Effect of Integrated Extraction Techniques on the Technofunctional and Bioactive Properties of Brosimum alicastrum Swartz Proteins
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Protein Extraction
2.3. Characterization of Technofunctional Properties
Water Protein Solubility (WPS)
2.4. Emulsifying Properties
2.5. Foaming Properties
2.6. Fat Absorption Capacity (FAC)
2.7. Water Absorption Capacity (WAC)
2.8. Amino Acid Content and Distribution
2.9. In Vitro Antioxidant Properties
Free Radical Scavenging
2.10. Chelating Capacity
2.11. Reducing Power
2.12. In Vitro Anti-Inflammatory Properties
Inhibition of Protein Thermal Denaturation
2.13. Cell Membrane Stabilization
2.14. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Technofunctional Properties
3.2. Amino Acid Content and Distribution
3.3. In Vitro Antioxidant Properties
3.4. In Vitro Anti-Inflammatory Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tay, W.; Quek, R.; Lim, J.; Bhupinder, K.; Shalini, P.; Christiani, J.H. Plant-based alternative proteins—Are they nutritionally more advantageous? Eur. J. Clin. Nutr. 2023, 77, 1051–1060. [Google Scholar] [CrossRef]
- Santillán-Fernández, A.; González-Pérez, C.; Bautista-Ortega, J.; Huicab-Pech, Z.G.; Escobar-Castillo, J.; Larqué-Saavedra, A. Brosimum alicastrum Swartz como alternativa para la reconversión productiva de áreas agrosilvopastoriles en Campeche. Rev. Mex. Cienc. For. 2020, 11, 51–69. [Google Scholar] [CrossRef]
- Tang, J.; Yao, D.; Xia, S.; Cheong, L.Z.; Tu, M. Recent progress in plant-based proteins: From extraction and modification methods to applications in the food industry. Food Chem. X 2024, 23, 101540. [Google Scholar] [CrossRef]
- Chibuye, B.; Singh, S.I.; Chimuka, L.; Maseka, K.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Muhammed, N.; Kappat, V.S.; Basheer, A.; Cherakkathodi, S.; Plachikkattu, P.A.; Shabir, A.M.; Nemtanu, M.R.; George, J.; Lackner, M.; Mousavi, K.A. Contemporary insights into the extraction, functional properties, and therapeutic applications of plant proteins. J. Agric. Food Res. 2023, 14, 100861. [Google Scholar] [CrossRef]
- Anuruddika, H.; Oladipupo, O.O.; Chamila, N.; Maneka, M.; Rotimi, E.A.; Nandika, B. Novel extraction technologies for developing plant protein ingredients with improved functionality. Trends Food Sci. Technol. 2022, 129, 492–511. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Owolabi, I.O.; Fadairo, O.S.; Ghosal, A.; Coker, O.J.; Soladoye, O.P.; Aluko, R.E.; Bandara, N. Enzymatic modification of plant proteins for improved functional and bioactive properties. Food Bioprocess Technol. 2023, 16, 1216–1234. [Google Scholar] [CrossRef]
- Rodríguez-Ambriz, S.L.; Martínez-Ayala, A.L.; Millán, F.; Dávila-Ortíz, G. Composition and functional properties of Lupinus campestris protein isolates. Plant Foods Hum. Nutr. 2005, 60, 99–107. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Pedroche, J.; Yust, M.; Lqari, H.; Giron-Calle, J.; Alaiz, M.; Vioque, J.; Millan, F. Brassica carinata protein isolates: Chemical composition, protein characterization and improvement of functional properties by protein hydrolysis. Food Chem. 2004, 88, 337–346. [Google Scholar] [CrossRef]
- Sze-Tao, K.; Sathe, S. Functional properties and in vitro digestibility of almond (Prunus dulcis L.) protein isolate. Food Chem. 2000, 69, 153–160. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N. Studies on functional, thermal, and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- Diniyah, N.; Alam, B.M.; Lee, S.-H. Antioxidant potential of non-oil seed legumes of Indonesian’s ethnobotanical extracts. Arab. J. Chem. 2020, 13, 5208–5217. [Google Scholar] [CrossRef]
- Niveditha, V.R.; Sridhar, K.R. Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India. J. Food Sci. Technol. 2014, 51, 3253–3260. [Google Scholar] [CrossRef]
- Khan, A.; Khan, H.; Rauf, A.; Ben Hadda, T. Inhibition of thermal induced protein denaturation of extract/fractions of Withania somnifera and isolated withanolides. Nat. Prod. Res. 2015, 29, 2318–2321. [Google Scholar] [CrossRef]
- Yesmin, S.; Paul, A.; Naz, T.; Atiqur Rahman, A.B.M.; Akhter, S.F.; Ibne Wahed, M.I.; Emran, T.B.; Siddiqu, S.A. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clin. Phytosci. 2020, 6, 59. [Google Scholar] [CrossRef]
- Grossmann, L.; David Julian McClements, D.J. Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll. 2023, 137, 108416. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Liu, Z.; Zhi, L.; Jiao, B.; Hu, H.; Ma, X.; Agyei, D.; Shi, A. Plant protein-based emulsifiers: Mechanisms, techniques for emulsification enhancement and applications. Food Hydrocoll. 2023, 144, 109008. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of ingredients and additives in plant-based meat analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Del Mar Contreras, M.; Lama-Muñoz, A.; Gutiérrez-Pérez, J.M.; Espínola, F.; Moya, M.; Castro, E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresour. Technol. 2019, 280, 459–477. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Verma, R.; Punia, S.; Mahapatra, A.; Belwal, T.; Dahuja, A.; Joshi, S.; Berwal, M.K.; et al. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocoll. 2021, 115, 106595. [Google Scholar] [CrossRef]
- Görgüç, A.; Özer, P.; Yılmaz, F.M. Simultaneous effect of vacuum and ultrasound assisted enzymatic extraction on the recovery of plant protein and bioactive compounds from sesame bran. J. Food Compos. Anal. 2020, 87, 103424. [Google Scholar] [CrossRef]
- Di Filippo, G.; Melchior, S.; Plazzotta, S.; Calligaris, S.; Innocente, N. Effect of enzymatic hydrolysis with Alcalase or Protamex on technological and antioxidant properties of whey protein hydrolysates. Food Res. Int. 2024, 188, 114499. [Google Scholar] [CrossRef]
- Ahmadinejad, F.; Geir-Møller, S.; Hashemzadeh-Chaleshtori, M.; Bidkhori, G.; Jami, M.S. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants 2017, 6, 51. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M.K.; Sampathrajan, V.; Sayed, A.S.; et al. Plant-based proteins and their multifaceted industrial applications. LWT 2022, 154, 112620. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining protein nutrition through plant-based foods. Front. Nutr. 2022, 8, 772573. [Google Scholar] [CrossRef]
- Seelig, J.; Seelig, A. Protein Stability-Analysis of heat and cold denaturation without and with unfolding models. J. Phys. Chem. B 2023, 127, 3352–3363. [Google Scholar] [CrossRef]
Extraction Treatment | ET1 | ET2 | ET3 | ET1 | ET2 | ET3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | FC | FS | FC | FS | FC | FS | EC | ES | EC | ES | EC | ES |
2 | 20.0 a | 20.0 a | ND | ND | ND | ND | 50.0 a | ND | 55.6 a | ND | 44.4 a | ND |
4 | ND | ND | ND | ND | 20.0 a | 20.0 a | 60.0 b | 10.0 a | 55.6 a | ND | 44.4 a | 11.1 |
6 | 20.0 a | 20.0 a | 20.0 a | 20.0 a | ND | ND | 100.0 c | 10.0 a | 100.0 b | 10.0 a | 60.0 b | 10.0 a |
8 | ND | ND | ND | ND | ND | ND | 100.0 c | 20.0 b | 100.0 b | 10.0 a | 100.0 c | 20.0 b |
10 | ND | ND | 20.0 a | 20.0 a | 40.0 b | 40.0 b | 100.0 c | 20.0 b | 100.0 b | 20.0 b | 100.0 c | 20.0 b |
12 | 20.0 a | ND | ND | ND | ND | ND | 100.0 c | 20.0 b | 100.0 b | 20.0 b | 100.0 c | 30.0 c |
Extraction | WAC | FAC |
---|---|---|
ET1 | 3.4 ± 0.2 b | 2.2 ± 0.1 a |
ET2 | 3.3 ± 0.1 b | 2.4 ± 0.2 a |
ET3 | 2.7 ± 0.1 a | 2.8 ± 0.1 b |
Amino Acid | ET1 | ET2 | ET3 |
---|---|---|---|
Alanine | 2.06 | 1.85 | 0.23 |
Arginine | 1.89 | 1.70 | 0.20 |
Aspartic acid | 2.16 | 1.81 | 0.28 |
Cysteine | ND | ND | ND |
Glutamic acid | 3.01 | 2.42 | 0.32 |
Glycine | 1.65 | 1.46 | 0.18 |
Histidine | 0.61 | 0.45 | 0.07 |
Isoleucine | 1.34 | 1.21 | 0.14 |
Leucine | 2.54 | 2.38 | 0.28 |
Lysine | 1.61 | 1.29 | 0.15 |
Methionine | 0.06 | 0.07 | 0.01 |
Phenylalanine | 1.49 | 1.35 | 0.16 |
Proline | 1.72 | 1.56 | 0.19 |
Serine | 1.70 | 1.42 | 0.19 |
Tryptophan | ND | ND | ND |
Tyrosine | 0.37 | 0.34 | 0.04 |
Threonine | 1.63 | 1.45 | 0.19 |
Valine | 2.03 | 1.82 | 0.21 |
Glutamine | ND | ND | ND |
Asparagine | ND | ND | ND |
Amino acid distribution (%) | |||
Nonpolar or hydrophobic | 14.50 | 15.01 | 14.08 |
Uncharged polar | 22.92 | 22.36 | 22.18 |
Negatively charged | 32.93 | 32.06 | 34.51 |
Positively charged | 23.08 | 24.27 | 22.54 |
Extraction | In Vitro Antioxidant Properties (%) | ||
---|---|---|---|
Radical Scavenging | Chelating Capacity | Reducing Power | |
ET1 | 33.19 ± 2.5 a | 25.78 ± 2.8 b | 85.31 ± 4.1 c |
ET2 | 42.56 ± 1.7 b | 18.73 ± 1.1 a | 73.08 ± 2.6 b |
ET3 | 32.16 ± 1.8 a | 52.94 ± 5.7 c | 53.43 ± 3.1 a |
Extraction | In Vitro Anti-Inflammatory Properties (%) | |
---|---|---|
Inhibition of Protein Thermal Denaturation | Cell Membrane Stabilization | |
ET1 | 40.44 ± 3.5 a | 4.78 ± 0.8 a |
ET2 | 64.11 ± 4.7 c | 7.73 ± 1.1 a |
ET3 | 57.35 ± 2.8 b | 5.94 ± 0.6 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Hernández, M.F.; Posada Ramirez, S.G.; Castillo Cruz, D.d.C.; Higuera Ciapara, I.; Pacheco López, N.A.; Herrera Pool, I.E.; Ruiz-Ruiz, J.C. Effect of Integrated Extraction Techniques on the Technofunctional and Bioactive Properties of Brosimum alicastrum Swartz Proteins. Foods 2024, 13, 2875. https://doi.org/10.3390/foods13182875
Suárez-Hernández MF, Posada Ramirez SG, Castillo Cruz DdC, Higuera Ciapara I, Pacheco López NA, Herrera Pool IE, Ruiz-Ruiz JC. Effect of Integrated Extraction Techniques on the Technofunctional and Bioactive Properties of Brosimum alicastrum Swartz Proteins. Foods. 2024; 13(18):2875. https://doi.org/10.3390/foods13182875
Chicago/Turabian StyleSuárez-Hernández, María Fernanda, Sara Gabriela Posada Ramirez, Darling del Carmen Castillo Cruz, Inocencio Higuera Ciapara, Neith Aracely Pacheco López, Iván Emanuel Herrera Pool, and Jorge Carlos Ruiz-Ruiz. 2024. "Effect of Integrated Extraction Techniques on the Technofunctional and Bioactive Properties of Brosimum alicastrum Swartz Proteins" Foods 13, no. 18: 2875. https://doi.org/10.3390/foods13182875