Exergy and Environmental Analysis for Optimal Condition Finding of a New Combined Cycle
Abstract
:1. Introduction
2. Layouts
3. Methodology
3.1. Energy Model
- All processes have been examined in the steady-state mode.
- The operating temperature of the PEM electrolyzer is considered 85 °C.
- The efficiencies of the compressor and the gas turbine are considered to be 0.85 and 0.9, respectively.
- The combustion chamber efficiency is considered to be 95%.
3.2. Exergy Analysis
3.3. Exergo-Economic Model
3.4. Exergo-Environmental Model
3.4.1. Life Cycle Assessment
3.4.2. Exergo-Environmental Analysis
3.4.3. Exergo-Environmental Balance
4. Results and Discussion
4.1. Validation
4.2. Results of the Developed System
4.2.1. Exergy and Exergo-Economic Analysis
4.2.2. Exergo-Environment
4.3. Comparison Results
4.4. ANN Optimization
4.4.1. Neural Network
4.4.2. Multi-Objective Optimization
5. Conclusions
- The results of the energy and exergy examinations present that the suggested system with the Kalina cycle and thermoelectric together with the electrolyzer produces 1800 kW power and has energy and exergy efficiencies of 30% and 25.8% with 0.22 kg/day of hydrogen production.
- In the suggested system (cycle 3), the combustion chamber and HRS1 with 3622 kW and 674.2 kW have the highest destruction values.
- The results of the exergo-economic examination state that the parameter of has a high value for HRS1.
- The results related to the calculation of the exergo-economic factor represent that in order to increase the performance of the suggested system, the investment cost of equipment such as the combustion chamber and HRS1 should be increased.
- The results of the exergo-environmental examination also indicate that the highest environmental cost is brought to the suggested equipment system by HRS1.
- The results of the comparative investigation show that the suggested system has the highest energy efficiency compared to the other systems, while its exergy destruction is the highest.
- The results of this research can be applied in designing the gas turbine system with minimum waste and maximum efficiency from primary energy sources.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loni, R.; Najafi, G.; Bellos, E.; Rajaee, F.; Said, Z.; Mazlan, M. A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook. J. Clean. Prod. 2020, 287, 125070. [Google Scholar] [CrossRef]
- Bozgeyik, A.; Altay, L.; Hepbasli, A. Energetic, exergetic, exergoeconomic, environmental and sustainability analyses of a solar, geothermal and biomass based novel multi-generation system for production of power, hydrogen, heating, cooling and fresh water. Process. Saf. Environ. Prot. 2023, 177, 400–415. [Google Scholar] [CrossRef]
- Al-Ali, M.; Dincer, I. Energetic and exergetic studies of a multigenerational solar–geothermal system. Appl. Therm. Eng. 2014, 71, 16–23. [Google Scholar] [CrossRef]
- Musharavati, F.; Khanmohammadi, S.; Pakseresht, A.; Khanmohammadi, S. Waste heat recovery in an intercooled gas turbine system: Exergo-economic analysis, triple objective optimization, and optimum state selection. J. Clean. Prod. 2020, 279, 123428. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Battula, S.; Takkala, R.R.; Wang, Z.; Tesfatsion, L. An integrated transmission and distribution test system for evalu-ation of transactive energy designs. Appl. Energy 2019, 240, 666–679. [Google Scholar]
- Yi, S.; Lin, H.; Abed, A.M.; Shawabkeh, A.; Marefati, M.; Deifalla, A. Sustainability and exergoeconomic assessments of a new MSW-to-energy incineration multi-generation process integrated with the concentrating solar collector, alkaline electrolyzer, and a reverse osmosis unit. Sustain. Cities Soc. 2023, 91, 104412. [Google Scholar] [CrossRef]
- Mahdavi, N.; Mojaver, P.; Khalilarya, S. Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method. Renew. Energy 2021, 185, 506–524. [Google Scholar] [CrossRef]
- Leveni, M.; Manfrida, G.; Cozzolino, R.; Mendecka, B. Energy and exergy analysis of cold and power production from the geothermal reservoir of Torre Alfina. Energy 2019, 180, 807–818. [Google Scholar] [CrossRef]
- Hosseini, S.E. Design and analysis of renewable hydrogen production from biogas by integrating a gas turbine system and a solid oxide steam electrolyzer. Energy Convers. Manag. 2020, 211, 112760. [Google Scholar] [CrossRef]
- Nami, H.; Mohammadkhani, F.; Ranjbar, F. Utilization of waste heat from GTMHR for hydrogen generation via combination of organic Rankine cycles and PEM electrolysis. Energy Convers. Manag. 2016, 127, 589–598. [Google Scholar] [CrossRef]
- Nami, H.; Akrami, E. Analysis of a gas turbine based hybrid system by utilizing energy, exergy and exergoeconomic methodologies for steam, power and hydrogen production. Energy Convers. Manag. 2017, 143, 326–337. [Google Scholar] [CrossRef]
- Singh, R.; Singh, O. Comparative study of combined solid oxide fuel cell-gas turbine-Organic Rankine cycle for different working fluid in bottoming cycle. Energy Convers. Manag. 2018, 171, 659–670. [Google Scholar] [CrossRef]
- Manesh, M.H.K.; Ghorbani, S.; Blanco-Marigorta, A.M. Optimal design and analysis of a combined freshwater-power generation system based on integrated solid oxide fuel cell-gas turbine-organic Rankine cycle-multi effect distillation system. Appl. Therm. Eng. 2022, 211, 118438. [Google Scholar] [CrossRef]
- Gholamian, E.; Hanafizadeh, P.; Habibollahzade, A.; Ahmadi, P. Evolutionary based multi-criteria optimization of an integrated energy system with SOFC, gas turbine, and hydrogen production via electrolysis. Int. J. Hydrog. Energy 2018, 43, 16201–16214. [Google Scholar] [CrossRef]
- Shamoushaki, M.; Ehyaei, M.; Ghanatir, F. Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant. Energy 2017, 134, 515–531. [Google Scholar] [CrossRef]
- Hemadri, V.B.; Subbarao, P. Thermal integration of reheated organic Rankine cycle (RH-ORC) with gas turbine exhaust for maximum power recovery. Therm. Sci. Eng. Prog. 2021, 23, 100876. [Google Scholar] [CrossRef]
- El-Sattar, H.A.; Kamel, S.; Vera, D.; Jurado, F. Tri-generation biomass system based on externally fired gas turbine, organic rankine cycle and absorption chiller. J. Clean. Prod. 2020, 260, 121068. [Google Scholar] [CrossRef]
- Roy, D.; Samanta, S.; Ghosh, S. Techno-economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle. J. Clean. Prod. 2019, 225, 36–57. [Google Scholar] [CrossRef]
- Cao, Y.; Mihardjo, L.W.; Dahari, M.; Tlili, I. Waste heat from a biomass fueled gas turbine for power generation via an ORC or compressor inlet cooling via an absorption refrigeration cycle: A thermoeconomic comparison. Appl. Therm. Eng. 2020, 182, 116117. [Google Scholar] [CrossRef]
- Liu, Z.; Ehyaei, M.A. Thermoeconomic and exergoenvironmental assessments of a combined micro-gas turbine and superheated Kalina cycles for cogeneration of heat and electrical power using biomass. Int. J. Environ. Sci. Technol. 2022, 19, 11233–11248. [Google Scholar] [CrossRef]
- Ebrahimi-Moghadam, A.; Farzaneh-Gord, M.; Moghadam, A.J.; Abu-Hamdeh, N.H.; Lasemi, M.A.; Arabkoohsar, A.; Alimoradi, A. Design and multi-criteria optimisation of a trigeneration district energy system based on gas turbine, Kalina, and ejector cycles: Exergoeconomic and exergoenvironmental evaluation. Energy Convers. Manag. 2020, 227, 113581. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, N.; Zhang, Y.; Wang, X.; Zhao, P.; Wang, J.; Dai, Y. Multi-objective optimization of an innovative power-cooling integrated system based on gas turbine cycle with compressor inlet air precooling, Kalina cycle and ejector refrigeration cycle. Energy Convers. Manag. 2021, 244, 114473. [Google Scholar] [CrossRef]
- Mohammadkhani, F.; Yari, M.; Ranjbar, F. A zero-dimensional model for simulation of a Diesel engine and exergoeconomic analysis of waste heat recovery from its exhaust and coolant employing a high-temperature Kalina cycle. Energy Convers. Manag. 2019, 198, 111782. [Google Scholar] [CrossRef]
- Çengel, Y.A.; Boles, M.A. Thermodynamics: An Engineering Approach, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2004. [Google Scholar]
- Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design &Optimization; John Wiley & Sons: Hoboken, NJ, USA, 1996; p. 542. [Google Scholar]
- Meyer, L.; Tsatsaronis, G.; Buchgeister, J.; Schebek, L. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy 2009, 34, 75–89. [Google Scholar] [CrossRef]
- SimaPro|LCA Software for Informed-Change Makers. Available online: https://network.simapro.com/ (accessed on 20 September 2023).
- Gill, E.Z.; Ratlamwala, T.A.H.; Hussain, G.; Alkahtani, M. Energy, exergy, exergo-economic and exergo-environmental analyses of solar based hydrogen generation system. Int. J. Hydrogen Energy 2021, 46, 29049–29064. [Google Scholar] [CrossRef]
- Boyano, A.; Blanco-Marigorta, A.; Morosuk, T.; Tsatsaronis, G. Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy 2011, 36, 2202–2214. [Google Scholar] [CrossRef]
- Mohammadi, A.; Kasaeian, A.; Pourfayaz, F.; Ahmadi, M.H. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Appl. Therm. Eng. 2017, 111, 397–406. [Google Scholar] [CrossRef]
- Fallah, M.; Mahmoudi, S.M.S.; Yari, M.; Ghiasi, R.A. Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system. Energy Convers. Manag. 2016, 108, 190–201. [Google Scholar] [CrossRef]
- Kong, C.K.; Low, L.E.; Siew, W.S.; Yap, W.H.; Khaw, K.Y.; Ming, L.C.; Mocan, A.; Goh, B.H.; Goh, P.H. Biological activities of snowdrop (Galanthus spp., Family Amaryllidaceae). Front. Pharmacol. 2021, 11, 552453. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Ali, P.J.M.; Faeq, A.K.; Abdullah, S.M. An Investigation on Disparity Responds of Machine Learning Algorithms to Data Normalization Method. ARO Sci. J. Koya Univ. 2022, 10, 29–37. [Google Scholar] [CrossRef]
Elements | Energy | Exergy Destruction |
---|---|---|
Intercooler | ||
Compressor 1 | ||
Compressor 2 | ||
CC | ||
Gas Turbine | ||
HRS1 | ||
ORC Turbine | ||
ORC Pump | ||
Separator | ||
Kalina Turbine | ||
Valve | ||
HTR | ||
LTR | ||
Pump | ||
HRS2 |
Components | Cost Balance | Auxiliary Equation |
---|---|---|
Intercooler | ||
CC | - | |
Compressor 1 | ||
Compressor 2 | ||
HRS1 | ||
Gas Turbine | ||
Condenser | ||
ORC Turbine | ||
ORC Pump | ||
Separator | ||
Kalina Turbine | ||
Valve | ||
HTR | ||
LTR | ||
Pump | ||
HRS2 |
Components | Environment Effect Balance | Auxiliary Equation |
---|---|---|
Intercooler | ||
CC | ||
Compressor 1 | ||
Compressor 2 | ||
HRS1 | ||
Gas Turbine | ||
Condenser | ||
ORC Turbine | ||
ORC Pump | ||
Separator | ||
Kalina Turbine | ||
Valve | ||
HTR | ||
LTR | ||
Pump | ||
HRS2 |
Stream Brayton Cycle | P (bar) | ) | h (kJ/kg) | |||
---|---|---|---|---|---|---|
Present Work | Ref. [30] | Present Work | Ref. [30] | Present Work | Ref. [30] | |
1 | 1.01 | 1.01 | 25 | 25 | 298.4 | 302.86 |
2 | 3.194 | 3.19 | 161 | 161.73 | 435.8 | 447.61 |
3 | 3.194 | 3.16 | 40 | 40 | 313.1 | 319.25 |
4 | 10.1 | 10 | 184.6 | 184.44 | 459.5 | 474.33 |
5 | 10.1 | 10 | 800 | 800 | 1131 | 1250.65 |
6 | 1.01 | 1.04 | 392.1 | 391.97 | 676.6 | 730.15 |
7 | 1.01 | 1.02 | 200 | 217.83 | 475.9 | 514.59 |
Stream Kalina Cycle | P (bar) | ) | ||
---|---|---|---|---|
Present Research | Ref. [31] | Present Research | Ref. [31] | |
9 | 25 | 25 | 90 | 90 |
10 | 25 | 25 | 90 | 90 |
11 | 11.44 | 12.4 | 48.5 | 52.6 |
12 | 11.44 | 12.4 | 53.2 | 57.8 |
13 | 11.44 | 12.16 | 49.6 | 53.7 |
14 | 11.44 | 12.16 | 35 | 37 |
15 | 25 | 26.79 | 35.4 | 37.4 |
16 | 25 | 26.27 | 47.5 | 47.8 |
17 | 25 | 25.5 | 59 | 59.3 |
18 | 25 | 25 | 90 | 90 |
19 | 25 | 24.25 | 58.1 | 57.8 |
20 | 11.44 | 12.4 | 56.7 | 57.9 |
Component | ||||||||
---|---|---|---|---|---|---|---|---|
Gas Comp. 1 | 1374 | 1228 | 22.56 | 22.52 | 0.0387 | 2.386 | 1.59 | 12.1 |
Intercooler | 240.1 | 127.1 | 4.431 | 4.41 | 0.0212 | 2.076 | 1.01 | 89.9 |
Gas Comp. 2 | 1464 | 1305 | 24.03 | 24.00 | 0.0387 | 2.601 | 1.46 | 12.3 |
Comb. chamber | 7688 | 4066 | 53.68 | 53.67 | 0.0109 | 25.29 | 0.04 | 89.1 |
Gas Turbine | 5012 | 4617 | 75.68 | 75.55 | 0.1236 | 5.954 | 2.03 | 8.7 |
HRS1 | 961.8 | 287.6 | 14.51 | 14.50 | 0.0083 | 10.16 | 0.08 | 234.6 |
Separator | 32,596 | 32,595 | - | - | - | - | - | - |
Kalina Turbine | 177.9 | 153 | 10.01 | 9.798 | 0.2165 | 1.372 | 13.63 | 18.9 |
LTR | 13.03 | 7.848 | 0.7256 | 0.718 | 0.0078 | 0.2854 | 2.67 | 67.8 |
HTR | 20.57 | 12.62 | 1.142 | 1.133 | 0.0088 | 0.4382 | 1.97 | 64.3 |
TEG | 93.67 | 67.34 | 5.225 | 5.160 | 0.0643 | 2.826 | 2.22 | 40.8 |
Kalina Pump | 6.508 | 5.25 | 0.4339 | 0.426 | 0.0079 | 0.0823 | 8.75 | 26.3 |
Valve | 11420 | 11419 | - | - | - | - | - | - |
HRS2 | 339.1 | 173.3 | 5.132 | 5.112 | 0.0203 | 0.5846 | 3.36 | 96.5 |
ORC Turbine | 260.8 | 225.3 | 8.695 | 8.488 | 0.2069 | 1.154 | 15.02 | 18.6 |
ORC Pump | 15.83 | 12.59 | 0.6214 | 0.611 | 0.0106 | 0.125 | 1.72 | 27.9 |
Condenser | 52.12 | 38.13 | 0.0470 | 0.033 | 0.0991 | 0.4555 | 17.87 | 97.67 |
PEM | 432.3 | 217.4 | 7.538 | 7.085 | 0.4530 | 3.522 | 11.40 | 111.5 |
Stream | Fluid | C USD/kWh | Ċ (USD/h) | b mPts/kJ | Ḃ mPts/s |
---|---|---|---|---|---|
1 | Air | 0 | 0 | 0 | 0 |
2 | Air | 0.04709 | 1.796 | 0.01722 | 0.6566 |
3 | Air | 0.01837 | 18.15 | 0.007141 | 7.056 |
4 | Air | 0.01839 | 42.18 | 0.007152 | 16.4 |
5 | Air | 0.01597 | 95.87 | 0.005879 | 37.39 |
6 | Air | 0.01597 | 20.31 | 0.005879 | 7.922 |
7 | Air | 0.01597 | 5.814 | 0.005879 | 2.268 |
8 | Air | 0.01507 | 0.7022 | 0.005879 | 0.2738 |
9 | NH3H2O | 0.05508 | 2425 | 0.02143 | 943.7 |
10 | NH3H2O | 0.05508 | 1795 | 0.02143 | 698.6 |
11 | NH3H2O | 0.05508 | 1786 | 0.02143 | 694.7 |
12 | NH3H2O | 0.05509 | 2415 | 0.02144 | 939.5 |
13 | NH3H2O | 0.05509 | 2414 | 0.02144 | 939.2 |
14 | NH3H2O | 0.05509 | 2409 | 0.02144 | 937.2 |
15 | NH3H2O | 0.05509 | 2409 | 0.02144 | 937.4 |
16 | NH3H2O | 0.0551 | 2410 | 0.02144 | 937.6 |
17 | NH3H2O | 0.05511 | 2411 | 0.02144 | 938.1 |
18 | NH3H2O | 0.05508 | 630.1 | 0.02143 | 245.2 |
19 | NH3H2O | 0.05508 | 629 | 0.02143 | 244.7 |
20 | NH3H2O | 0.05509 | 629 | 0.02143 | 244.7 |
21 | Water | 0 | 0 | 0 | 0 |
22 | Water | 0.05509 | 0.8838 | 0.02144 | 0.3439 |
23 | Isobutene | 0.03255 | 18.37 | 0.0126 | 7.109 |
24 | Isobutene | 0.03255 | 9.88 | 0.0126 | 3.824 |
25 | Isobutene | 0.03255 | 8.184 | 0.0126 | 3.167 |
26 | Isobutene | 0.03335 | 8.805 | 0.01287 | 3.398 |
27 | Isobutene | 0.03384 | 13.24 | 0.01307 | 5.113 |
28 | Water | 0 | 0 | 0 | 0 |
29 | Water | 0.04709 | 1.796 | 0.01722 | 0.6566 |
Element | (mpts/kJ) | (mpts/kJ) | ECO 99 Indicator (pts) | (mpts/s) | (mpts/s) | ||
---|---|---|---|---|---|---|---|
Gas Comp. 1 | 0.007141 | 0.006383 | 955.72 | 0.929 | 0.001746 | 0.1875 | 11.88 |
Intercooler | 0.01349 | 0.007141 | 192.70 | 0.807 | 0.000352 | 0.043 | 88.99 |
Gas Comp. 2 | 0.00716 | 0.006383 | 955.72 | 1.013 | 0.001746 | 0.1721 | 12.18 |
Comb. chamber | 0.005162 | 0.002893 | 1782 | 0.459 | 0.003255 | 0.7042 | 78.41 |
Gas Turbine | 0.006383 | 0.005879 | 1168 | 2.322 | 0.002133 | 0.091 | 8.56 |
HRS1 | 0.01967 | 0.005879 | 1761 | 3.964 | 0.003216 | 0.081 | 234.6 |
Separator | 0.04286 | 0.02143 | - | - | - | - | - |
Kalina Turbine | 0.02492 | 0.02143 | 97.09 | 0.534 | 0.000177 | 0.033 | 16.29 |
LTR | 0.03559 | 0.02144 | 22.80 | 0.111 | 0.000041 | 0.0374 | 66.05 |
HTR | 0.03495 | 0.02143 | 43.37 | 0.111 | 0.000079 | 0.071 | 63.09 |
TEG | 0.02981 | 0.02144 | 10.33 | 1.100 | 0.000018 | 0.001 | 28.11 |
Kalina Pump | 0.03089 | 0.02492 | 0.0039 | 0.031 | 7.27 10−9 | 2.32 10−5 | 23.96 |
Valve | - | - | - | - | - | - | - |
HRS2 | 0.01152 | 0.005879 | 1255 | 0.228 | 0.002292 | 0.995 | 95.95 |
ORC Turbine | 0.01458 | 0.0126 | 128.81 | 0.447 | 0.000235 | 0.052 | 15.75 |
ORC Pump | 0.01833 | 0.01458 | 0.0093 | 0.047 | 1.693 | 3.585 | 25.72 |
Condenser | 0.01722 | 0.0126 | 12.75 | 0.176 | 0.000023 | 0.013 | 36.71 |
PEM | 0.01269 | 0.006383 | 2.09 | 1.371 | 0.000003 | 0.00027 | 98.82 |
Point A | Point B | Point C | Point T | ||
---|---|---|---|---|---|
Decision variables | 9.00 | 10.43 | 9.03 | 9.02 | |
844.63 | 844.32 | 757.73 | 840.78 | ||
11.61 | 12.00 | 12.00 | 11.75 | ||
22.04 | 22.33 | 26.56 | 22.62 | ||
Objective functions | Exergy efficiency | 29.61 | 27.89 | 26.27 | 29.50 |
Cost of product | 0.309 | 0.30 | 0.3472 | 0.31 | |
Environmental effects of exergy destruction | 13.30 | 13.46 | 12.80 | 13.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansir, I.B. Exergy and Environmental Analysis for Optimal Condition Finding of a New Combined Cycle. Processes 2024, 12, 312. https://doi.org/10.3390/pr12020312
Mansir IB. Exergy and Environmental Analysis for Optimal Condition Finding of a New Combined Cycle. Processes. 2024; 12(2):312. https://doi.org/10.3390/pr12020312
Chicago/Turabian StyleMansir, Ibrahim B. 2024. "Exergy and Environmental Analysis for Optimal Condition Finding of a New Combined Cycle" Processes 12, no. 2: 312. https://doi.org/10.3390/pr12020312