Probiotic Effects against Virus Infections: New Weapons for an Old War
Abstract
:1. Introduction
2. Probiotics and the Immune System
3. Major Viruses Involved in Human Diseases
4. Probiotic Usage against Respiratory Viruses
5. Probiotic Usage against Digestive Viruses
6. Probiotics against Other Viruses
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez-Santamarina, A.; Miranda, J.M.; Mondragon, A.C.; Lamas, A.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Potential use of marine seaweeds as prebiotics: A review. Molecules 2020, 25, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colbère-Garapin, F.; Martin-Latil, S.; Blondel, B.; Mousson, L.; Pelletier, I.; Autret, A.; François, A.; Niborski, V.; Grompone, G.; Catonnet, G.; et al. Prevention and treatment of enteric viral infections: Possible benefits of probiotic bacteria. Microbes Infect. 2007, 9, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Libertucci, J.; Young, V.B. The role of the microbiota in infectious diseases. Nat. Microbiol. 2019, 4, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.B.; Tolonen, A.C.; Xavier, R.J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 2017, 18, 690–699. [Google Scholar] [CrossRef]
- FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization. Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. 2002. Available online: https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf (accessed on 21 November 2020).
- Ishizuka, T.; Kanmani, P.; Kobayashi, H.; Miyazaki, A.; Soma, J.; Suda, Y.; Aso, H.; Nochi, T.; Iwabuchi, N.; Xiao, J.-z.; et al. Immunobiotic bifidobacteria strains modulate rotavirus immune response in porcine intestinal epitheliocytes via pattern recognition receptor signaling. PLoS ONE 2016, 11, e0152416. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Chingwaru, W.; Gradisnik, L.; Tsakalidou, E.; Cencic, A. Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int. J. Food Microbiol. 2010, 141, S91–S97. [Google Scholar] [CrossRef]
- Villena, J.; Shimosato, T.; Vizoso-Pinto, M.G.; Kitazawa, H. Editorial: Nutrition, immunity and viral infections. Front. Nutr. 2020, 7, 125. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Kalima, K.; He, L.; Lappalainen, M.; Roivainen, M.; Närkiö, M.; Mäkelä, M.; Siitonen, S.; Korpela, R.; Pitkäranta, A. Specific probiotics and virological findings in symptomatic conscripts attending military service in Finland. J. Clin. Virol. 2014, 60, 276–281. [Google Scholar] [CrossRef]
- Merry, T.; Astrautsova, S. Alternative approaches to antiviral treatments: Focusing on glycosylation as a target for antiviral therapy. Biotechnol. Appl. Biochem. 2010, 56, 103–109. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Latvala, S.; Lehtinen, M.J. Role of probiotics in stimulating the immune system in viral respiratory tract infections: A narrative review. Nutrients 2020, 12, 3163. [Google Scholar] [CrossRef]
- Aggarwal, N.; Breedon, A.M.E.; Davis, C.M.; Hwang, I.Y.; Chang, M.W. Engineering probiotics for therapeutic applications: Recent examples and translational outlook. Curr. Opin. Biotechnol. 2020, 65, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Sundararaman, A.; Ray, M.; Ravindra, P.V.; Halami, P.M. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 8089–8104. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gutiérrez, L.; San Vicente, L.; Barrón, L.J.R.; Villarán, M.C.; Chávarri, M. Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. J. Funct. Foods 2020, 64, 103669. [Google Scholar] [CrossRef]
- Luo, Y.; Xiao, Y.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. The role of mucin and oligosaccharides via cross-feding activities by Bifidobacterium: A review. Int. J. Biol. Macromol. 2020. [Google Scholar] [CrossRef]
- Alvarez-Vieites, E.; López-Santamarina, A.; Miranda, J.M.; Mondragón, A.d.C.; Lamas, A.; Cardelle-Cobas, A.; Nebot, C.; Franco, C.M.; Cepeda, A. Influence of the intestinal microbiota on diabetes management. Curr. Pharm. Biotechnol. 2020, 21, 1603–1615. [Google Scholar] [CrossRef]
- Roca-Saavedra, P.; Mendez-Vilabrille, V.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Food additives, contaminants and other minor components: Effects on human gut microbiota—A review. J. Physiol. Biochem. 2018, 74, 69–83. [Google Scholar] [CrossRef]
- Villena, J.; Vizoso-Pinto, M.G.; Kitazawa, H. Intestinal innate antiviral immunity and immunobiotics: Beneficial effects against rotavirus infection. Front. Immunol. 2016, 7, 563. [Google Scholar] [CrossRef] [Green Version]
- Wan Mohd Kamaluddin, W.N.F.; Rismayuddin, N.A.R.; Ismail, A.F.; Mohamad Aidid, E.; Othman, N.; Mohamad, N.A.H.; Arzmi, M.H. Probiotic inhibits oral carcinogenesis: A systematic review and meta-analysis. Arch. Oral Biol. 2020, 118, 104855. [Google Scholar] [CrossRef]
- Abdolalipour, E.; Mahooti, M.; Salehzadeh, A.; Torabi, A.; Mohebbi, S.R.; Gorji, A.; Ghaemi, A. Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model. Microb. Pathog. 2020, 145, 104207. [Google Scholar] [CrossRef]
- Khani, S.; Motamedifar, M.; Golmoghaddam, H.; Hosseini, H.M.; Hashemizadeh, Z. In vitro study of the effect of a probiotic bacterium Lactobacillus rhamnosus against herpes simplex virus type 1. Braz. J. Infect. Dis. 2012, 16, 129–135. [Google Scholar] [PubMed] [Green Version]
- Dhar, D.; Mohanty, A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020, 285, 198018. [Google Scholar] [CrossRef] [PubMed]
- Antushevich, H. Interplays between inflammasomes and viruses, bacteria (pathogenic and probiotic), yeasts and parasites. Immunol. Lett. 2020, 228, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lehtoranta, L.; Pitkäranta, A.; Korpela, R. Probiotics in respiratory virus infections. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.C.; Fu, H.C.; Tseng, C.W.; Wu, C.H.; Tsai, C.C.; Lin, H. The influence of probiotics on genital high-risk human papilloma virus clearance and quality of cervical smear: A randomized placebo-controlled trial. BMC Women’s Health 2019, 19, 103. [Google Scholar] [CrossRef] [Green Version]
- Zolnikova, O.; Komkova, I.; Potskherashvili, N.; Trukhmanov, A.; Ivashkin, V. Application of probiotics for acute respiratory tract infections. Ital. J. Med. 2018, 12, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.-M.; Lee, H.-J.; Kim, J.-W.; Lee, J.-B.; Park, S.-Y.; Choi, I.-S.; Song, C.-S. Lactobacillus fermentum CJL-112 protects mice against influenza virus infection by activating T-helper 1 and eliciting a protective immune response. Int. Immunopharmacol. 2014, 18, 50–54. [Google Scholar] [CrossRef]
- Woolhouse, M.; Scott, F.; Hudson, Z.; Howey, R.; Chase-Topping, M. Human viruses: Discovery and emergence. Philos. Trans. R Soc. B Biol. Sci. 2012, 367, 2864–2871. [Google Scholar] [CrossRef] [Green Version]
- Kutter, J.S.; Spronken, M.I.; Fraaij, P.L.; Fouchier, R.A.; Herfst, S. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol. 2018, 28, 142–151. [Google Scholar] [CrossRef]
- Berry, M.; Gamieldien, J.; Fielding, B.C. Identification of new respiratory viruses in the new millennium. Viruses 2015, 7, 996–1019. [Google Scholar] [CrossRef] [Green Version]
- Karst, S.M. The influence of commensal bacteria on infection with enteric viruses. Nat. Rev. Microbiol. 2016, 14, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sander, A.-L.; Corman, V.M.; Lukashev, A.N.; Drexler, J.F. Evolutionary Origins of Enteric Hepatitis Viruses. Cold Spring Harb. Perspect. Med. 2018, 8, a031690. [Google Scholar] [CrossRef] [PubMed]
- Lemon, S.M.; Walker, C.M. Hepatitis A virus and hepatitis E virus: Emerging and re-emerging enterically transmitted hepatitis viruses. Cold Spring Harb. Perspect. Med. 2019, 9, a031823. [Google Scholar] [CrossRef] [PubMed]
- Tahaei, S.M.E.; Mohebbi, S.R.; Zali, M.R. Enteric hepatitis viruses. Gastroenterol. Hepatol. Bed Bench 2012, 5, 7. [Google Scholar]
- Bansal, R.; Tutrone, W.D.; Weinberg, J.M. Viral skin infections in the elderly: Diagnosis and management. Drugs Aging 2002, 19, 503–514. [Google Scholar] [CrossRef]
- O’Dell, M.L. Skin and wound infections: An overview. Am. Fam. Physician 1998, 57, 2424–2432. [Google Scholar]
- Nunes, E.M.; Talpe-Nunes, V.; Sichero, L. Epidemiology and biology of cutaneous human papillomavirus. Clinics 2018, 73, e489s. [Google Scholar] [CrossRef]
- Handfield, C.; Kwock, J.; MacLeod, A.S. Innate Antiviral Immunity in the Skin. Trends Immunol. 2018, 39, 328–340. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Consultation on Rabies: Third Report; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/bitstream/handle/10665/272364/9789241210218-eng.pdf?sequence=1&isAllowed=y (accessed on 8 December 2020).
- Abdulazeez, M.; Kia, G.S.N.; Abarshi, M.M.; Muhammad, A.; Ojedapo, C.E.; Atawodi, J.C.; Dantong, D.; Kwaga, J.K.P. Induction of Rabies virus infection in mice brain may up and down regulate type II interferon gamma via epigenetic modifications. Metab. Brain Dis. 2020, 35, 819–827. [Google Scholar] [CrossRef]
- Beckham, J.D.; Tyler, K.L. Arbovirus infections. Continuum (Minneap. Minn.) 2015, 21, 1599. [Google Scholar] [CrossRef] [Green Version]
- Gangoso, L.; Aragonés, D.; Martínez-de la Puente, J.; Lucientes, J.; Delacour-Estrella, S.; Estrada Peña, R.; Montalvo, T.; Bueno-Marí, R.; Bravo-Barriga, D.; Frontera, E.; et al. Determinants of the current and future distribution of the West Nile virus mosquito vector Culex pipiens in Spain. Environ. Res. 2020, 188, 109837. [Google Scholar] [CrossRef] [PubMed]
- Zakham, F.; Al-habal, M.; Taher, R.; Alaoui, A.; El Mzibri, M. Viral hemorrhagic fevers in the Tihamah region of the western Arabian Peninsula. PLoS Negl. Trop. Dis. 2017, 11, e0005322. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, M.; Di Caro, A.; Nicastri, E.; Vairo, F.; Masanja, H.; Kobinger, G.; Mirazimi, A.; Ntoumi, F.; Zumla, A.; Ippolito, G. Viral hemorrhagic fevers other than Ebola and Lassa. Infect. Dis. Clin. N. Am. 2019, 33, 977–1002. [Google Scholar] [CrossRef]
- Looft, T.; Allen, H.K. Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes 2012, 3, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Dermyshi, E.; Wang, Y.; Yan, C.; Hong, W.; Qiu, G.; Gong, X.; Zhang, T. The “golden Age” of Probiotics: A systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology 2017, 112, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Baud, D.; Agri, V.D.; Gibson, G.R.; Reid, G.; Giannoni, E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front. Public Health 2020, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Kunitoh-Asari, A.; Hayakawa, K.; Imai, S.; Kasuya, K.; Abe, K.; Adachi, Y.; Fukudome, S.I.; Takahashi, Y.; Hachimura, S. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PLoS ONE 2014, 9, e86416. [Google Scholar] [CrossRef] [Green Version]
- Kawase, M.; He, F.; Kubota, A.; Harata, G.; Hiramatsu, M. Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett. Appl. Microbiol. 2010, 51, 6–10. [Google Scholar] [CrossRef]
- Park, M.K.; Ngo, V.; Kwon, Y.M.; Lee, Y.Y.; Yoo, S.; Cho, Y.H.; Hong, S.M.; Hwang, H.S.; Ko, E.J.; Jung, Y.J.; et al. Lactobacillus plantarum DK119 as a probiotic confers protection against Influenza virus by modulating innate immunity. PLoS ONE 2013, 8, e75368. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Takeshita, M.; Kikuchi, Y.; Dashnyam, B.; Kawahara, S.; Yoshida, H.; Watanabe, W.; Muguruma, M.; Kurokawa, M. Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: Alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int. Immunopharmacol. 2011, 11, 1976–1983. [Google Scholar] [CrossRef]
- Song, J.A.; Kim, H.J.; Hong, S.K.; Lee, D.H.; Lee, S.W.; Song, C.S.; Kim, K.T.; Choi, I.S.; Lee, J.B.; Park, S.Y. Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus. J. Microbiol. Immunol. Infect. 2016, 49, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belkacem, N.; Serafini, N.; Wheeler, R.; Derrien, M.; Boucinha, L.; Couesnon, A.; Cerf-Bensussan, N.; Boneca, I.G.; Di Santo, J.P.; Taha, M.-K.; et al. Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS ONE 2017, 12, e0184976. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.N.; Youn, H.N.; Kwon, J.H.; Lee, D.H.; Park, J.K.; Yuk, S.S.; Erdene-Ochir, T.O.; Kim, K.T.; Lee, J.B.; Park, S.Y.; et al. Sublingual administration of Lactobacillus rhamnosus affects respiratory immune responses and facilitates protection against influenza virus infection in mice. Antivir. Res. 2013, 98, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Harata, G.; He, F.; Hiruta, N.; Kawase, M.; Kubota, A.; Hiramatsu, M.; Yausi, H. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett. Appl. Microbiol. 2010, 50, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Saito, T.; Uematsu, T.; Kishi, K.; Toba, M.; Kohda, N.; Suzuki, T. Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. Int. Immunopharmacol. 2011, 11, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Zelaya, H.; Tada, A.; Vizoso-Pinto, M.G.; Salva, S.; Kanmani, P.; Agüero, G.; Alvarez, S.; Kitazawa, H.; Villena, J. Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation–coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm. Res. 2015, 64, 589–602. [Google Scholar] [CrossRef]
- Izumo, T.; Maekawa, T.; Ida, M.; Noguchi, A.; Kitagawa, Y.; Shibata, H.; Yasui, H.; Kiso, Y. Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. Int. Immunopharmacol. 2010, 10, 1101–1106. [Google Scholar] [CrossRef]
- Kawahara, T.; Takahashi, T.; Oishi, K.; Tanaka, H.; Masuda, M.; Takahashi, S.; Takano, M.; Kawakami, T.; Fukushima, K.; Kanazawa, H.; et al. Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol. Immunol. 2015, 59, 1–12. [Google Scholar] [CrossRef]
- Waki, N.; Yajima, N.; Suganuma, H.; Buddle, B.M.; Luo, D.; Heiser, A.; Zheng, T. Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection. Lett. Appl. Microbiol. 2014, 58, 87–93. [Google Scholar] [CrossRef]
- Nakayama, Y.; Moriya, T.; Sakai, F.; Ikeda, N.; Shiozaki, T.; Hosoya, T.; Nakagawa, H.; Miyazaki, T. Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice. Sci. Rep. 2014, 4, 4638. [Google Scholar] [CrossRef] [Green Version]
- Kiso, M.; Takano, R.; Sakabe, S.; Katsura, H.; Shinya, K.; Uraki, R.; Watanabe, S.; Saito, H.; Toba, M.; Kohda, N.; et al. Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus. Sci. Rep. 2013, 3, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumpu, M.; Kekkonen, R.A.; Kautiainen, H.; Järvenpää, S.; Kristo, A.; Huovinen, P.; Pitkäranta, A.; Korpela, R.; Hatakka, K. Milk containing probiotic Lactobacillus rhamnosus GG and respiratory illness in children: A randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr. 2012, 66, 1020–1023. [Google Scholar] [CrossRef] [PubMed]
- Garaiova, I.; Muchová, J.; Nagyová, Z.; Wang, D.; Li, J.V.; Országhová, Z.; Michael, D.R.; Plummer, S.F.; Ďuračková, Z. Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: A randomised controlled pilot study. Eur. J. Clin. Nutr. 2015, 69, 373–379. [Google Scholar] [CrossRef]
- Luoto, R.; Ruuskanen, O.; Waris, M.; Kalliomäki, M.; Salminen, S.; Isolauri, E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2014, 133, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Lehtoranta, L.; Söderlund-Venermo, M.; Nokso-Koivisto, J.; Toivola, H.; Blomgren, K.; Hatakka, K.; Poussa, T.; Korpela, R.; Pitkäranta, A. Human bocavirus in the nasopharynx of otitis-prone children. Int. J. Pediatric Otorhinolaryngol. 2012, 76, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Hojsak, I.; Močić Pavić, A.; Kos, T.; Dumančić, J.; Kolaček, S. Bifidobacterium animalis subsp. lactis in prevention of common infections in healthy children attending day care centers-Randomized, double blind, placebo-controlled study. Clin. Nutr. 2016, 35, 587–591. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Lu, H.; Qian, G.; Lv, L.; Zhang, C.; Guo, J.; Jiang, H.; Zheng, B.; Yang, F.; et al. The effect of probiotic treatment on patients infected with the H7N9 influenza virus. PLoS ONE 2016, 11, e0151976. [Google Scholar] [CrossRef]
- Berggren, A.; Lazou Ahrén, I.; Larsson, N.; Önning, G. Randomised, double-blind and placebo-controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur. J. Nutr. 2011, 50, 203–210. [Google Scholar] [CrossRef]
- Pu, F.; Guo, Y.; Li, M.; Zhu, H.; Wang, S.; Shen, X.; He, M.; Huang, C.; He, F. Yogurt supplemented with probiotics can protect the healthy elderly from respiratory infections: A randomized controlled open-label trial. Clin. Interv. Aging 2017, 12, 1223–1231. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yeh, C.; Jin, Z.; Ding, L.; Liu, B.Y.; Zhang, L.; Dannelly, H.K. Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synth. Syst. Biotechnol. 2018, 3, 113–120. [Google Scholar] [CrossRef]
- Guillemard, E.; Tondu, F.; Lacoin, F.; Schrezenmeir, J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114 001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J. Nutr. 2010, 103, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Chong, H.X.; Yusoff, N.A.A.; Hor, Y.Y.; Lew, L.C.; Jaafar, M.H.; Choi, S.B.; Yusoff, M.S.B.; Wahid, N.; Abdullah, M.F.I.L.; Zakaria, N.; et al. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. J. Dairy Sci. 2019, 102, 4783–4797. [Google Scholar] [CrossRef]
- Davidson, L.E.; Fiorino, A.M.; Snydman, D.R.; Hibberd, P.L. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: A randomized double-blind placebo-controlled trial. Eur. J. Clin. Nutr. 2011, 65, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Olivares, M.; Díaz-Ropero, M.P.; Sierra, S.; Lara-Villoslada, F.; Fonollá, J.; Navas, M.; Rodríguez, J.M.; Xaus, J. Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition 2007, 23, 254–260. [Google Scholar] [CrossRef]
- Rizzardini, G.; Eskesen, D.; Calder, P.C.; Capetti, A.; Jespersen, L.; Clerici, M. Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei ssp. paracasei, L. casei 431® in an influenza vaccination model: A randomised, double-blind, placebo-controlled study. Br. J. Nutr. 2012, 107, 876–884. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Saruta, J.; Takahashi, T.; To, M.; Shimizu, T.; Hayashi, T.; Morozumi, T.; Kubota, N.; Kamata, Y.; Makino, S.; et al. Effect of ingesting yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 on influenza virus-bound salivary IgA in elderly residents of nursing homes: A randomized controlled trial. Acta Odontol. Scand. 2019, 77, 517–524. [Google Scholar] [CrossRef]
- Boge, T.; Rémigy, M.; Vaudaine, S.; Tanguy, J.; Bourdet-Sicard, R.; van der Werf, S. A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine 2009, 27, 5677–5684. [Google Scholar] [CrossRef]
- Kawahara, T.; Makizaki, Y.; Oikawa, Y.; Tanaka, Y.; Maeda, A.; Shimakawa, M.; Komoto, S.; Moriguchi, K.; Ohno, H.; Taniguchi, K. Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors. PLoS ONE 2017, 12, e0173979. [Google Scholar] [CrossRef] [Green Version]
- Guillemard, E.; Tanguy, J.; Flavigny, A.L.; De la Motte, S.; Schrezenmeir, J. Effects of consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114 001 on common respiratory and gastrointestinal infections in shift workers in a randomized controlled trial. J. Am. Coll. Nutr. 2010, 29, 455–468. [Google Scholar] [CrossRef]
- Kumpu, M.; Lehtoranta, L.; Roivainen, M.; Rönkkö, E.; Ziegler, T.; Söderlund-Venermo, M.; Kautiainen, H.; Järvenpää, S.; Kekkonen, R.; Hatakka, K.; et al. The use of the probiotic Lactobacillus rhamnosus GG and viral findings in the nasopharynx of children attending day care. J. Med. Virol. 2013, 85, 1632–1638. [Google Scholar] [CrossRef]
- Lake, M.A. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med. 2020, 20, 124. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, X.; Zhu, B.; Liang, H.; Fang, C.; Gong, Y.; Guo, Q.; Sun, X.; Zhao, D.; Shen, J. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020, 26, 502–505. [Google Scholar] [CrossRef] [Green Version]
- Albarracin, L.; Kobayashi, H.; Iida, H.; Sato, N.; Nochi, T.; Aso, H.; Salva, S.; Alvarez, S.; Kitazawa, H.; Villena, J. Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: Influence of immunobiotic lactobacilli. Front. Immunol. 2017, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Vitetta, L.; Vitetta, G.; Hall, S. Immunological tolerance and function: Associations between intestinal bacteria, probiotics, prebiotics, and phages. Front. Immunol. 2018, 9, 2240. [Google Scholar] [CrossRef] [Green Version]
- Chiba, E.; Villena, J.; Hosoya, S.; Takanashi, N.; Shimazu, T.; Aso, H.; Tohno, M.; Suda, Y.; Kawai, Y.; Saito, T.; et al. A newly established bovine intestinal epithelial cell line is effective for in vitro screening of potential antiviral immunobiotic microorganisms for cattle. Res. Vet. Sci. 2012, 93, 688–694. [Google Scholar] [CrossRef]
- Kumar, R.K.V.; Seo, B.J.; Mun, M.R.; Kim, C.-J.; Lee, I.; Kim, H.; Park, Y.-H. Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop. Anim. Health Prod. 2010, 42, 1855–1860. [Google Scholar]
- Preidis, G.A.; Saulnier, D.M.; Blutt, S.E.; Mistretta, T.A.; Riehle, K.P.; Major, A.M.; Venable, S.F.; Barrish, J.P.; Finegold, M.J.; Petrosino, J.F.; et al. Host response to probiotics determined by nutritional status of rotavirus-infected neonatal mice. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Hoang, P.M.; Cho, S.; Kim, K.E.; Byun, S.J.; Lee, T.K.; Lee, S. Development of Lactobacillus paracasei harboring nucleic acid-hydrolyzing 3D8 scFv as a preventive probiotic against murine norovirus infection. Appl. Microbiol. Biotechnol. 2015, 99, 2793–2803. [Google Scholar] [CrossRef]
- Freedman, S.B.; Xie, J.; Nettel-Aguirre, A.; Pang, X.-L.; Chui, L.; Williamson-Urquhart, S.; Schnadower, D.; Schuh, S.; Sherman, P.M.; Lee, B.E.; et al. A randomized trial evaluating virus-specific effects of a combination probiotic in children with acute gastroenteritis. Nat. Commun. 2020, 11, 2533. [Google Scholar] [CrossRef]
- Majamaa, H.; Isolauri, E.; Saxelin, M.; Vesikari, T. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 1995, 20, 333–383. [Google Scholar] [CrossRef]
- Brun, P.; Scarpa, M.; Marchiori, C.; Sarasin, G.; Caputi, V.; Porzionato, A.; Giron, M.C.; Palù, G.; Castagliuolo, I. Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS. PLoS ONE 2017, 12, e0181863. [Google Scholar]
- Oo, K.M.; Ayelwin, A.; Kyaw, Y.Y.; Tun, W.M.; Fukada, K.; Goshima, A.; Shimada, T.; Okada, S. Safety and long-term effect of the probiotic FK-23 in patients with hepatitis C virus infection. Biosci. Microbiota Food Health 2016, 35, 2015–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palma, E.; Recine, N.; Domenici, L.; Giorgini, M.; Pierangeli, A.; Panici, P.B. Long-term Lactobacillus rhamnosus BMX 54 application to restore a balanced vaginal ecosystem: A promising solution against HPV-infection. BMC Infect. Dis. 2018, 18, 13. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, V.; Renard, N.; Makar, A.; Royen, P.V.; Bogers, J.P.; Lardon, F.; Peeters, M.; Baay, M. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: A prospective controlled pilot study. Eur. J. Cancer Prev. 2013, 22, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Scheri, G.C.; Fard, S.N.; Schietroma, I.; Mastrangelo, A.; Pinacchio, C.; Giustini, N.; Serafino, S.; De Girolamo, G.; Cavallari, E.N.; Statzu, M.; et al. Modulation of tryptophan/serotonin pathway by probiotic supplementation in human immunodeficiency virus-positive patients: Preliminary results of a new study approach. Int. J. Trytophan Res. 2017, 10, 1178646917710668. [Google Scholar]
- Hummelen, R.; Changalucha, J.; Butamanya, N.L.; Cook, A.; Habbema, J.D.F.; Reid, G. Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 to prevent or cure bacterial vaginosis among women with HIV. Int. J. Gynecol. Obstet. 2010, 111, 245–248. [Google Scholar] [CrossRef]
- Cunningham-Rundles, S.; Ahrné, S.; Johann-Liang, R.; Abuav, R.; Dunn-Navarra, A.M.; Grassey, C.; Bengmark, S.; Cervia, J.S. Effect of probiotic bacteria on microbial host defense, growth and immune function in human immunodeficiency virus type-1 infection. Nutrients 2011, 3, 1042–1070. [Google Scholar] [CrossRef] [Green Version]
- Wolf, B.W.; Wheeler, K.B.; Ataya, D.G.; Garleb, K.A. Safety and tolerance of Lactobacillus reuteri supplementation to a population infected with the human immunodeficiency virus. Food Chem. Toxicol. 1998, 36, 1085–1094. [Google Scholar] [CrossRef]
- D’Angelo, C.; Reale, M.; Costantini, E. Microbiota and probiotics in health and HIV infection. Nutrients 2017, 6, 615. [Google Scholar] [CrossRef] [Green Version]
- Reikvan, D.H.; Meyer-Myklestad, M.H.; Trøseid, M.; Stiksrud, B. Probiotics to manage inflammation in HIV infection. Curr. Opin. Infect. Dis. 2020, 33, 34–43. [Google Scholar] [CrossRef]
- Haghighat, L.; Crum-Cianflone, N.F. The potential risks of probiotics among HIV-infected persons: Bacteraemia due to Lactobacillus acidophilus and review of the literature. Int. J. STD AIDS 2016, 27, 1223–1230. [Google Scholar] [CrossRef]
- Luong, M.L.; Sareyyupoglu, B.; Nguyen, M.H.; Silveira, F.P.; Shields, R.K.; Potoski, B.A.; Pasculle, W.A.; Clancy, C.J.; Toyoda, Y. Lactobacillus probiotic use in cardiothoracic transplant recipients: A link to invasive Lactobacillus infection? Transpl. Infect. Dis. 2010, 12, 561–564. [Google Scholar] [CrossRef]
- Li, Y.; Yu, T.; Yan, H.; Li, D.; Yu, T.; Yuan, T.; Rahaman, A.; Ali, S.; Abbas, F.; Dian, Z.; et al. Vaginal microbiota and HPV infection: Novel mechanistic insights and therapeutic strategies. Infect. Drug Resist. 2020, 13, 1213–1220. [Google Scholar] [CrossRef]
- Gori, A.; Tincati, C.; Rizzardini, G.; Torti, C.; Quirino, T.; Haarman, M.; Amor, K.B.; Van Schaik, J.; Vriesema, A.; Knol, J.; et al. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J. Clin. Microbiol. 2008, 46, 757–758. [Google Scholar] [CrossRef] [Green Version]
Type of Study | Probiotics | Dosage and Time of Exposure | Viruses | Main Findings | Reference |
---|---|---|---|---|---|
In vivo using female BALB/c mice | 140 different strains of lactic acid bacteria (LAB) | 120 mg LAB/day for 28 days | Influenza A/X/31 (H3N2) virus | Lactobacillus plantarum AYA protects against respiratory influenza virus infection and decreased influenza lethality in mice | [49] |
In vivo using 13 female BALB/c mice | Lyophilized Lactobacillus rhamnosus GG (LGG) and Lactobacillus gasseri TMC0356 | 10 mg of lyophilized LGG and L. gasseri for 19 days | Influenza virus A/PR/8/34 (H1N1) | The clinical symptom scores and pulmonary virus titers of mice administered oral LGG and L. gasseri were significantly ameliorated | [50] |
In vivo using 96 elderly volunteers | Yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (1073R-1-yogurt) | 100 g of 1073R-1-yogurt for 12 weeks | Influenza A virus subtype H3N2-bound | Consumption of fermented yogurt affected influenza A virus subtype H3N2-bound Immunoglobulin A (IgA) levels in saliva. | [78] |
In vivo trial using female BALB/c mice | L. plantarum DK 119 | Intragastric administration (200 µL of 108–109 colony count units (CFU) daily for 10 days) or intranasal (107–109 CFU/mouse) | H1N1 and H3N2 influenza viruses | L. plantarum protects against infection with H1N1 and H3N2 influenza viruses by enhancing the innate immunity of CD11c+ dendritic and macrophage cells and antiviral cytokines | [51] |
In vivo using female BALB/c mice | L. plantarum 06CC2 | 20 mg/mouse, twice daily for 10 days | Influenza A/PR/8/34 (H1N1) virus | L. plantarum relieved influenza symptoms in mice in correlation with increased NK cell activity associated with increased production of interferon-α and Th1 cytokines through gut immunity and reduction of TNF-α in the early stage of infection | [52] |
In vivo using 15 patients | Clostridium butyricum CBM588, Bacillus subtilis (unspecified strain), and Enterococcus faecium (unspecified strain) | Two tablets of probiotic compound were administered three times per day (~107 CFU/tablet for CBM588 and 108 CFU for B. subtilis and E. faecium enteric-coated capsules | Influenza virus H7N9 | No beneficial effects have been seen in the administration of C. butyricum against H7N9 infection. Administration of B. subtilis and E. faecium improved the secondary infection. | [69] |
In vivo using specific pathogen-free female BALB/c mice | L. rhamnosus M21 (KCTC 10965BP) | Oral administration of 0.3 mL of 1 × 109 CFU/mL of L. rhamnosus | Influenza virus A/NWS/3 3 (H1N1) | L. rhamnosus increases the production of IgA and decreases the recruitment of inflammatory cells in the lungs, thus exhibiting anti-influenza activity by changing the host response to Th1 | [53] |
Clinical trial in in 272 subjects | L. plantarum HEAL 9 (DSM 15312) and Lactobacillus paracasei 8700:2 (DSM 13434) | Subjects were supplemented daily with either 109 CFU of probiotics for 12 weeks | Common cold viruses | Oral intake of the strains L. plantarum and L. paracasei decreases the total symptom score and especially the pharyngeal symptoms of common cold infections | [70] |
Clinical trial in 233 volunteers | L. paracasei N1115 | Volunteers were given 100-mL bottles of yogurt, which contained living L. paracasei 3.6 x 109 CFU, three bottles per day for 12 weeks | Viruses causing upper respiratory tract infections | The intake of yogurt containing L. paracasei could protect against the risk of acute upper respiratory tract infection in the mid-aged and elderly, might be that L. paracasei stimulated T-cell immunity | [71] |
Clinical trial in 136 subjects | L. paracasei, Lactobacillus casei 431, and Lactobacillus fermentum PCC | All subjects received once-daily doses of probiotic drink (150 mL) that contained L. paracasei at 3 × 107 CFU/mL, L. casei at 3 × 107 CFU/mL, and L. fermentum at 3 × 106 CFU/mL or placebo drink for 12 weeks | Viruses causing upper respiratory tract infections and influenza virus | Administration of these probiotics increased the levels of serum INF-g and IgA in the intestine. Reduced flu-like symptoms and the incidence of respiratory tract infection | [72] |
In vivo using female BALB/c mice | L. paracasei CNCM I-1518 | Mice were orally gavaged (200 µL) with L. paracasei (2 × 108 CFU) daily for 7 days before infection | Influenza A/Scotland/20/74 (H3N2) virus | L. paracasei consumption seems to allow an early activation of proinflammatory cytokines (IL1α, IL-1β) and a massive recruitment of immune cells in the lungs after L. paracasei gavage and before influenza infection | [54] |
Clinical trial in 69 children | Lactobacillus acidophilus CUL21 (NCIMB 30156), L. acidophilus CUL60 (NCIMB 30157), Bifidobacterium bifidum CUL20 (NCIMB 30153), and Bifidobacterium animalis subsp. lactis CUL34 (NCIMB 30172) | 1.25 × 1010 CFU of probiotics plus 50 mg vitamin C or a placebo daily for 6 months | Viruses causing upper respiratory tract infections | Reduced incidence rate of respiratory tract infection symptoms in the probiotic group. | [65] |
Clinical trial in 1000 volunteers | Lactobacillus casei DN-114 001 | 200 g/day for 3 months | Respiratory common infectious diseases | Reduced the risk of common infections in stressed individuals such as shift workers | [81] |
Clinical trial in 94 preterm infants | L. rhamnosus GG ATCC 53103 | 1 × 109 CFU/day for 1 to 30 days and 2 × 109 CFU/day for 31 to 60 days | Adenovirus, coronavirus (229E/NL63 and OC43/HKU1), influenza A and B, Human metapneumovirus, parainfluenza 1, 2, and 3, RSV A and B, rhinovirus, Human enterovirus and bocavirus | The incidence of respiratory tract infections was lower in the probiotic group. The incidence of rhinovirus was significantly lower in the probiotic group. Incidence of rhinovirus-induced episodes tended to be lower in the prebiotic but not in the probiotic group | [66] |
Clinical trial in 629 otitis-prone children | L. rhamnosus GG, L. rhamnosus Lc705, Bifidobacterium breve 99, and Propionibacterium freudenreichii JS | 8-9 × 109 CFU/day for 6 months | Human bocavirus 1-4 and rhinovirus/enterovirus | Lower number of human bocavirus 1 positive sample during the study, but no effect on rhinovirus/enterovirus occurrence | [67] |
Clinical trial in 210 children | B. animalis subsp. lactis (BB-12) | 109 CFU/day for 3 months | Respiratory common infectious diseases | This study shows that B. animalis subsp. lactis has no effect on the prevention of respiratory tract infection in children. There was no significant difference in the number of people infected or in the duration of infection in the intervention group and the placebo group | [68] |
Clinical trial in 97 daycare children | L. rhamnosus GG | 108 CFU/day for 28 weeks | Human bocavirus 1-4, rhinovirus/enterovirus, RSV, adenovirus, influenza A, and PIV 1-2 | Respiratory symptoms decreased in children per month, but there was no effect on the occurrence of respiratory viruses | [82] |
Clinical trial in 192 adults | L. rhamnosus GG + B. lactis BB-12 | 5 × 109 CFU of GG and 2 × 109 of BB-12 CFU/day for 3 to 6 months | Human bocavirus, rhinovirus/enterovirus, RSV A and B, adenovirus, coronavirus (229E/NL63 and OC43/HKU1), influenza A and B virus, human metapneumovirus, and PIV 1-4. | Lower occurrence of rhinovirus/enterovirus after 3 months, but no significant effect on the occurrence of common respiratory viruses | [25] |
Clinical trial in 209 adults | L. plantarum DR7 | 9 log CFU/day for 12 weeks | Viruses causing upper respiratory tract infections | Reducing plasma peroxidation and oxidative stress levels | [74] |
Two clinical trials in 86 and 222 elderly volunteers | L. casei DN 114 001 | Dairy drink (Actimel®) for 7 and 13 weeks | Influenza A (H1N1 and H3N2) and B | Daily consumption of this product resulted in increased specific antibody responses to influenza virus vaccination in persons over 70 years of age | [79] |
In vivo using BALB/c mice (number not specified) | L. rhamnosus (unespecified strain) | Sublingually administered at 108, 107, and 106 CFU/mouse for 3, 6, 10, 13, and 16 days | Influenza A/NWS/33 (H1N1) | Sublingual administration of L. rhamnosus increases the production of IgA in the secretion of the mucosa and the activity of T cells and natural killer cells, providing protection against flu virus | [55] |
Clinical trial in 42 healthy adults | L. rhamnosus GG | Capsules containing 1 × 1010 CFU twice daily for 28 days | Influenza A (H1N1 and H3N2) and B | On day 28, a significant increase in seroprotection in the LGG group for the H3N2 vaccine strain was found | [75] |
In vivo using BALB/c mice (number not specified) | L. rhamnosus GG (ATCC 53103) | Intranasally administered at 20 µL of LGG solution/day for three days | Influenza A/PR/8/34 (PR8, H1N1) | Intranasal administration of LGG enhances respiratory cell-mediated immune responses by following the activation of natural killer cells in the lungs, thus protecting the host from IFV infection | [56] |
In vivo using 40 BALB/c mice | Lactobacillus pentosus strain b240 | Oral administration of non-viable heat-killed b40 diluted at doses of 0.4, 2, or 10 mg/mouse/day for 22 days. | Influenza A/PR8/34 (H1N1) | Orally administered L. pentosus reduces influenza virus infectious titers in the lungs of influenza virus-infected mice | [57] |
In vivo using BALB/c mice (5–6 per group) | L. rhamnosus CRL1505 | Two consecutive days of 108 CFU/mouse/day inoculated via nostrils using live and heat-killed L. rhamnsosus | Influenza A/PR/8/34 (H1N1) | Both viable and non-viable L. rhamnsosus reduced lung injury and viral load, protecting infected mice | [58] |
In vivo using BALB/c mice (number not specified) | L. pentosus S-PT84 | Intranasal administration of 20 µL of L. pentosus at a concentration of 0, 1, or 10 mg/mL once daily for 3 consecutive days | Influenza A/PR/8/34 (PR8, H1N1) | Intranasal administration of L. pentosus protected against flu virus infection by enhancing Th immunity, induction of INF-α and natural killer activity | [59] |
In vivo using BALB/c mice (number not specified) | Bifidobacterium longum MM-2 | Orally administered of 2 × 109 CFU/day for 17 days from 14 days before 2 days after IFV infection | Influenza A/PR/8/1934 (PR8, H1N1) | Oral administration of B. longum stimulates immunity by increasing the activity of natural killer cells in the lungs and spleen, resulting in muffled viral proliferation. This probiotic suppresses inflammation in the lower respiratory tract, reduces symptoms, and improves the survival rate of IFV-infected mice | [60] |
In vivo using 60 BALB/c mice | Lactobacillus brevis JCM 17312 | 1 × 109 CFU/day for 14 days | Influenza A/PR/8/34 (H1N1) | L. brevis increases the production capacity of INF-α and the increase of the production of specific IgA of the human immunodeficiency virus, which can improve the symptomatology of this infection | [61] |
Clinical trial in 50 volunteers | L. fermentun CECT5716 | Oral daily dose of 1 × 1010 CFU 2 weeks before vaccination and 2 weeks after vaccination | Influenza A (H1N1 and H3N2) | In the probiotic group there was an increase in the production of natural killer cells, two weeks after vaccination. In addition, the antigen-specific IgA was also increased. The incidence of influenza-like illness was lower in this group 5 months after vaccination | [76] |
Clinical trial in 211 subjects | B. animalis ssp. lactis BB-12(DSM15954), L. paracasei ssp. paracasei, L. casei 431 (ATCC 55544) | The probiotic products contained a minimum of 1 × 109 CFU/day for 6 weeks | Influenza A virus | Both probiotic groups increased specific IgG and mean fold for vaccine specific secretory IgA in saliva | [77] |
In vivo using C57BL/6N mice (number not specified) | L. gasseri SBT2055 | Orally administered of L. gasseri at 1 × 108 or 1.6 × 109 CFU/mouse/day for 21 days | Influenza A virus (PR8) | Oral administration of L. gasseri improved the survival rates and the titer of the virus in the lungs, thus making the mice stronger against a viral infection | [62] |
In vivo using BALB/c mice (number not specified) | L. pentosus b240 | Orally administered heat-killed L. pentosus every day at a dose of 10 mg/mouse (1010) for 5 weeks | Influenza A (H1N1) | Expression of antiviral genes in rodent lungs can be regulated by administration of L. pentosus | [63] |
Type of Study | Probiotics | Dosage and Time of Exposure | Viruses | Main Findings | Reference |
---|---|---|---|---|---|
In vitro using a bovine intestinal epithelial cell line originally derived from fetal bovine intestinal epitheliocytes | Lactobacillus gasseri TMC0356, Lactobacillus rhamnosus (LGG), L. rhamnosus LA-2, Lactobacillus casei TMC0409, Streptococcus thermophilus TMC1543, Bifidobacterium bifidum 2-2, and B. bifidum 3-9 | Lactobacilli or bifidobacteria (5 × 107 cells/mL) for 24 or 48 h | Enteric common infectious diseases | Administration of L. rhamnosus induces the activation of TLR3, and there is an increase in the production of IFN-β by bovine intestinal epithelial cells, which may have beneficial effects on the protection against enteric viruses in vivo | [87] |
In vitro using intestinal and monocyte/macrophage-derived cell lines (human, pig, goat) | L. rhamnosus (LGG), L. casei, Enterococcus faecium PCK38, Lactobacillus fermentum ACA-DC179, Lactobacillus pentosus PCA227, and Lactobacillus plantarum PCA236 and PCS22 | 108 CFU/mL and incubated for 24-48 h | Rotavirus (RV) and transmissible gastroenteritis coronavirus (TGEV) | Administration of lactic acid bacteria (LAB) shows a protective effect against VR and TGEV. In the case of L. casei, Shirota has a high level of protection against TGEV by releasing highly reactive oxygen species (ROS) into the TLT cell line. L. plantarum PCA236 also stimulated the release of these reactive species | [7] |
In vitro using a porcine intestinal epithelial cell line (PIE cells) | Bifidobacterium longum MCC1, Bifidobacterium infantis MCC12, Bifidobacterium breve MCC16, B. pseudolongum MCC92, Lactobacillus paracasei MCC1375, L. gasseri MCC587, and Lactococcus lactis sub ssp. lactis MCC866 | The cultured cells were incubated with different LAB strains at a density of 5 × 108 cells/mL for 48 h. | RV | B. infantis MCC12 and B. breve MCC1274 increased the production of INF-β in PIE cells, in response to VR infection. They also increased the expression of CXCL10 and IL-6 genes, especially the B. infantis | [6] |
In vitro using PIE cells | L. rhamnosus CRL1505 and L. plantarum CRL1506 | Lactobacilli (5 × 108 cells/mL) were added, and 48 h later effects were determined | Antiviral factors and cytokines/chemokines were increased in lactobacilli-treated PIE cells. The expression of the IL-15 and RAE1 genes that mediate poly (I:C) inflammatory damage was also reduced | [85] | |
In vivo using pregnant BALB/c mice | B. bifidum G9-1 (BBG9-1) | Orally administration of 3 × 107 CFU of BBG9-1, respectively, once daily for 10 days from 2 days before to 7 days after RV infection | RV | The oral administration of B. bifidum induced mucosal protective factors, protecting against RV-induced lesions, and improving diarrhea. B. bifidum may be an effective method to control an RV epidemic for prophylactic and therapeutic purposes | [80] |
In vivo using mice | Human-derived Lactobacillus reuteri DSM 17938 and ATCC PTA 6475 | Diluted to a concentration of 2 × 109 CFU/mL in PBS. Mice received gastric gavages (50 μL) of probiotics or vehicle daily from days 5 to 14 of life. | RV | A decrease in proinflammatory cytokine concentrations was seen, including the inflammatory protein of macrophages-1a and IL-1b, as well as an increase in the specific antibodies against rotavirus after the administration of the two probiotic strains. L. reuteri reduced diarrhea episodes | [89] |
In vitro in ST cells | L. plantarum Probio-38 and L. salivarius Probio-37 | 108 to 109 CFU/mL | TGEV | Both strains survived in synthetic gastric juice and inhibited TGE coronavirus in vitro in ST cells | [88] |
In vivo using 49 children | L. casei subsp. casei strain GG (LGG), L. casei subsp. rhamnosus (Lactophilus), or a combination of S. thermophilus and L. delbrückii subsp. bulgaricus (Yalacta®) | Twice daily for 5 days | RV | Administration of LGG increased the cells secreting specific IgA antibodies to rotavirus and in the convalescence stage. In addition, the duration of diarrhea was reduced in children | [92] |
In vivo using 12 mice | L. paracasei ATCC 334 | 108 CFU for 6 days | Murine norovirus (NV) | Intake of L. paracasei before the infection by murine NV, reduced the level of expression of the mRNA that encodes the viral polymerase | [90] |
Clinical trial in 816 children | L. rhamnosus R0011 and Lactobacillus helveticus R0052 | 4 × 109 CFU of L. rhamnosus and L. helveticus (95:5 ratio) twice daily for 5 days | Adenovirus, norovirus, and rotavirus | No beneficial effects associated with the administration of L. rhamnosus and L. helveticus have been observed; these probiotics do not reduce the severity of acute gastroenteritis or expedite the clearance of viruses in stool | [91] |
Type of Study | Probiotics | Dosage and Time of Exposure | Viruses | Main Findings | Reference |
---|---|---|---|---|---|
In vivo trial in 39 patients serologically positive for anti-hepatitis C virus (HCV) IgG antibodies | Enterococcus faecalis FK-23 | 900 mg of E. faecalis 3 times daily | HCV | E. faecalis decreased alanine transferase from 3 to 26 months of treatment while maintaining viral charge and other enzyme levels | [94] |
Clinical trial in 180 women | Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 (50% each) | 180 mg including 5.4 × 109 CFU once a day until negative human papillomavirus (HPV) result | HPV | This probiotic may have decreased abnormal cervical smear rates, but it did not influence the genital burden of HPV | [26] |
Clinical trial in 117 women | L. rhamnosus BMX 54 after a standard treatment of 500 mg metronidazole twice a day for 7 days | Vaginal tablets of 104 CFU/tablet one each 3 days for 20 days and then once every 5 days for 2 months (short treatment), or once a week for 5 months (long treatment) | HPV | Probiotic implementation for 6 months favors the recreation of the vaginal balance, and therefore it can be useful to control the infection by the human papilloma virus | [95] |
Clinical trial in 54 women | Lactobacillus casei Shirota | Daily consumption of a commercially available probiotic (Yakult®) | HPV | The likelihood of clearance of low-grade squamous intraepithelial lesion abnormalitieswas twice as high in the probiotic group | [96] |
Clinical trial in 8 human immunodeficiency virus (HIV)-positive patients | Mix of Lactobacillus plantarum DSM24730, Streptococcus thermophilus DSM24731, Bifidobacterium breve DSM24732, Lactobacillus paracasei DSM24733, Lactobacillus delbrueckii subsp bulgaricus DSM24734, Lactobacillus acidophilus DSM 24735, Bifidobacterium longum DSM24736, andBifidobacterium infantis DSM24737) | 1.8 × 1012 CFU twice a day for 6 months | HIV | Administration of these probiotics decreases the level of tryptophan in plasma and increases the concentration of serotonin in the blood | [97] |
In vitro trial in Vero African green monkey kidney cells | L. rhamnosus PTCC 1637 and Escherichia coli PTCC 25923 | 1 × 108 CFU/mL | Herpes simplex virus-1 (HSV-1) | L. rhamnosus through various mechanisms, such as competition with the virus for adhesion to cells or increased viability of macrophages, induced antiviral effects against HSV-1 | [22] |
In vivo using 15 female C57BL/mice | Bifidobacterium bifidum (unespecified strain) | 5 groups of 10, treatment groups were administrated either orally or intravenously with 100 μL B. bifidum (1 × 108 CFU) 5 times at a 4-day interval for 20 days, including 2 times before and after tumor induction and one time on the same day of the challenge | HPV | Administration of this probiotic orally or intravenously, can modulate the immune system by stimulating secretion of INF-y and IL-12 in spleen cells and Th1 responses and prevent tumor growth | [21] |
Clinical trial in 65 women with confirmed HIV infection | L. rhamnsosus GR-1 and L. reuteri RC-14 | Daily capsules of freeze-dried probiotics with 2 × 109 CFU and 400 mg of oral metronidazole twice daily for 10 days in women diagnosed with bacterial vaginosis | HIV | Administration of these probiotics can improve the quality of life of women with HIV-induced BV, but not cure it. | [98] |
Clinical trial in 14 children | L. plantarum 299v | lyophilized powder in an oatmeal base in 5 g for 3 months | HIV | Probiotic bacteria can have protective effects against inflammation and activation of the gastrointestinal immune system by stabilizing the number of CD4+ T cells | [99] |
Clinical trial in 39 subjects | L. reuteri MM2 | 1 × 1010 UFC/day for 21 days | HIV | No effects were detected in either safety or tolerance parameters | [100] |
In vivo using male mice | Saccharomyces boulardii CNCM I-745 | Oral gavage with either S. boulardii (107 CFU/day) for 4 weeks | HSV-1 | These probiotic increased levels of anti-inflammatory interleukins, decreased production of pro-inflammatory cytokines, and improved HSV-1 | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Santamarina, A.; Lamas, A.; del Carmen Mondragón, A.; Cardelle-Cobas, A.; Regal, P.; Rodriguez-Avila, J.A.; Miranda, J.M.; Franco, C.M.; Cepeda, A. Probiotic Effects against Virus Infections: New Weapons for an Old War. Foods 2021, 10, 130. https://doi.org/10.3390/foods10010130
Lopez-Santamarina A, Lamas A, del Carmen Mondragón A, Cardelle-Cobas A, Regal P, Rodriguez-Avila JA, Miranda JM, Franco CM, Cepeda A. Probiotic Effects against Virus Infections: New Weapons for an Old War. Foods. 2021; 10(1):130. https://doi.org/10.3390/foods10010130
Chicago/Turabian StyleLopez-Santamarina, Aroa, Alexandre Lamas, Alicia del Carmen Mondragón, Alejandra Cardelle-Cobas, Patricia Regal, José Antonio Rodriguez-Avila, José Manuel Miranda, Carlos Manuel Franco, and Alberto Cepeda. 2021. "Probiotic Effects against Virus Infections: New Weapons for an Old War" Foods 10, no. 1: 130. https://doi.org/10.3390/foods10010130