudia Santiago de Vasconcellos, Bruno Hojo Rebouças, Bruna Duarte Pinto, Marcelo de Oliveira Lima, Iracina Maura de Jesus, Daniel Escorsim Machado, Sandra Souza Hacon, Paulo Cesar Basta, and et al. 2023. "Chronic Mercury Exposure and GSTP1 Polymorphism in Munduruku Indigenous from Brazilian Amazon" Toxics 11, no. 2: 138. https://doi.org/10.3390/toxics11020138