Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications
Abstract
:1. Introduction
2. Characterization of Pumpkin By-Products
2.1. Pumpkin Pomace
2.2. Pumpkin Peels
2.3. Pumpkin Seeds
3. Biochemical Components of By-Products from Pumpkins
3.1. Phenolic Compounds
3.2. Proteins and Amino Acids
3.3. Dietary Fiber
3.4. Fatty Acids
3.5. Minerals
3.6. Vitamins
4. Innovative Applications of Pumpkin By-Products
4.1. Natural Food Additives
Additional Applications of Pumpkin By-Products
5. Various Techniques for the Extraction of Bioactives from Pumpkin By-Products
5.1. Conventional Techniques
5.2. Modern Extraction Techniques
5.2.1. Ultrasound-Assisted Extraction (UAE)
5.2.2. Microwave-Assisted Extraction (MAE)
5.2.3. Supercritical Fluid Extraction (SFE)
5.2.4. Deep Eutectic Solvents Extraction (DESE)
6. Potential Health Benefits of Pumpkin By-Products
6.1. Antioxidant Activity
6.2. Antihypertensive and Cardioprotective Activity
6.3. Anticancer Activity
6.4. Anti-Hyperlipidemic Effect
6.5. Anti-Diabetic Effect
6.6. Anti-Inflammatory Effect
6.7. Antimicrobial Effect
6.8. Other Health Benefits
7. A Biorefinery Approach for the Valorization of Industrial Pumpkin By-Products
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aruah, C.B.; Uguru, M.I.; Oyiga, B.C. Variations among Some Nigerian Cucurbita Landraces. Afr. J. Plant Sci. 2010, 4, 374–386. [Google Scholar] [CrossRef]
- Saavedra, M.J.; Aires, A.; Dias, C.; Almeida, J.A.; De Vasconcelos, M.C.B.M.; Santos, P.; Rosa, E.A. Evaluation of the Potential of Squash Pumpkin By-Products (Seeds and Shell) as Sources of Antioxidant and Bioactive Compounds. J. Food Sci. Technol. 2015, 52, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kaur, G.; Kehinde, B.A.; Chhikara, N.; Panghal, A.; Kaur, H. Pharmacological and Biomedical Uses of Extracts of Pumpkin and Its Relatives and Applications in the Food Industry: A Review. Int. J. Veg. Sci. 2020, 26, 79–95. [Google Scholar] [CrossRef]
- Global Biodiversity Information Facility (GBIF) Global Biodiversity Information Facility (GBIF). Available online: https://www.gbif.org/species/2874515 (accessed on 9 May 2024).
- Men, X.; Choi, S.-I.; Han, X.; Kwon, H.-Y.; Jang, G.-W.; Choi, Y.-E.; Park, S.-M.; Lee, O.-H. Physicochemical, Nutritional and Functional Properties of Cucurbita Moschata. Food Sci. Biotechnol. 2021, 30, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita Maxima Duchesne) Cultivars. Molecules 2019, 24, 3212. [Google Scholar] [CrossRef]
- FAOSTAT Statistic Database FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/qcl (accessed on 11 July 2023).
- Bemfeito, C.M.; Carneiro, J.d.D.S.; Carvalho, E.E.N.; Coli, P.C.; Pereira, R.C.; Vilas Boas, E.V.D.B. Nutritional and Functional Potential of Pumpkin (Cucurbita Moschata) Pulp and Pequi (Caryocar Brasiliense Camb.) Peel Flours. J. Food Sci. Technol. 2020, 57, 3920–3925. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kim, E.J.; Kim, Y.-N.; Choi, C.; Lee, B.-H. Comparison of the Chemical Compositions and Nutritive Values of Various Pumpkin (Cucurbitaceae) Species and Parts. Nutr. Res. Pract. 2012, 6, 21–27. [Google Scholar] [CrossRef]
- Białek, A.; Jelińska, M.; Tokarz, A. Influence of Maternal Diet Enrichment with Conjugated Linoleic Acids on Lipoxygenase Metabolites of Polyunsaturated Fatty Acids in Serum of Their Offspring with 7,12-Dimethylbenz[a]Anthracene Induced Mammary Tumors. Prostaglandins Other Lipid Mediat. 2015, 116–117, 10–18. [Google Scholar] [CrossRef]
- Burger Staichok, A.C.; Mendonça, K.R.B.; Santos, P.G.A.d.; Garcia, L.G.C.; Damiani, C. Pumpkin Peel Flour (Cucurbita Máxima L.)—Characterization and Technological Applicability. J. Food. Nutr. Res. 2016, 4, 327–333. [Google Scholar] [CrossRef]
- Blanco-Díaz, M.T.; Font, R.; Martínez-Valdivieso, D.; Del Río-Celestino, M. Diversity of Natural Pigments and Phytochemical Compounds from Exocarp and Mesocarp of 27 Cucurbita Pepo Accessions. Sci. Hortic. 2015, 197, 357–365. [Google Scholar] [CrossRef]
- Ratnam, N.; Vandana; Najibullah, M.; Ibrahim, M. A Review on Cucurbita Pepo. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 1190–1194. [Google Scholar]
- Amin, M.Z.; Islam, T.; Mostofa, F.; Uddin, M.J.; Rahman, M.M.; Satter, M.A. Comparative Assessment of the Physicochemical and Biochemical Properties of Native and Hybrid Varieties of Pumpkin Seed and Seed Oil (Cucurbita Maxima Linn.). Heliyon 2019, 5, e02994. [Google Scholar] [CrossRef]
- Pacheco, A.F.C.; Pacheco, F.C.; Cunha, J.S.; dos Santos, F.R.; Pacheco, J.C.C.; Correa, K.d.P.; Junior, W.d.A.O.; Paiva, P.H.C.; Junior, B.R.d.C.L. Bibliometric analysis of pumpkin seed proteins: A review of the multifunctional properties of their hydrolysates and future perspectives. Food Bioscie. 2024, 59, 104269. [Google Scholar] [CrossRef]
- Lolli, V.; Viscusi, P.; Bonzanini, F.; Conte, A.; Fuso, A.; Larocca, S.; Leni, G.; Caligiani, A. Oil and protein extraction from fruit seed and kernel by-products using a one pot enzymatic-assisted mild extraction. Food Chem. 2024, 19, 100819. [Google Scholar] [CrossRef]
- Mallqui, L.A.; Canchumanya, M.B.; Papa, H.R.; Rodríguez, G.; Aguirre, E.; Hidalgo, A. Physico-chemical characteristics of flours obtained from raw, roasted and autoclaved Cucurbita, Passiflora and Annona seeds. Int. J. Food Sci. Technol. 2024, 59, 2079–2822. [Google Scholar] [CrossRef]
- Łaba, W.; Wilk, M.; Cwynar, M.; Ciurko, D.; Piegza, M. Simultaneous Extraction and Hydrolysis of Pumpkin Oilseed Cake Proteins Using Active Culture of Proteolytic Bacillus subtilis. Waste Biomass Valori. 2024, 15, 5013–5023. [Google Scholar] [CrossRef]
- Chen, X.; Chen, L.; Li, J.; Xu, Y.; Wu, J.; Peng, J.; Cheng, L.; Fu, M.; Yu, Y.; Li, L. Pectins from food waste: Characterization and functional properties of pectic polysaccharide extracted from pumpkin (Cucurbita moschata Duch.) peels. Eur. Food Res. Technol. 2024, 250, 1803–1814. [Google Scholar] [CrossRef]
- Jun, H.-I.; Lee, C.-H.; Song, G.-S.; Kim, Y.-S. Characterization of the Pectic Polysaccharides from Pumpkin Peel. LWT—Food Sci. Technol. 2006, 5, 554–561. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Farzaei, M.H.; Abdolghaffari, A.H.; Rahimi, R.; Samadi, N.; Heidari, M.; Esfandyari, M.; Baeeri, M.; Hassanzadeh, G.; Abdollahi, M.; et al. Evaluation of Phytochemicals, Antioxidant and Burn Wound Healing Activities of Cucurbita Moschata Duchesne Fruit Peel. Iran. J. Basic. Med. Sci. 2017, 20, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Kausar, T.; Din, A.; Murtaza, M.A.; Jamil, M.A.; Noreen, S.; ur Rehman, H.; Shabbir, H.; Ramzan, M.A. Determination of Total Phenolic, Flavonoid, Carotenoid, and Mineral Contents in Peel, Flesh, and Seeds of Pumpkin (Cucurbita Maxima). J. Food Process. Preserv. 2021, 45, e15542. [Google Scholar] [CrossRef]
- Habtemariam, S. The Chemical and Pharmacological Basis of Pumpkins (Cucurbita Species) as Potential Therapy for Type-2 Diabetes. In Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases; Habtemariam, S., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 473–502. ISBN 978-0-08-102922-0. [Google Scholar]
- Ahmed, Z.; Chen, J.; Tufail, T.; Latif, A.; Arif, M.; Ullah, R.; Alqahtani, A.S.; Xu, B. Fundamental opportunities and challenges of nutraceutical noodles enriched with agri-food by-products. Trends Food Sci. Technol. 2024, 143, 104299. [Google Scholar] [CrossRef]
- Villamill, R.-A.; Escobar, N.; Romero, L.N.; Huesa, R.; Plazas, A.V.; Gutiérrez, C.; Robelto, G.E. Perspectives of pumpkin pulp and pumpkin shell and seeds uses as ingredients in food formulation. Nutr. Food Sci. 2023, 53, 459–473. [Google Scholar] [CrossRef]
- Valdez-Arjona, L.P.; Ramírez-Mella, M. Pumpkin Waste as Livestock Feed: Impact on Nutrition and Animal Health and on Quality of Meat, Milk, and Egg. Animals 2019, 9, 769. [Google Scholar] [CrossRef]
- Derkanosova, N.M.; Vasilenko, O.A.; Peregonchaya, O.V.; Sokolova, S.A.; Zajceva, I.I.; Ponomareva, I.N.; Shelamova, S.A. Research of Composition and Properties of Pumpkin Pomace as Functional Food Ingredient; Atlantis Press: Paris, France, 2018; pp. 771–775. [Google Scholar]
- Torkova, A.A.; Lisitskaya, K.V.; Filimonov, I.S.; Glazunova, O.A.; Kachalova, G.S.; Golubev, V.N.; Fedorova, T.V. Physicochemical and Functional Properties of Cucurbita Maxima Pumpkin Pectin and Commercial Citrus and Apple Pectins: A Comparative Evaluation. PLoS ONE 2018, 13, e0204261. [Google Scholar] [CrossRef]
- Turksoy, S.; Özkaya, B. Pumpkin and Carrot Pomace Powders as a Source of Dietary Fiber and Their Effects on the Mixing Properties of Wheat Flour Dough and Cookie Quality. Food Sci. Technol. Res. 2011, 17, 545–553. [Google Scholar] [CrossRef]
- Dhiman, A.; Sharma, K.; Attri, S. Functional Constituents and Processing of Pumpkin: A Review. J. Food Sci. Technol. 2009, 46, 411–417. [Google Scholar]
- Song, J.; Wang, X.; Li, D.; Meng, L.; Liu, C. Degradation of Carotenoids in Pumpkin (Cucurbita Maxima L.) Slices as Influenced by Microwave Vacuum Drying. Int. J. Food Prop. 2017, 20, 1479–1487. [Google Scholar] [CrossRef]
- Nuerbiya, Y.; Agbaje, R.; Abdulla, A. Optimization of Extraction Pigment from Pumpkin Skin Product’s Stability. Food Ferment. Ind. 2014, 40, 216–222. [Google Scholar]
- Ninčević Grassino, A.; Rimac Brnčić, S.; Badanjak Sabolović, M.; Šic Žlabur, J.; Marović, R.; Brnčić, M. Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules 2023, 28, 858. [Google Scholar] [CrossRef]
- Nyam, K.L.; Lau, M.; Tan, C.P. Fibre from Pumpkin (Cucurbita Pepo L.) Seeds and Rinds: Physico-Chemical Properties, Antioxidant Capacity and Application as Bakery Product Ingredients. Malays. J. Nutr. 2013, 19, 99–109. [Google Scholar] [PubMed]
- Kurian, A.; Kripanand, S. Nutritional Composition and Antioxidant Activity of Pumpkin Wastes. RJPBCS 2016, 6, 336–344. [Google Scholar]
- Badr, S.E.A.; Shaaban, M.; Elkholy, Y.M.; Helal, M.H.; Hamza, A.S.; Masoud, M.S.; El Safty, M.M. Chemical Composition and Biological Activity of Ripe Pumpkin Fruits (Cucurbita Pepo L.) Cultivated in Egyptian Habitats. Nat. Prod. Res. 2011, 25, 1524–1539. [Google Scholar] [CrossRef]
- Hernández-Santos, B.; Rodríguez-Miranda, J.; Herman-Lara, E.; Torruco-Uco, J.G.; Carmona-García, R.; Juárez-Barrientos, J.M.; Chávez-Zamudio, R.; Martínez-Sánchez, C.E. Effect of Oil Extraction Assisted by Ultrasound on the Physicochemical Properties and Fatty Acid Profile of Pumpkin Seed Oil (Cucurbita Pepo). Ultrason. Sonochemistry 2016, 31, 429–436. [Google Scholar] [CrossRef]
- Karanja, J.; Mugendi, B.J.; Khamis, F.; Muchugi, A. Nutritional Composition of the Pumpkin (Cucurbita Spp.) Seed Cultivated from Selected Regions in Kenya. J. Hortic. Lett. 2013, 3, 17–22. [Google Scholar]
- Andjelkovic, M.; Van Camp, J.; Trawka, A.; Verhé, R. Phenolic Compounds and Some Quality Parameters of Pumpkin Seed Oil. Eur. J. Lipid Sci. Technol. 2010, 112, 208–217. [Google Scholar] [CrossRef]
- Al-Okbi, S.Y.; Mohamed, D.A.; Kandil, E.; Abo-Zeid, M.A.; Mohammed, S.E.; Ahmed, E.K. Anti-Inflammatory Activity of Two Varieties of Pumpkin Seed Oil in an Adjuvant Arthritis Model in Rats. Grasas Y Aceites 2017, 68, e180. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.E.; El-Sayed El-Shamarka, M.; Salem, N.A.; El-Mosallamy, A.E.M.K.; Sleem, A.A. Amelioration of the Haloperidol-Induced Memory Impairment and Brain Oxidative Stress by Cinnarizine. EXCLI J. 2012, 11, 517–530. [Google Scholar] [PubMed]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, 2440–2492. [Google Scholar] [CrossRef]
- Gohari Ardabili, A.; Farhoosh, R.; Haddad Khodaparast, M.H. Chemical Composition and Physicochemical Properties of Pumpkin Seeds (Cucurbita Pepo Subsp. Pepo Var. Styriaka) Grown in Iran. J. Agric. Sci. Technol. 2011, 13, 1053–1063. [Google Scholar]
- PubChem PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 22 July 2024).
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Ghisoni, S.; Chiodelli, G.; Rocchetti, G.; Kane, D.; Lucini, L. UHPLC-ESI-QTOF-MS Screening of Lignans and Other Phenolics in Dry Seeds for Human Consumption. J. Funct. Foods 2017, 34, 229–236. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of Antioxidant Activity and Composition of Pumpkin Seed Oils in 12 Cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from Fruit Processing Wastes: Green Approaches to Valuable Chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Quintana, S.E.; Marsiglia, R.M.; Machacon, D.; Torregroza, E.; García-Zapateiro, L.A. Chemical Composition and Physicochemical Properties of Squash (Cucurbita Moschata) Cultivated in Bolivar Department (Colombia). Contemp. Eng. Sci. 2018, 11, 1003–1012. [Google Scholar] [CrossRef]
- Lalnunthari, C.; Devi, L.M.; Amami, E.; Badwaik, L.S. Valorisation of Pumpkin Seeds and Peels into Biodegradable Packaging Films. FBP 2019, 118, 58–66. [Google Scholar] [CrossRef]
- Andrikopoulos, N.K.; Chiou, A.; Mylona, A. Triacylglycerol Species of Less Common Edible Vegetable Oils. Food Rev. Int. 2004, 20, 389–405. [Google Scholar] [CrossRef]
- Montesano, D.; Blasi, F.; Simonetti, M.S.; Santini, A.; Cossignani, L. Chemical and Nutritional Characterization of Seed Oil from Cucurbita Maxima L. (Var. Berrettina) Pumpkin. Foods 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, Ö.; Özcan, M.M.; Seymen, M.; Paksoy, M.; Uslu, N.; Fidan, S.M. Physico-Chemical Properties and Fatty Acid Compositions of Some Edible Pumpkin Seed Genotypes and Oils. J. Agroaliment. Process. Technol. 2017, 23, 229–235. [Google Scholar]
- Glew, R.H.; Glew, R.S.; Chuang, L.-T.; Huang, Y.-S.; Millson, M.; Constans, D.; Vanderjagt, D.J. Amino Acid, Mineral and Fatty Acid Content of Pumpkin Seeds (Cucurbita Spp.) and Cyperus Esculentus Nuts in the Republic of Niger. Plant Foods Hum. Nutr. 2006, 61, 49–54. [Google Scholar] [CrossRef]
- Idouraine, A.; Kohlhepp, E.A.; Weber, C.W.; Warid; Martinez-Tellez, J.J. Nutrient Constituents from Eight Lines of Naked Seed Squash (Cucurbita Pepo L.). J. Agric. Food Chem. 1996, 44, 721–724. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Quddoos, M.Y.; Aslam, J.; Liaqat, A.; Siddique, T.; An, Q.U.; Kauser, S.; et al. A Review on Biochemical Constituents of Pumpkin and Their Role as Pharma Foods; a Key Strategy to Improve Health in Post COVID 19 Period. Food Prod. Process. Nutr. 2023, 5, 22. [Google Scholar] [CrossRef]
- Lin, C.-T.; Tejano, L.A.; Panjaitan, F.C.A.; Permata, V.N.S.; Sevi, T.; Chang, Y.-W. Protein identification and potential bioactive peptides from pumpkin (Cucurbita maxima) seeds. Food Sci. Nutr. 2024, 12, 5388–5402. [Google Scholar] [CrossRef]
- Murkovic, M.; Mülleder, U.; Neunteufl, H. Carotenoid Content in Different Varieties of Pumpkins. J. Food Comp. Anal. 2002, 15, 633–638. [Google Scholar] [CrossRef]
- Tokudome, Y.; Imaeda, N.; Ikeda, M.; Kitagawa, I.; Fujiwara, N.; Tokudome, S. Foods Contributing to Absolute Intake and Variance in Intake of Fat, Fatty Acids and Cholesterol in Middle-Aged Japanese. J. Epidemiol. 1999, 9, 78–90. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zha, X.; Mei, Y.; Xia, J.; Jiao, Z. Supercritical Carbon Dioxide Extraction of β-Carotene and α-Tocopherol from Pumpkin: A Box–Behnken Design for Extraction Variables. Anal. Methods 2017, 9, 294–303. [Google Scholar] [CrossRef]
- Rezig, L.; Martine, L.; Nury, T.; Msaada, K.; Mahfoudhi, N.; Ghzaiel, I.; Prost-Camus, E.; Durand, P.; Midaoui, A.E.; Acar, N.; et al. Profiles of Fatty Acids, Polyphenols, Sterols, and Tocopherols and Scavenging Property of Mediterranean Oils: New Sources of Dietary Nutrients for the Prevention of Age-Related Diseases. J. Oleo Sci. 2022, 71, 1117–1133. [Google Scholar] [CrossRef] [PubMed]
- Noh, N.A.N.M.; Karim, L.; Omar, S.R. Value-Added Products from Pumpkin Wastes: A Review. Malays. J. Sci. Health Technol. 2022, 8, 77–84. [Google Scholar] [CrossRef]
- Sadeghi, A.; Ebrahimi, M.; Raeisi, M.; Ghods Mofidi, S.M. Improving the Antioxidant Capacity of Bread Rolls by Controlled Fermentation of Rice Bran and Addition of Pumpkin (Cucurbita Pepo) Puree. Food Meas. 2019, 13, 2837–2845. [Google Scholar] [CrossRef]
- Çiftçi, S.; Suna, G. Functional Components of Peanuts (Arachis Hypogaea L.) and Health Benefits: A Review. Future Foods 2022, 5, 100140. [Google Scholar] [CrossRef]
- Syed, Q.A.; Akram, M.; Shukat, R. Nutritional and Therapeutic Importance of the Pumpkin Seeds. Biomed J Sci Tech Res. 2019, 21, 3586. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, K. Development of Pumpkin Peel Cookies and Its Nutritional Composition. J. Pharmacogn. Phytochem. 2019, 8, 370–372. [Google Scholar]
- Kripanand, S.; Aathira, P.; E Kurian, A.; Srinivasulu, K.; Guruguntla, S. Effect of Pumpkin Powder Incorporation on the Physico-Chemical, Sensory and Nutritional Characteristics of Wheat Flour Muffins. IFRJ 2018, 25, 1081–1087. [Google Scholar]
- Białek, M.; Rutkowska, J.; Adamska, A.; Bajdalow, E. Partial Replacement of Wheat Flour with Pumpkin Seed Flour in Muffins Offered to Children. CyTA—J. Food 2016, 14, 391–398. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Abdul Rashid, N.F.; Tabatabaee Amid, B.; Cheong, K.W.; Kazemi, M.; Zulkurnain, M. Effect of Partial Replacement of Corn Flour with Durian Seed Flour and Pumpkin Flour on Cooking Yield, Texture Properties, and Sensory Attributes of Gluten Free Pasta. LWT—Food Sci. Techno. 2015, 63, 184–190. [Google Scholar] [CrossRef]
- Padalino, L.; Mastromatteo, M.; Lecce, L.; Cozzolino, F.; Del Nobile, M.A. Manufacture and Characterization of Gluten-Free Spaghetti Enriched with Vegetable Flour. J. Cereal Sci. 2013, 57, 333–342. [Google Scholar] [CrossRef]
- Ahmed, W.M.M.; Alsiddig, S.A.; Abdelgadir, M.O.; Ismail, A.E.; Basheer, E.O.; Elhassan, I.H. Quality Evaluation of Beef Sausage Formulated with Different Levels of Dried Pumpkin Powder. Int. J. Multidiscip. Curr. Res. 2020, 8, 150–154. [Google Scholar]
- Öztürk, T.; Turhan, S. Physicochemical Properties of Pumpkin (Cucurbita Pepo L.) Seed Kernel Flour and Its Utilization in Beef Meatballs as a Fat Replacer and Functional Ingredient. J. Food Process. Preserv. 2020, 44, e14695. [Google Scholar] [CrossRef]
- Longato, E.; Lucas-González, R.; Peiretti, P.G.; Meineri, G.; Pérez-Alvarez, J.A.; Viuda-Martos, M.; Fernández-López, J. The Effect of Natural Ingredients (Amaranth and Pumpkin Seeds) on the Quality Properties of Chicken Burgers. Food Bioprocess. Technol. 2017, 10, 2060–2068. [Google Scholar] [CrossRef]
- Serdaroğlu, M.; Kavuşan, H.S.; İpek, G.; Öztürk, B. Evaluation of the Quality of Beef Patties Formulated with Dried Pumpkin Pulp and Seed. Korean J. Food Sci. Anim. Resour. 2018, 38, 1–13. [Google Scholar] [CrossRef]
- AlJahani, A.; Cheikhousman, R. Nutritional and Sensory Evaluation of Pumpkin-Based (Cucurbita Maxima) Functional Juice. Nutr. Food Sci. 2017, 47, 346–356. [Google Scholar] [CrossRef]
- Barakat, H.; Hassan, M.F.Y. Chemical, Nutritional, Rheological, and Organoleptical Characterizations of Stirred Pumpkin-Yoghurt. Food Nutr. Sci. 2017, 8, 746–759. [Google Scholar] [CrossRef]
- Gavril (Rațu), R.N.; Cârlescu, P.M.; Veleșcu, I.D.; Arsenoaia, V.N.; Stoica, F.; Stănciuc, N.; Aprodu, I.; Constantin, O.E.; Râpeanu, G. The Development of Value-Added Yogurt Based on Pumpkin Peel Powder as a Bioactive Powder. Agric. Food Res. 2024, 16, 101098. [Google Scholar] [CrossRef]
- Soleimanian, Y.; Sanou, I.; Turgeon, S.L.; Canizares, D.; Khalloufi, S. Natural Plant Fibers Obtained from Agricultural Residue Used as an Ingredient in Food Matrixes or Packaging Materials: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 371–415. [Google Scholar] [CrossRef]
- Shendge, S.; Patharkar, S. Standardize the Processing Technology for Preparation of Cereal Milk Fortification with Garden Cress (Lepidium Sativum) Seed and Pumpkin (Cucurbita) Seed Powder. Pharma Innov. 2020, 9, 423–426. [Google Scholar]
- Rațu, R.N.; Stoica, F.; Lipșa, F.D.; Petrescu, C.A.; Stănciuc, N.; Aprodu, I.; Constantin, O.E.; Râpeanu, G. Preliminary Studies on Obtaining a Cheese Made Exclusively from Whey Enriched with Pumpkin Pomace Powder. Sci. Papers. Ser. D Anim. Scie. 2024, LXVII, 548–557. [Google Scholar]
- Ferrer-González, B.M.; García-Martínez, I.; Totosaus, A. Textural Properties, Sensory Acceptance and Fatty Acid Profile of Cooked Meat Batters Employing Pumpkin Seed Paste or Soybean Oil Oleogel as Fat Replacers. Grasas Y Aceites 2019, 70, e320. [Google Scholar] [CrossRef]
- Genevois, C.; Flores, S.; de Escalada Pla, M. Byproduct from Pumpkin (Cucurbita Moschata Duchesne Ex Poiret) as a Substrate and Vegetable Matrix to Contain Lactobacillus Casei. J. Funct. Foods 2016, 23, 210–219. [Google Scholar] [CrossRef]
- Dos Santos Caetano, K.; Almeida Lopes, N.; Haas Costa, T.M.; Brandelli, A.; Rodrigues, E.; Hickmann Flôres, S.; Cladera-Olivera, F. Characterization of Active Biodegradable Films Based on Cassava Starch and Natural Compounds. Food Packag. Shelf Life 2018, 16, 138–147. [Google Scholar] [CrossRef]
- Chouaibi, M.; Daoued, K.B.; Riguane, K.; Rouissi, T.; Ferrari, G. Production of bioethanol from pumpkin peel wastes: Comparison between response surface methodology (RSM) and artificial neural networks (ANN). Ind. Crops Prod. 2020; 155, 112822. [Google Scholar] [CrossRef]
- Demiral, İ.; Şamdan, C. Preparation and Characterisation of Activated Carbon From Pumpkin Seed Shell Using H3PO4. Anadolu Univ. J. Sci. Technol.-A Appl. Sci. Eng. 2016, 17, 125–138. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural Colorants: Pigment Stability and Extraction Yield Enhancement via Utilization of Appropriate Pretreatment and Extraction Methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3243–3259. [Google Scholar] [CrossRef] [PubMed]
- Norshazila, S.; KOY, C.N.; Rashidi, O.; Hoon, H.L.; AZRINA, I.; NURUL, R.A.; Zarinah, Z. The Effect of Time, Temperature and Solid to Solvent Ratio on Pumpkin Carotenoids Extracted Using Food Grade Solvents. Sains Malays. 2017, 46, 231–237. [Google Scholar] [CrossRef]
- Kreck, M.; Kürbel, P.; Ludwig, M.; Paschold, P.J.; Dietrich, H. Identification and Quantification of Carotenoids in Pumpkin Cultivars (Cucurbita Maxima L.) and Their Juices by Liquid Chromatography with Ultraviolet-Diode Array Detection. J. Appl. Bot Food Qual. 2006, 80, 93–99. [Google Scholar]
- Song, J.; Yang, Q.; Huang, W.; Xiao, Y.; Li, D.; Liu, C. Optimization of Trans Lutein from Pumpkin (Cucurbita Moschata) Peel by Ultrasound-Assisted Extraction. Food Bioprod. Process. 2018, 107, 104–112. [Google Scholar] [CrossRef]
- Salami, A.; Asefi, N.; Kenari, R.E.; Gharekhani, M. Extraction of Pumpkin Peel Extract Using Supercritical CO2 and Subcritical Water Technology: Enhancing Oxidative Stability of Canola Oil. J. Food Sci. Technol. 2021, 58, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- De Andrade Lima, M.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.F.; Barin, J.S.; Binello, A.; Veselov, V.V.; Cravotto, G. Highly Efficient Pumpkin-Seed Extraction with the Simultaneous Recovery of Lipophilic and Hydrophilic Compounds. Food Bioprod. Process. 2019, 117, 224–230. [Google Scholar] [CrossRef]
- Hernández-Santos, B.; Martínez-Sánchez, C.E.; Torruco-Uco, J.G.; Rodríguez-Miranda, J.; Ruiz-López, I.I.; Vajando-Anaya, E.S.; Carmona-García, R.; Herman-Lara, E. Evaluation of Physical and Chemical Properties of Carrots Dried by Refractance Window Drying. Dry. Technol. 2016, 34, 1414–1422. [Google Scholar] [CrossRef]
- Stupar, A.; Šeregelj, V.; Ribeiro, B.D.; Pezo, L.; Cvetanović, A.; Mišan, A.; Marrucho, I. Recovery of β-Carotene from Pumpkin Using Switchable Natural Deep Eutectic Solvents. Ultrason. Sonochemistry 2021, 76, 105638. [Google Scholar] [CrossRef]
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Rimac Brnčić, S. An Overview of the Traditional and Innovative Approaches for Pectin Extraction from Plant Food Wastes and By-Products: Ultrasound-, Microwaves-, and Enzyme-Assisted Extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Sharma, M.; Bhat, R. Extraction of Carotenoids from Pumpkin Peel and Pulp: Comparison between Innovative Green Extraction Technologies (Ultrasonic and Microwave-Assisted Extractions Using Corn Oil). Foods 2021, 10, 787. [Google Scholar] [CrossRef] [PubMed]
- Sarfarazi, M.; Jafari, S.M.; Rajabzadeh, G.; Galanakis, C.M. Evaluation of Microwave-Assisted Extraction Technology for Separation of Bioactive Components of Saffron (Crocus Sativus L.). Ind. Crops Prod. 2020, 145, 111978. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.; Mendiola, J.; Ibáñez, E. Supercritical Fluid Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Dalcanale, E., Krebs, B., Marquardt, R., Morbidelli, M., Nakai, H., Panza, L., Poole, C., Quack, M., Wandelt, K.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Cuco, R.P.; Cardozo-Filho, L.; da Silva, C. Simultaneous Extraction of Seed Oil and Active Compounds from Peel of Pumpkin (Cucurbita Maxima) Using Pressurized Carbon Dioxide as Solvent. J. Supercrit. Fluids 2019, 143, 8–15. [Google Scholar] [CrossRef]
- Mitra, P.; Ramaswamy, H.S.; Chang, K.S. Pumpkin (Cucurbita Maxima) Seed Oil Extraction Using Supercritical Carbon Dioxide and Physicochemical Properties of the Oil. J. Food Eng. 2009, 95, 208–213. [Google Scholar] [CrossRef]
- Zhuang, B.; Dou, L.-L.; Li, P.; Liu, E.-H. Deep Eutectic Solvents as Green Media for Extraction of Flavonoid Glycosides and Aglycones from Platycladi Cacumen. J. Pharm. Biomed. Anal. 2017, 134, 214–219. [Google Scholar] [CrossRef]
- Huang, L.; Zuo, S.; Gao, X.; Li, Z.; Wang, S.; Chen, B.; Li, X.; Zhu, L.; Zhang, Y. Extraction and Functional Properties of Pigment from Pumpkin Peels by a Novel Green Deep Eutectic Alcohol Two-Phase System. Sustain. Chem. Pharm. 2023, 33, 101067. [Google Scholar] [CrossRef]
- Yasir, M.; Sultana, B.; Nigam, P.S.; Owusu-Apenten, R. Antioxidant and Genoprotective Activity of Selected Cucurbitaceae Seed Extracts and LC–ESIMS/MS Identification of Phenolic Components. Food Chem. 2016, 199, 307–313. [Google Scholar] [CrossRef]
- Das, U.N. Essential Fatty Acids: Biochemistry, Physiology and Pathology. Biotechnol. J. 2006, 1, 420–439. [Google Scholar] [CrossRef]
- Makni, M.; Sefi, M.; Fetoui, H.; Garoui, E.M.; Gargouri, N.K.; Boudawara, T.; Zeghal, N. Flax and Pumpkin Seeds Mixture Ameliorates Diabetic Nephropathy in Rats. Food Chem. Toxicol. 2010, 48, 2407–2412. [Google Scholar] [CrossRef]
- Zuhair, H.A.; Abd El-Fattah, A.A.; El-Sayed, M.I. Pumpkin-Seed Oil Modulates the Effect of Felodipine and Captopril in Spontaneously Hypertensive Rats. Pharmacol. Res. 2000, 41, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.; Abarzua, S.; Chrobak, M.; Vrekoussis, T.; Weissenbacher, T.; Kuhn, C.; Schulze, S.; Kupka, M.S.; Friese, K.; Briese, V.; et al. Effects of Phytoestrogen Extracts Isolated from Pumpkin Seeds on Estradiol Production and ER/PR Expression in Breast Cancer and Trophoblast Tumor Cells. Nutr. Cancer 2013, 65, 739–745. [Google Scholar] [CrossRef]
- Adnan, M.; Gul, S.; Batool, S.; Bibi, F.; Rehman, A.; Yaqoob, S.; Shabir, H.; Yousaf, T.; Mussarat, S.; Ali, N.; et al. A Review on the Ethnobotany, Phytochemistry, Pharmacology and Nutritional Composition of Cucurbita Pepo L. J. Phytopharmacol. 2017, 6, 133–139. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of High Value-Added Compounds from Pineapple, Melon, Watermelon and Pumpkin Processing by-Products: An Overview. Food Res. Inter. 2020, 132, 109086. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elella, F.; Mourad, R. Anticancer and Anti-Oxidant Potentials of Ethanolic Extracts of Phoenix Dactylifera, Musa Acuminata and Cucurbita Maxima. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 710–720. [Google Scholar]
- Gossell-Williams, M.; Davis, A.; O’Connor, N. Inhibition of Testosterone-Induced Hyperplasia of the Prostate of Sprague-Dawley Rats by Pumpkin Seed Oil. J. Med. Food 2006, 9, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Gossell-Williams, M.; Lyttle, K.; Clarke, T.; Gardner, M.; Simon, O. Supplementation with Pumpkin Seed Oil Improves Plasma Lipid Profile and Cardiovascular Outcomes of Female Non-Ovariectomized and Ovariectomized Sprague-Dawley Rats. Phytother. Res. 2008, 22, 873–877. [Google Scholar] [CrossRef]
- Majid, A.K.; Ahmed, Z.; Khan, R. Effect of Pumpkin Seed Oil on Cholesterol Fractions and Systolic/Diastolic Blood Pressure. Food Sci. Technol. 2020, 40, 769–777. [Google Scholar] [CrossRef]
- Proboningsih, J.; Wirjatmadi, B.; Kuntoro, K.; Adriani, M. Expression of VCAM in Male Wistar Rats (Rattus Norvegicus) with Hypercholesterolemia Supplemented with Pumpkin Seeds (Cucurbita Moschata Duch) Extract. Health Notions 2018, 2, 648–654. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, M.; Chandra Atluri, S.; Chen, J.; Gilbert, R.G. Relations between Digestibility and Structures of Pumpkin Starches and Pectins. Food Hydrocoll. 2020, 106, 105894. [Google Scholar] [CrossRef]
- Adams, G.G.; Imran, S.; Wang, S.; Mohammad, A.; Kok, S.; Gray, D.A.; Channell, G.A.; Morris, G.A.; Harding, S.E. The hypoglycaemic effect of pumpkins as anti-diabetic and functional medicines. Food Res. Int. 2011, 44, 862–867. [Google Scholar] [CrossRef]
- Barakat, L.A.A.; Mahmoud, R.H. The Antiatherogenic, Renal Protective and Immunomodulatory Effects of Purslane, Pumpkin and Flax Seeds on Hypercholesterolemic Rats. N. Am. J. Med. Sci. 2011, 3, 411–417. [Google Scholar] [CrossRef]
- Kushawaha, D.; Yadav, M.; Chatterji, S.; Srivastava, A.; Watal, G. α-Amylase and α-Glucosidase Inhibitory Activity Assessment of Cucurbita Maxima Seeds—A LIBS Based Study. Intern. J. Phytomed. 2016, 8, 312. [Google Scholar] [CrossRef]
- Gill, N.S.; Bali, M. Isolation of Anti Ulcer Cucurbitane Type Triterpenoid from the Seeds of Cucurbita Pepo. Res. J. Phytochem. 2011, 5, 70–79. [Google Scholar] [CrossRef]
- Bardaa, S.; Ben Halima, N.; Aloui, F.; Ben Mansour, R.; Jabeur, H.; Bouaziz, M.; Sahnoun, Z. Oil from Pumpkin (Cucurbita Pepo L.) Seeds: Evaluation of Its Functional Properties on Wound Healing in Rats. Lipids Health Dis. 2016, 15, 73. [Google Scholar] [CrossRef]
- Gutierrez, R. Review of Cucurbita Pepo (Pumpkin) Its Phytochemistry and Pharmacology. Med. Chem. 2016, 6, 1. [Google Scholar] [CrossRef]
- Chonoko, U.G.; Rufai, A.B. Phytochemical Screening and Antibacterial Activity of Cucurbita Pepo (Pumpkin) against Staphylococcus Aureus and Salmonella Typhi. Bayero J. Pure Appl. Sci. 2011, 4, 145–147. [Google Scholar] [CrossRef]
- Ahmad, G.; Khan, A.A. Pumpkin: Horticultural Importance and Its Roles in Various Forms; a Review. Inter. J. Hortic. Agric. 2019, 4, 1–6. [Google Scholar] [CrossRef]
- Asif, M.; Naqvi, S.A.R.; Sherazi, T.A.; Ahmad, M.; Zahoor, A.F.; Shahzad, S.A.; Hussain, Z.; Mahmood, H.; Mahmood, N. Antioxidant, Antibacterial and Antiproliferative Activities of Pumpkin (Cucurbita) Peel and Puree Extracts—An in Vitro Study. Pak. J. Pharm. Sci. 2017, 30, 1327–1334. [Google Scholar] [PubMed]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical Composition and Profile Characterisation of Pumpkin (Cucurbita Maxima) Seed Oil. Ind. Crops Prod. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Baek, I.-H.; Cho, H.-S.; Said, N.S.; Olawuyi, I.F.; Kim, K.-R.; Lee, W.-Y. Physicochemical and Nutritional Characteristics of Vegan Protein Bars Formulated with Sweet Potato and Rice Protein. Inter. J. Food Sci. Technol. 2024, 59, 5664–5674. [Google Scholar] [CrossRef]
- Alazragi, R. Protective Effect of Pumpkin Seed Oil against Hepatotoxicity and Nephrotoxicity in Rats Administered High Doses of Aspartame. Med. Sci. 2019, 23, 799–809. [Google Scholar]
- Sarkar, S.; Buha, D. Effect of Ripe Fruit Pulp Extract of Cucurbita Pepo Linn. in Aspirin Induced Gastric and Duodenal Ulcer in Rats. Indian. J. Exp. Biol. 2008, 46, 639–645. [Google Scholar]
- Narayan, S.; Sasmal, D.; Mazumder, P.M. Evaluation of the Wound Healing Effect of Herbal Ointment Formulated with Salvia Splendens (Scarlet Sage). Int. J. Pharm. Pharm. Sci. 2011, 3, 195–199. [Google Scholar]
- Alonso, J.L.; Domínguez, H.; Garrote, G.; González-Muñoz, M.J.; Gullón, B.; Moure, A.; Santos, V.; Vila, C.; Yáñez, R. Biorefinery Processes for the Integral Valorization of Agroindustrial and Forestal Wastes Procesos de Biorrefinería Para La Valorización Integral de Residuos Agroindustriales y Forestales. CyTA—J. Food 2011, 9, 282–289. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Dávila, I.; Labidi, J.; Gullón, P. Antioxidant and Antimicrobial Activities of Extracts Obtained from the Refining of Autohydrolysis Liquors of Vine Shoots. Ind Crops Prod. 2017, 107, 105–113. [Google Scholar] [CrossRef]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Handore, A.V.; Khandelwal, S.R.; Ghayal, M.S.; Handore, D.V. Adopting a Circular Bio-Economy: The Biorefinery Concept. In Biofuels in Circular Economy; Bandh, S.A., Malla, F.A., Eds.; Springer Nature: Singapore, 2022; pp. 183–200. ISBN 978-981-19583-7-3. [Google Scholar]
- Jităreanu, A.F.; Mihăilă, M.; Alecu, C.-I.; Robu, A.-D.; Ignat, G.; Costuleanu, C.L. The Relationship between Environmental Factors, Satisfaction with Life, and Ecological Education: An Impact Analysis from a Sustainability Pillars Perspective. Sustainability 2022, 14, 10679. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Fraga-Corral, M.; Carpena, M.; García-Oliveira, P.; Echave, J.; Pereira, A.G.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Agriculture Waste Valorisation as a Source of Antioxidant Phenolic Compounds within a Circular and Sustainable Bioeconomy. Food Funct. 2020, 11, 4853–4877. [Google Scholar] [CrossRef]
Form of the Pumpkin By-Product | Food Product | Functional/ Technological Benefits | References |
---|---|---|---|
Pumpkin peel flour | Bread | The bread with 5% pumpkin peel flour showed good characteristics with high protein content, raw fiber, and a lesser amount of carbohydrate. | [11] |
Pumpkin seed flour | Muffins | Compared with other muffins, muffins containing 33% seed flour had a better sensory profile and improved nutritional value. | [69] |
Pumpkin peel flour | Biscuits | Biscuits prepared with 20% pumpkin peel flour were most appreciated with good taste and appearance. | [67] |
Pumpkin pulp flour | Gluten-free pasta | The gluten-free pasta with 25% (13.5 g/100 g) pumpkin flour had the most desirable overall acceptability and sensory attributes among all formulated pasta. The moisture content, ash, cooking yield, and a* were increased by the partial replacement of the corn flour with pumpkin flour. | [70] |
Dried pumpkin powder | Beef sausage | The sample formulated with 30% dried pumpkin powder recorded the lowest moisture content (64.22%) compared with (72.43%) for the control sample. Significant increase (p < 0.05) in fat (9.30%) and protein (20.55%) content was also recorded. | [72] |
Pumpkin seed | Chicken burgers | Improved stability during the period of storage. | [73] |
Pumpkin seed kernel flour | Beef meat balls | Fat replacement. | [74] |
Pumpkin seed and pulp | Beef patties | There was no change in the texture and a decrease in the moisture content. | [75] |
Pumpkin pulp | Pumpkin-based juice blends | The results reveal that the pumpkin juice developed in this study had high levels of hydration, crude protein, fiber, ash, and carbohydrates, suggesting that it is a rich source of these essential nutrients. The sensory analysis indicated that consumer groups deemed the pumpkin-based juice blends acceptable. | [76] |
Pumpkin pulp | Yogurt | Increase health benefits. | [77] |
Pumpkin peel | Yogurt | Adding pumpkin peel powder to yogurt enhanced the nutritional profile, namely in terms of β-carotene and bioactive components. The use of powder also beneficially impacted the yogurt’s textural characteristics, demonstrating improved consistency and mouthfeel. | [78] |
Pumpkin seed | Ice cream | Augmenting the protein content boosts the level of fullness and improves sensory attributes. | [79] |
Pumpkin seed powder | Cereal milk | Incorporating pumpkin seed powder improved the sensory and physicochemical properties of cereal milk. The refrigerated storage extended the shelf life of cereal milk to 9 days. | [80] |
Pumpkin pomace powder | Cheese | The addition of PP powder to the cheeses led to an increase in both the carotenoid content and antioxidant activity, resulting in improved sensory evaluation scores. | [81] |
Pumpkin By-Products | Process Conditions | Compounds | Yield | References |
---|---|---|---|---|
Pumpkin peels | CE Methanol 80% 1:33 w/v | Phenolic compounds | 319–529 mg GAE/100 g D.W. | [12] |
Pumpkin peels | CE 70 °C/0.5 h Water/70% ethanol/70% methanol 1:25 w/v | Phenolic compounds | 200–1069 mg GAE/100 g D.W. | [2] |
Pumpkin peels | CE, on ice until colorless THF:methanol (1:1 v/v) containing 0.1% BHT, 1:1.5 w/v | Carotenoids | 40–130 mg/kg F.W. | [9] |
Pumpkin peels | CE, until colorless acetone:hexane (1:1 v/v) | Carotenoids | 12–1751 mg/kg D.W. | [89] |
Pumpkin peels | UAE, hexane:acetone (3:1 v/v) Central composite design extraction temperature (6.25–98.75 °C), extraction duration (13.98–128.98 min), and solvent ratio (0.23–50.23 mL) | Carotenoids and antioxidant activity | 0.53 to 1.06 mg/g D.W. and 0.34 to 7.28 µM TE/g D.W. | [78] |
Pumpkin peels | UAE 20 °C/0.5–0.83 h, Ethanol:petroleum ether 1:30–1:40 w/v | Carotenoids | 98–239 μg trans-lutein/g D.W. | [90] |
Pumpkin peels | UAE 25 °C/30 min corn oil as an alternative solvent, amplitude-20%, | Carotenoids and phenolic compounds | 38.03 ± 4.21 µg/g of Oil Extracts 588.68 ± 7.26 mg GAE/g of Extract | [3] |
Pumpkin peel extract | Subcritical water extraction (SWE) and SFE, SWE-Water, and SFE–SC–CO2 120 °C/3 h/5 MPa (SWE) 60 °C/3 h/25 MPa (SFE) | Carotenoids | 15.22 mg/100 g extract (SWE) and 11.48 mg/100 g extract (SFE) | [91] |
Pumpkin peels | SFE 59 °C/0.5 h CO2, 15.5% Ethanol | Carotenoids | 85% total carotenoid recovery | [92] |
Pumpkin peels | CE, on ice until colorless Hexane containing 0.1% BHT, 1:1.5 w/v | Tocopherols | 5–13 mg/kg F.W. | [9] |
Pumpkin seeds | CE 70 °C/0.5 h Water/70% ethanol/70% methanol, 1:25 w/v | Phenolic compounds | 95–343 mg GAE/100 g D.W. | [2] |
Pumpkin seed | CE 20 °C/16 h 70% acetone/100% dichloromethane, 1:25 w/v | Phenolic compounds | 132–612 mg GAE/g D.W. | [2] |
Pumpkin seeds | CE Ethanol–hexane 80 °C, 4 h | Phenolic compounds | 3.5–42.4 mg GAE/g D.W. | [93] |
Pumpkin seeds | MAE, hexane, 5–30 min/200 W, 1:10 (g/mL), 20 kHz | Oil | 51–62.5% | [94] |
Pumpkin seeds | MAE Ethanol–water 100–150 °C, 20 min, 2.45 GHz | Phenolic compounds | 35–84 mg GAE/g D.W. | [95] |
Pumpkin seeds | UAE Ethanol–water 40 °C/20 min, 1:10 (g/mL), 100 W, 20 kHz | Phenolic compounds | 34.2 mg GAE/g D.W. | [93] |
Pumpkin seeds | CE 0.05 h 0.1% HCOOH in methanol 70% 1:10 w/v | Phenolic compounds | 379 mg GAE/100 g D.W. | [47] |
Pumpkin seeds | UAE, 0.25 h Ethanol 50%/Methanol 80%/Acetone 1:5 w/v/1:15 w/v | Phenolic compounds | 34–113 mg GAE/ 100 g F.W. | [48] |
Pumpkin seeds | CE on ice until colorless THF:methanol (1:1 v/v) containing 0.1% BHT, 1:1.5 w/v | Carotenoids | 7–32 mg/kg F.W. | [9] |
Pumpkin seeds | CE on ice, until colorless Hexane containing 0.1% BHT, 1:1.5 w/v | Tocopherols | 49–93 mg/kg F.W. | [9] |
Pumpkin seeds | UAE 0.17 h Dichloromethane:Methanol (1:4 v/v) 1:50 w/v | Tocopherols | 29–71 mg/100 g D.W. | [14] |
Pumpkin seeds | CE Chloroform:methanol (2:1 v/v) 1:20 w/v | Fatty acids/oil | 440–524 g/kg F.W. | [9] |
Pumpkin Peels | MAE 45 °C/130 W/30 min corn oil, 1:10 ratio | Carotenoids and phenolic compounds | 34.94 ± 3.60 µg/g of Oil Extracts 554.54 ± 10.25 mg GAE/g | [3] |
Pumpkin by-products | UAE, Caprylic acid:Capric acid (3:1) 50 °C,/52.5 W/cm3 ultrasonic power/7 mL/g ratio/10 min | β-carotene | 15,141 mg/100 g | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavril, R.N.; Stoica, F.; Lipșa, F.D.; Constantin, O.E.; Stănciuc, N.; Aprodu, I.; Râpeanu, G. Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods 2024, 13, 2694. https://doi.org/10.3390/foods13172694
Gavril RN, Stoica F, Lipșa FD, Constantin OE, Stănciuc N, Aprodu I, Râpeanu G. Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods. 2024; 13(17):2694. https://doi.org/10.3390/foods13172694
Chicago/Turabian StyleGavril (Rațu), Roxana Nicoleta, Florina Stoica, Florin Daniel Lipșa, Oana Emilia Constantin, Nicoleta Stănciuc, Iuliana Aprodu, and Gabriela Râpeanu. 2024. "Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications" Foods 13, no. 17: 2694. https://doi.org/10.3390/foods13172694