Analysis of the Epidemic Curve of the Waves of COVID-19 Using Integration of Functions and Neural Networks in Peru
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset
3.2. Inflection Points
3.3. The Sigmoidal–Boltzmann Function
3.4. The Program
Algorithm 1. Algorithm for modeling COVID-19 | |
1 | Preprocessing: Load data, prepare data structures, scale data, and configure constants and variables. |
2 | Calculation of model parameters: Translate coordinates and estimate parameters (with an auxiliary function). |
3 | Construction of the Boltzmann function. Build the integrated function (with a loop according to the number of waves). |
4 | Results: Report the model parameters and the correlation coefficient. Additionally, it can be exported in LaTeX format. |
5 | Graphics: Set graphics plot style (e.g., line and color) and save them to a JPG file format. |
4. Results
4.1. Integration of Functions
4.1.1. The Mathematical Version
4.1.2. The Computational Version
5. Results: The Case Study
5.1. Modeling the Number of Deaths with the Sigmoidal–Boltzmann Model
5.2. Comparison with Classic Models
5.3. Correlation between Isolation Measures and the Mortality Rate
5.3.1. Statistical Results
5.3.2. Discussion
5.4. Modeling the Number of Deaths with the ANN
The Procedure and Architecture of the ANN
5.5. Comparison
5.6. Limitations
5.7. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ANN | Artificial neural network |
COVID-19 | Coronavirus disease |
CQ | Chloroquine |
HCQ | Hydroxychloroquine |
IMF | International Monetary Fund |
INEI | Instituto Nacional de Estadística e Informática |
JHU | Johns Hopkins University |
LSTM | Long Short-Term Memory |
MINSA | Ministerio de Salud |
ML | Machine learning |
NN | Neural network |
UNA | Universidad Nacional del Altiplano |
WHO | World Health Organization |
References
- Irawati, I.; Suwaryo, U.; Sulaeman, A.; Yuningsih, N.Y. The Customary Law of the Communal Property and Sustainability in Coping with the Economic Impact of COVID-19 in Minangkabau Indigenous Peoples, Indonesia. J. Law Sustain. Dev. 2024, 12, e2548. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Moreno-Luna, L.; Saavedra-Serrano, M.C.; Jimenez, M.; Simón, J.A.; Tornero-Aguilera, J.F. The Impact of the COVID-19 Pandemic on Social, Health, and Economy. Sustainability 2021, 13, 6314. [Google Scholar] [CrossRef]
- Das, K.; Behera, R.L.; Paital, B. Socio-Economic Impact of COVID-19. In COVID-19 in the Environment: Impact, Concerns, and Management of Coronavirus; Elsevier: Amsterdam, The Netherlands, 2022; pp. 153–190. [Google Scholar] [CrossRef]
- Msemburi, W.; Karlinsky, A.; Knutson, V.; Aleshin-Guendel, S.; Chatterji, S.; Wakefield, J. The WHO Estimates of Excess Mortality Associated with the COVID-19 Pandemic. Nature 2022, 613, 130–137. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Cases|WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards (accessed on 11 March 2024).
- Ćmiel, A.M.; Ćmiel, B. A Simple Method to Describe the COVID-19 Trajectory and Dynamics in Any Country Based on Johnson Cumulative Density Function Fitting. Sci. Rep. 2021, 11, 17744. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Valverde, G.; Ramírez-Valverde, B.; Ramírez-Valverde, G.; Ramírez-Valverde, B. Modelo Estadístico Para Defunciones y Casos Positivos de COVID-19 En México. EconoQuantum 2021, 18, 1–20. [Google Scholar] [CrossRef]
- Dharani, N.P.; Bojja, P. Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 2022. [Google Scholar] [CrossRef]
- Chen, A.; Zhao, Y.; Zheng, Y.; Hu, H.; Hu, X.; Fishe, J.N.; Hogan, W.R.; Shenkman, E.A.; Guo, Y.; Bian, J.; et al. Exploring the Relation between Contextual Social Determinants of Health and COVID-19 Occurrence and Hospitalization. Informatics 2024, 11, 4. [Google Scholar] [CrossRef]
- Bessadok-Jemai, A.; Al-Rabiah, A.A. Predictive Approach of COVID-19 Propagation via Multiple-Terms Sigmoidal Transition Model. Infect. Dis. Model. 2022, 7, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Watson, G.L.; Xiong, D.; Zhang, L.; Zoller, J.A.; Shamshoian, J.; Sundin, P.; Bufford, T.; Rimoin, A.W.; Suchard, M.A.; Ramirez, C.M. Pandemic Velocity: Forecasting COVID-19 in the US with a Machine Learning & Bayesian Time Series Compartmental Model. PLoS Comput. Biol. 2021, 17, e1008837. [Google Scholar] [CrossRef]
- Yue, P.; Gizem Korkmaz, A.; Zhou, H. Household Financial Decision Making Amidst the COVID-19 Pandemic. Emerg. Mark. Financ. Trade 2020, 56, 2363–2377. [Google Scholar] [CrossRef]
- Karnon, J. A Simple Decision Analysis of a Mandatory Lockdown Response to the COVID-19 Pandemic. Appl. Health Econ. Health Policy 2020, 18, 329–331. [Google Scholar] [CrossRef]
- Vilca-Huayta, O.A.; Tito Yancachajlla, U. Efficient Function Integration and a Case Study with Gompertz Functions for Covid-19 Waves. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 545–551. [Google Scholar] [CrossRef]
- Tjørve, K.M.C.; Tjørve, E. The Use of Gompertz Models in Growth Analyses, and New Gompertz-Model Approach: An Addition to the Unified-Richards Family. PLoS ONE 2017, 12, e0178691. [Google Scholar] [CrossRef] [PubMed]
- Chintalapudi, N.; Battineni, G.; Amenta, F. Second Wave of COVID-19 in Italy: Preliminary Estimation of Reproduction Number and Cumulative Case Projections. Results Phys. 2021, 28, 104604. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Agiwal, V.; Yau, C.Y. Study of the Trend Pattern of COVID-19 Using Spline-Based Time Series Model: A Bayesian Paradigm. Jpn. J. Stat. Data Sci. 2021, 5, 363–377. [Google Scholar] [CrossRef] [PubMed]
- El Aferni, A.; Guettari, M.; Tajouri, T. Mathematical Model of Boltzmann’s Sigmoidal Equation Applicable to the Spreading of the Coronavirus (COVID-19) Waves. Environ. Sci. Pollut. Res. 2021, 28, 40400–40408. [Google Scholar] [CrossRef]
- El Aferni, A.; Guettari, M.; Hamdouni, A. COVID-19 Multiwaves as Multiphase Percolation: A General N-Sigmoidal Equation to Model the Spread. Eur. Phys. J. Plus 2023, 138, 393. [Google Scholar] [CrossRef]
- Mishra, R.K.; Urolagin, S.; Jothi, J.A.A.; Nawaz, N.; Ramkissoon, H. Machine Learning Based Forecasting Systems for Worldwide International Tourists Arrival. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 55–64. [Google Scholar] [CrossRef]
- Albuquerque, P.C.; Cajueiro, D.O.; Rossi, M.D.C. Machine Learning Models for Forecasting Power Electricity Consumption Using a High Dimensional Dataset. Expert. Syst. Appl. 2022, 187, 115917. [Google Scholar] [CrossRef]
- Papacharalampous, G.; Tyralis, H. A Review of Machine Learning Concepts and Methods for Addressing Challenges in Probabilistic Hydrological Post-Processing and Forecasting. Front. Water 2022, 4, 8998. [Google Scholar] [CrossRef]
- Pinasco, G.C.; Moreno, E.; de Mattos Farina, J.; Novaes, F.; Filho, B.; Fiorotti, W.F.; Coradini, M.; Ferreira, M.; Cristina De Souza Cruz, S.; Louzada Colodette, A.; et al. An Interpretable Machine Learning Model for Covid-19 Screening. J. Hum. Growth Dev. 2022, 32, 268–274. [Google Scholar] [CrossRef]
- Xiong, Y.; Ma, Y.; Ruan, L.; Li, D.; Lu, C.; Huang, L. Comparing Different Machine Learning Techniques for Predicting COVID-19 Severity. Infect. Dis. Poverty 2022, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Alali, Y.; Harrou, F.; Sun, Y. A Proficient Approach to Forecast COVID-19 Spread via Optimized Dynamic Machine Learning Models. Sci. Rep. 2022, 12, 2467. [Google Scholar] [CrossRef] [PubMed]
- Conde-Gutiérrez, R.A.; Colorado, D.; Hernández-Bautista, S.L. Comparison of an Artificial Neural Network and Gompertz Model for Predicting the Dynamics of Deaths from COVID-19 in México. Nonlinear Dyn. 2021, 104, 4655–4669. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.L.; Khan, F.; Din, S.; Band, S.S.; Mosavi, A.; Ibeke, E. Recurrent Neural Network and Reinforcement Learning Model for COVID-19 Prediction. Front. Public Health 2021, 9, 744100. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cravioto, D.A.; Diaz-Ramos, R.E.; Cantu-Ortiz, F.J.; Ceballos, H.G. Data Analysis and Forecasting of the COVID-19 Spread: A Comparison of Recurrent Neural Networks and Time Series Models. Cogn. Comput. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Dhamodharavadhani, S.; Rathipriya, R.; Chatterjee, J.M. COVID-19 Mortality Rate Prediction for India Using Statistical Neural Network Models. Front. Public Health 2020, 8, 575814. [Google Scholar] [CrossRef]
- Namasudra, S.; Dhamodharavadhani, S.; Rathipriya, R. Nonlinear Neural Network Based Forecasting Model for Predicting COVID-19 Cases. Neural Process Lett. 2023, 55, 171–191. [Google Scholar] [CrossRef]
- da Silva, F.C.; Zamprogna, K.M.; de Souza, S.S.; Silva, D.H.; Sella, D. Social Isolation and the Speed of Covid-19 Cases: Measures to Prevent Transmission. Rev. Gauch. Enferm. 2021, 42, e20200238. [Google Scholar] [CrossRef]
- Nieto-Chaupis, H. Modeling and Interpretation of Covid-19 Infections Data at Peru through the Mitchell’s Criteria. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 717–722. [Google Scholar] [CrossRef]
- Torky, M.; Torky, M.S.; Azza, A.A.; Hassanein, A.E.; Said, W. Investigating Epidemic Growth of COVID-19 in Saudi Arabia Based on Time Series Models. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 459–466. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z. Prediction of the Confirmed Cases and Deaths of Global COVID-19 Using Artificial Intelligence. Environ. Sci. Pollut. Res. 2021, 28, 11672–11682. [Google Scholar] [CrossRef]
- Heidari, A.; Jafari Navimipour, N.; Unal, M.; Toumaj, S. Machine Learning Applications for COVID-19 Outbreak Management. Neural Comput. Appl. 2022, 34, 15313–15348. [Google Scholar] [CrossRef] [PubMed]
- Ayoobi, N.; Sharifrazi, D.; Alizadehsani, R.; Shoeibi, A.; Gorriz, J.M.; Moosaei, H.; Khosravi, A.; Nahavandi, S.; Gholamzadeh Chofreh, A.; Goni, F.A.; et al. Time Series Forecasting of New Cases and New Deaths Rate for COVID-19 Using Deep Learning Methods. Results Phys. 2021, 27, 104495. [Google Scholar] [CrossRef] [PubMed]
- Hamadneh, N.N.; Tahir, M.; Khan, W.A. Using Artificial Neural Network with Prey Predator Algorithm for Prediction of the COVID-19: The Case of Brazil and Mexico. Mathematics 2021, 9, 180. [Google Scholar] [CrossRef]
- Al-qaness, M.A.A.; Saba, A.I.; Elsheikh, A.H.; Elaziz, M.A.; Ibrahim, R.A.; Lu, S.; Hemedan, A.A.; Shanmugan, S.; Ewees, A.A. Efficient Artificial Intelligence Forecasting Models for COVID-19 Outbreak in Russia and Brazil. Process Saf. Environ. Prot. 2021, 149, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Macleod, S.; Tkatch, R.; Kraemer, S.; Fellows, A.; McGinn, M.; Schaeffer, J.; Yeh, C.S. COVID-19 Era Social Isolation among Older Adults. Geriatrics 2021, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Dhamija, R.K. Covid-19: Social Distancing or Social Isolation? BMJ 2020, 369, m2399. [Google Scholar] [CrossRef] [PubMed]
- O’sullivan, R.; Burns, A.; Leavey, G.; Leroi, I.; Burholt, V.; Lubben, J.; Holt-Lunstad, J.; Victor, C.; Lawlor, B.; Vilar-Compte, M.; et al. Impact of the COVID-19 Pandemic on Loneliness and Social Isolation: A Multi-Country Study. Int. J. Environ. Res. Public Health 2021, 18, 9982. [Google Scholar] [CrossRef]
- Neves, F.S. Correlation of the Rise and Fall in COVID-19 Cases with the Social Isolation Index and Early Outpatient Treatment with Hydroxychloroquine and Chloroquine in the State of Santa Catarina, Southern Brazil: A Retrospective Analysis. Travel. Med. Infect. Dis. 2021, 41, 102005. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Linear Regression. In An Introduction to Statistical Learning; Springer: New York, NY, USA, 2021; pp. 59–128. [Google Scholar] [CrossRef]
- Dong, E.; Du, H.; Gardner, L. An Interactive Web-Based Dashboard to Track COVID-19 in Real Time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Neifer, T. Regression Analysis Using Dummy Variables. In Operations Research and Management; Springer: Cham, Switzerland, 2024; pp. 105–129. [Google Scholar] [CrossRef]
- Jones, S.R. Students’ Application of Concavity and Inflection Points to Real-World Contexts. Int. J. Sci. Math. Educ. 2019, 17, 523–544. [Google Scholar] [CrossRef]
- Galaris, E.; Fabiani, G.; Gallos, I.; Kevrekidis, I.; Siettos, C. Numerical Bifurcation Analysis of PDEs From Lattice Boltzmann Model Simulations: A Parsimonious Machine Learning Approach. J. Sci. Comput. 2022, 92, 34. [Google Scholar] [CrossRef] [PubMed]
- Greiner-Petter, A. Making Presentation Math Computable: A Context-Sensitive Approach for Translating LaTeX to Computer Algebra Systems; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–197. [Google Scholar] [CrossRef]
- Cheng, H.; Yu, R.; Tang, Y.; Fang, Y.; Cheng, T.; Szymanski, J.; Sobecki, A.; Mora, H.; Logof, D. Text Classification Model Enhanced by Unlabeled Data for LaTeX Formula. Appl. Sci. 2021, 11, 10536. [Google Scholar] [CrossRef]
- Hong, S. MPCs in an Emerging Economy: Evidence from Peru. J. Int. Econ. 2023, 140, 103712. [Google Scholar] [CrossRef]
- Croux, C.; Dehon, C. Influence Functions of the Spearman and Kendall Correlation Measures. Stat. Methods Appl. 2010, 19, 497–515. [Google Scholar] [CrossRef]
- Macklin, J.T. An Investigation of the Properties of Double Radio Sources Using the Spearman Partial Rank Correlation Coefficient. Mon. Not. R. Astron. Soc. 1982, 199, 1119–1136. [Google Scholar] [CrossRef]
- Strnad, D.; Nerat, A.; Kohek, Š. Neural Network Models for Group Behavior Prediction: A Case of Soccer Match Attendance. Neural Comput. Appl. 2017, 28, 287–300. [Google Scholar] [CrossRef]
- Suri, J.S.; El-Baz, A.S. State of the Art in Neural Networks and Their Applications; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1. [Google Scholar]
W | H1(x) | H2(x) | H3(x) | H4(x) | H5(x) |
---|---|---|---|---|---|
1 | 1 − q | 1 − q | 1 − q | 1 − q | |
2 | 2 − q | 2 − q | 2 − q | 2 − q | |
3 | 3 − q | 3 − q | 3 − q | 3 − q | |
4 | 4 − q | 4 − q | 4 − q | 4 − q | |
5 | 5 − q | 5 − q | 5 − q | 5 − q |
Models | Model Adjustment to COVID-19 Data |
---|---|
Exponential, logarithmic, square root model. | The functions are not suitable because they have no inflection points and represent a single curve. Note: the observed data represent a sequence of sigmoidal shapes. |
Polynomial model | The functions are continuous and can have several inflection points; however, they cannot represent a step sequence of sigmoidal functions. Moreover, they do not flatten at the end and do not have horizontal asymptotes; when “x” tends to infinity, “y” tends to ±∞. |
Spline model (segmental polynomial fit). | Because in the spline model, the data on the abscissa axis are divided into segments, the problem of the step sequence of sigmoidal functions is solved. However, this model is limited to the polynomial functions that the spline uses in each segment. |
Group | Supreme Decree (Law) | From | To |
---|---|---|---|
Group 1. Supreme Decree No. 044-2020 and its extensions. It is characterized by strict social isolation measures. | N° 044-2020-PCM | 16 March 2020 | 30 March 2020 |
N° 051-2020-PCM | 31 March 2020 | 12 April 2020 | |
N° 064-2020-PCM | 13 April 2020 | 26 April 2020 | |
N° 075-2020-PCM | 27 April 2020 | 10 May 2020 | |
N° 083-2020-PCM | 11 May 2020 | 24 May 2020 | |
N° 094-2020-PCM | 25 May 2020 | 30 June 2020 | |
N° 116-2020-PCM | 1 July 2020 | 31 July 2020 | |
N° 135-2020-PCM | 1 August 2020 | 31 August 2020 | |
N° 146-2020-PCM | 1 September 2020 | 30 September 2020 | |
N° 156-2020-PCM | 1 October 2020 | 31 October 2020 | |
N° 174-2020-PCM | 1 November 2020 | 30 November 2020 | |
Group 2. Supreme Decree No. 174-2020 and its extensions allow some activities outside the home. | N° 184-2020-PCM | 1 December 2020 | 31 December 2020 |
N° 201-2020-PCM | 1 January 2021 | 31 January 2021 | |
N° 008-2021-PCM | 1 February 2021 | 28 February 2021 | |
N° 036-2021-PCM | 1 March 2021 | 31 March 2021 | |
N° 058-2021-PCM | 1 April 2021 | 30 April 2021 | |
N° 076-2021-PCM | 1 May 2021 | 31 May 2021 |
Comparison Criterion | Sigmoidal Model | ANN Model |
---|---|---|
Pearson correlation coefficient | Fixed value | Can be improved (e.g., with more training) |
Execution time (according to reference computer) | Less than a third of a second | More than 2 min depending on parameters |
Requires data to follow a sigmoidal pattern? | Yes | No |
Statistical report | From a regression (e.g., p-value, t-Student, degrees of freedom, etc.) | It has its own metrics (e.g., accuracy) |
Pandemic parameters | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilca Huayta, O.A.; Jimenez Chura, A.C.; Sosa Maydana, C.B.; Martínez García, A.J. Analysis of the Epidemic Curve of the Waves of COVID-19 Using Integration of Functions and Neural Networks in Peru. Informatics 2024, 11, 40. https://doi.org/10.3390/informatics11020040
Vilca Huayta OA, Jimenez Chura AC, Sosa Maydana CB, Martínez García AJ. Analysis of the Epidemic Curve of the Waves of COVID-19 Using Integration of Functions and Neural Networks in Peru. Informatics. 2024; 11(2):40. https://doi.org/10.3390/informatics11020040
Chicago/Turabian StyleVilca Huayta, Oliver Amadeo, Adolfo Carlos Jimenez Chura, Carlos Boris Sosa Maydana, and Alioska Jessica Martínez García. 2024. "Analysis of the Epidemic Curve of the Waves of COVID-19 Using Integration of Functions and Neural Networks in Peru" Informatics 11, no. 2: 40. https://doi.org/10.3390/informatics11020040