Dellaglioa Algida Cell-Free Supernatant Inhibits Pseudomonas Fluorescence and Pseudomonas Fragi by Destroying Cell Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Media, and Culture Conditions
2.2. Gas Chromatography–Mass Spectrometry Analysis of Total Composition of CFS
2.3. Protein Content Test of CFS
2.4. Test of Content of Total Sugars in CFS
2.5. Effect of CFS on Viability of Pseudomonas fluorescens and Pseudomonas fragi
2.6. Effect of CFS on Protease Activity of Pseudomonas fluorescens and Pseudomonas fragi
2.7. Effect of CFS on Amount of Protein and DNA Released from Pseudomonas fluorescens and Pseudomonas fragi
2.8. Effect of CFS on Composition of Pseudomonas fluorescens and Pseudomonas fragi Metabolites
2.9. Data Analysis
3. Results
3.1. Composition of CFS
3.2. Influence of CFS on Viability of Pseudomonas fluorescens and Pseudomonas fragi
3.3. Effect of CFS on Extracellular Protease Activity of Pseudomonas fluorescens and Pseudomonas fragi
3.4. Effect of CFS on Protein and DNA Released from Pseudomonas fluorescens and Pseudomonas fragi
3.5. Influence of CFS on Metabolism of Pseudomonas fluorescens and Pseudomonas fragi
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rocha, J.M.; Kovacevik, B.; Veličkovska, S.K.; Tamame, M.; Teixeira, J.A. Diversity of microorganisms and their metabolites in food. Microorganisms 2024, 12, 205. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of lactic acid bacteria in food preservation and safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, X.; Gu, S.; Yan, X.; Li, R.; Xia, S.; Chen, H.; Ge, J. Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China. Probiotics Antimicrob. Proteins 2019, 11, 1086–1099. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.; Park, S.; Kwon, O.H.; Seo, J.; Roh, S. Exopolysaccharide isolated from Lactobacillus plantarum L-14 has anti-inflammatory effects via the Toll-like receptor 4 pathway in LPS-induced RAW 264.7 cells. Int. J. Mol. Sci 2020, 21, 9283. [Google Scholar] [CrossRef]
- Das, S.; Konwar, B.K. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024, 132, 161–186. [Google Scholar] [CrossRef]
- Lenzmeier, T.D.; Mudaliar, N.S.; Stanbro, J.A.; Watters, C.; Ahmad, A.; Simons, M.P.; Ventolini, G.; Zak, J.C.; Colmer-Hamood, J.A.; Hamood, A.N. Application of Lactobacillus gasseri 63 AM supernatant to Pseudomonas aeruginosa-infected wounds prevents sepsis in murine models of thermal injury and dorsal excision. J. Med. Microbiol. 2019, 68, 1560–1572. [Google Scholar] [CrossRef]
- Cui, T.; Bai, F.; Sun, M.; Lv, X.; Li, X.; Zhang, D.; Du, H. Lactobacillus crustorum ZHG 2-1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. LWT 2020, 117, 108696. [Google Scholar] [CrossRef]
- Ramos, A.N.; Sesto Cabral, M.E.; Arena, M.E.; Arrighi, C.F.; Arroyo Aguilar, A.A.; Valdéz, J.C. Compounds from Lactobacillus plantarum culture supernatants with potential pro-healing and anti-pathogenic properties in skin chronic wounds. Pharm. Biol. 2015, 53, 350–358. [Google Scholar] [CrossRef]
- de Alcântara, A.L.D.; Bruzaroski, S.R.; Luiz, L.L.; de Souza, C.H.B.; Poli-Frederico, R.C.; Fagnani, R.; de Santana, E.H.W. Antimicrobial activity of Lactobacillus rhamnosus against Pseudomonas fluorescens and Pseudomonas putida from raw milk. J. Food Process. 2019, 43, e14082. [Google Scholar]
- Decoin, V.; Gallique, M.; Barbey, C.; Le Mauff, F.; Poc, C.D.; Feuilloley, M.G.; Orange, N.; Merieau, A. A Pseudomonas fluorescens type 6 secretion system is related to mucoidy, motility and bacterial competition. BMC Microbiol. 2015, 15, 72. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Chi, H.; Sun, L. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity. Front. Microbiol. 2016, 7, 209987. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Zühlke, D.; Caputo, L.; Logrieco, A.F.; Albrecht, D.; Riedel, K. Biofilm and pathogenesis-related proteins in the foodborne P. fluorescens ITEM 17298 with distinctive phenotypes during cold storage. Front. Microbiol. 2020, 11, 512885. [Google Scholar] [CrossRef]
- Ferrocino, I.; Ercolini, D.; Villani, F.; Moorhead, S.M.; Griffiths, M.W. Pseudomonas fragi strains isolated from meat do not produce N-acyl homoserine lactones as signal molecules. J. Food Prot. 2009, 72, 2597–2601. [Google Scholar] [CrossRef]
- Wang, G.Y.; Wang, H.H.; Han, Y.W.; Xing, T.; Ye, K.P.; Xu, X.L.; Zhou, G.H. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol. 2017, 63, 139–146. [Google Scholar] [CrossRef]
- Kato, Y.; Sakala, R.; Hayashidani, H.; Kiuchi, A.; Kaneuchi, C.; Ogawa, M. Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int. J. Syst. Evol. Microbiol. 2000, 50, 1143–1149. [Google Scholar] [CrossRef]
- Poirier, S.; Coeuret, G.; Champomier-Vergès, M.C.; Chaillou, S. Draft genome sequences of nine strains of Brochothrix thermosphacta, Carnobacterium divergens, Lactobacillus algidus, Lactobacillus fuchuensis, Lactococcus piscium, Leuconostoc gelidum subsp. gasicomitatum, Pseudomonas lundensis, and Weissella viridescens, a collection of Psychrotrophic species involved in meat and seafood spoilage. Genome Announc. 2018, 6, 10-1128. [Google Scholar]
- Sun, Z.; Harris, H.M.; McCann, A.; Guo, C.; Argimón, S.; Zhang, W.; Yang, X.; Jeffery, I.B.; Cooney, J.C.; Kagawa, T.F.; et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 2015, 6, 8322. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Werum, V.; Ehrmann, M. Description of Dellaglioa carnosa sp. nov., a novel species isolated from high-oxygen modified-atmosphere packaged meat. Syst. Appl. Microbiol. 2023, 46, 126423. [Google Scholar] [CrossRef]
- Säde, E.; Johansson, P.; Heinonen, T.; Hultman, J.; Björkroth, J. Growth and metabolic characteristics of fastidious meat-derived Lactobacillus algidus strains. Int. J. Food Microbiol. 2020, 313, 108379. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Zhan, Z.; Wei, T.; Ma, T.; Sun, J.; Song, J. Antibacterial mechanism of Dellaglioa algida against Pseudomonas fluorescens and Pseudomonas fragi. Fermentation 2022, 8, 298. [Google Scholar] [CrossRef]
- Grintzalis, K.; Georgiou, C.D.; Schneider, Y.J. An accurate and sensitive Coomassie Brilliant Blue G-250-based assay for protein determination. Anal. Biochem. 2015, 480, 28–30. [Google Scholar] [CrossRef]
- Yue, F.; Zhang, J.; Xu, J.; Niu, T.; Lü, X.; Liu, M. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Front. Nutr. 2022, 9, 963318. [Google Scholar] [CrossRef]
- Li, X.M.; Che, L.H.; Zhang, W.D.; Huang, Q.L.; Li, C.; Xu, B.C. Insight into the autochthonous bacterial strains as starter cultures for improving the flavor profiles of dry-cured duck: Changes in microbial diversity and metabolic profiles. Food Chem. 2024, 443, 138446. [Google Scholar] [CrossRef]
- Kang, H.y.; Ao, X.l.; Tang, Q.; Li, H.; Fan, Y.; Liu, A.p.; Zou, L.k.; Liu, S.l.; Yang, Y.; Zhao, N.; et al. Effects of yeast screened from traditional fermented milk on commercial fermented milk as adjunct flavor culture. Food Biosci. 2024, 57, 103551. [Google Scholar] [CrossRef]
- Moussaid, S.; El Alaoui, M.A.; Ounine, K.; Benali, A.; Bouhlal, O.; Rkhaila, A.; Hami, H.; El Maadoudi, E.H. In-vitro evaluation of the probiotic potential and the fermentation profile of Pediococcus and Enterococcus strains isolated from Moroccan camel milk. Arch. Microbiol. 2023, 205, 144. [Google Scholar] [CrossRef]
- Feng, X.; Wu, Z.; Weng, P. Characterization of metabolites of elderberry juice fermented by Lactobacillus bulgaricus BNCC336436 and Streptococcus thermophilus ABT-T using LC–MS/MS. J. Food Meas. Charact. 2022, 16, 4486–4496. [Google Scholar] [CrossRef]
- Bouton, Y.; Buchin, S.; Duboz, G.; Pochet, S.; Beuvier, E. Effect of mesophilic lactobacilli and enterococci adjunct cultures on the final characteristics of a microfiltered milk Swiss-type cheese. Food Microbiol. 2009, 26, 183–191. [Google Scholar] [CrossRef]
- Han, X.; Gao, H.; Lai, H.; Zhu, W.; Wang, Y. Anti-Aβ42 aggregative polyketides from the antarctic psychrophilic fungus Pseudogymnoascus sp. OUCMDZ-3578. J. Nat. Prod. 2023, 86, 882–890. [Google Scholar] [CrossRef]
- Shi, T.; Yu, Y.Y.; Dai, J.J.; Zhang, Y.T.; Hu, W.P.; Zheng, L.; Shi, D.Y. New polyketides from the Antarctic fungus Pseudogymnoascus sp. HSX2#-11. Mar. Drugs 2021, 19, 168. [Google Scholar] [CrossRef]
- Yap, P.C.; Ayuhan, N.; Woon, J.J.; Teh, C.S.J.; Lee, V.S.; Azman, A.S.; AbuBakar, S.; Lee, H.Y. Profiling of potential antibacterial compounds of lactic acid bacteria against extremely drug resistant (XDR) Acinetobacter baumannii. Molecules 2021, 26, 1727. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Menghani, E.; Mithal, R. GCMS analysis & assessment of antimicrobial potential of rhizospheric Actinomycetes of AIA3 isolate. Indian J. Tradit. Knowl. 2019, 19, 111–119. [Google Scholar]
- Zhang, C.; Zhang, Y.; Li, H.; Liu, X. The potential of proteins, hydrolysates and peptides as growth factors for Lactobacillus and Bifidobacterium: Current research and future perspectives. Food Funct. 2020, 11, 1946–1957. [Google Scholar] [CrossRef]
- Angelin, J.; Kavitha, M. Exopolysaccharides from probiotic bacteria and their health potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Ahangari, H.; Yazdani, P.; Ebrahimi, V.; Soofiyani, S.R.; Azargun, R.; Tarhriz, V.; Eyvazi, S. An Updated review on production of food derived bioactive peptides; focus on the psychrotrophic bacterial proteases. Biocatal. Agric. Biotechnol. 2021, 35, 102051. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F.; Marx, J.C.; Gerday, C. Psychrophiles: From Biodiversity to Biotechnology; Springer: Berlin, Germany, 2008; Volume 16. [Google Scholar]
- Lv, X.; Ma, H.; Sun, M.; Lin, Y.; Bai, F.; Li, J.; Zhang, B. A novel bacteriocin DY4-2 produced by Lactobacillus plantarum from cutlassfish and its application as bio-preservative for the control of Pseudomonas fluorescens in fresh turbot (Scophthalmus maximus) fillets. Food Control 2018, 89, 22–31. [Google Scholar] [CrossRef]
- Adebayo-Tayo, B.; Fashogbon, R. In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. bulgaricus. Heliyon 2020, 6, e03268. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, H.; Aslim, B.; Yuksekdag, Z. Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (l-EPSs) from Lactobacilli strains. Int. J. Food Prop. 2017, 20, 362–371. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, Y.; Wu, Q.; Guo, W.; Chen, H.; Zhang, W.; Li, Y.; Lu, Y.; Wu, Q.; Pan, W.; et al. Antibacterial effect and mechanism against Escherichia coli of polysaccharides from Armillariella tabescens mycelia. Int. J. Biol. Macromol. 2022, 207, 750–759. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Mehwish, H.M.; Hayat, H.F.; Hussain, N.; Sarwar, S.; Aslam, H.; Nadeem, A.; Shi, J. Characterization, the antioxidant and antimicrobial activity of exopolysaccharide isolated from poultry origin Lactobacilli. Probiotics Antimicrob. Proteins 2019, 11, 1132–1142. [Google Scholar] [CrossRef]
- Kasibhatla, S.; Amarante-Mendes, G.P.; Finucane, D.; Brunner, T.; Bossy-Wetzel, E.; Green, D.R. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harb. Protoc. 2006, 2006, pdb-prot4493. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, O.S.; Iliopoulos, V.; Mallouchos, A.; Panagou, E.Z.; Chorianopoulos, N.; Tassou, C.C.; Nychas, G.J.E. Spoilage potential of Pseudomonas (P. fragi, P. putida) and LAB (Leuconostoc mesenteroides, Lactobacillus sakei) strains and their volatilome profile during storage of sterile pork meat using GC/MS and data analytics. Foods 2020, 9, 633. [Google Scholar] [CrossRef] [PubMed]
- Orr, A.A.; Yang, J.; Sule, N.; Chawla, R.; Hull, K.G.; Zhu, M.; Romo, D.; Lele, P.P.; Jayaraman, A.; Manson, M.D.; et al. Molecular mechanism for attractant signaling to DHMA by E. coli Tsr. Biophys. J. 2020, 118, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Abouelhassan, Y.; Gill, C.M.; Nicolau, D.P. Assessing the in vivo efficacy of rational antibiotics and combinations against difficult-to-treat Pseudomonas aeruginosa producing GES β-lactamases. J. Antimicrob. Chemother. 2023, 78, 1843–1847. [Google Scholar] [CrossRef]
Peak# | Ret.Time | Proc.From | Proc.To | Area | Height | A/H | Conc. |
---|---|---|---|---|---|---|---|
A | 8.756 | 8.569 | 9.4 | 2,937,043 | 253,410 | 11.59 | 31.56 |
B | 29.902 | 29.844 | 29.969 | 27,1905 | 175,282 | 1.55 | 2.92 |
C | 30.238 | 30.157 | 30.95 | 4,748,302 | 1,802,451 | 2.63 | 51.03 |
D | 31.724 | 31.682 | 31.788 | 19,9037 | 191,866 | 1.04 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wei, T.; Ma, T.; Fan, Z.; Song, J. Dellaglioa Algida Cell-Free Supernatant Inhibits Pseudomonas Fluorescence and Pseudomonas Fragi by Destroying Cell Membranes. Foods 2024, 13, 2986. https://doi.org/10.3390/foods13182986
Sun Y, Wei T, Ma T, Fan Z, Song J. Dellaglioa Algida Cell-Free Supernatant Inhibits Pseudomonas Fluorescence and Pseudomonas Fragi by Destroying Cell Membranes. Foods. 2024; 13(18):2986. https://doi.org/10.3390/foods13182986
Chicago/Turabian StyleSun, Yao, Tianhui Wei, Tongqing Ma, Zhiying Fan, and Jinzhu Song. 2024. "Dellaglioa Algida Cell-Free Supernatant Inhibits Pseudomonas Fluorescence and Pseudomonas Fragi by Destroying Cell Membranes" Foods 13, no. 18: 2986. https://doi.org/10.3390/foods13182986