Postnatal Development of the Circadian Rhythmicity of Human Pineal Melatonin Synthesis and Secretion (Systematic Review)
Abstract
:1. Introduction
- -
- In 1982, Hartmann et al. demonstrated reduced postnatal plasma melatonin concentrations in 26 male infants [23]. In 1987, Attanasio et al. showed that stable day–night rhythms with high nocturnal melatonin concentrations are only detectable from the age of 6 months [24]. In 1988, Waldhauser et al. reported reduced nocturnal melatonin concentrations in the first six months of life [25]. In 1996, Commentz et al. showed that 2 to 7-day-old infants with a gestational age of 26 to 42 weeks had only minimal melatonin concentrations without circadian rhythms [26]. In 2015, it was similarly pointed out that stable circadian rhythms, in terms of cortisol, melatonin, sleep, temperature, and the activity of circadian genes, only develop in the first 6 to 18 weeks after birth [27].
- -
- A circadian rhythm of the excretion of sulphatoxy-melatonin in the urine was not detectable in 26 male infants before the postnatal age of 12 weeks [23]. Kennaway et al. showed in healthy full-term infants that the excretion of this melatonin metabolite after midnight increased by five- to six-fold at the age of 9–12 months compared to the age of 6 weeks (08 +/− 103 vs. 2973 +/− 438 pmol/24 h) [28]. In preterm infants, this effect occurred 2–3 weeks later [21]. Children born in February or March showed significantly higher urinary sulphatoxy melatonin concentrations at night at the age of 8 weeks compared to children born in August or September. This seasonal effect is due to the prolonged period of darkness in the winter season, which results in a consecutive increase in melatonin synthesis and secretion. At the age of 16 weeks, these differences had levelled out [29]. Higher secretion rates in the urine during the evening hours (6:00 p.m. to 10:00 a.m.) were associated with an earlier onset of night-time sleep (r = 0.51; p < 0.05) [30].
- -
- Kate McGraw et al. combined the diary method with temperature measurements once a day for the first 6 months of life and, from the third week, with saliva melatonin concentration measurements once a week for 24 h. The child was breastfed as needed. Light exposure was controlled exclusively by natural sunlight. The child’s body temperature showed a circadian rhythm in the first few days of life, which stabilised after the first week. A circadian sleep–wake rhythm only developed between the 45th and 56th day of life (second month), which was associated with an increased melatonin concentration after sunset [31].
- -
- Kleitman and Hartmann recorded a free-running non-24-hour sleep–wake rhythm in 19 infants (10 boys, 9 girls) up to the age of 4 months using actigraphy [32]. Comprehensive current actigraphic measurements showed that 414 light- and dark-skinned infants (1.2% female, 65.2% black) from parents of different income levels exhibited a largely common trend, with more stable and longer nocturnal phases of motor rest developing only between the ages of 3 and 6 months [33]. Wulff et al. examined 12 infants using actigraphy at three points in time (1st–3rd, 7th–9th and 13th–15th weeks of life). A stable circadian rhythm was only detectable in the whole group at the age of 13–15 weeks [34].
- -
- Comparable empirical data had already been recorded by William Preyer (1841–1897) in his seminal work on developmental psychology in 1892 [35]. His son did not start sleeping through the night until the age of 17 months [36] (p. 106). In comparison to the “watered cow’s milk” and “sparse wet nurse’s milk” available at the time, feeding with breast milk was associated with longer sleep [36] (p. 105). In the fourth month, “persistent crying without a detectable cause” was still observed [36] (p. 420). His empirical physiological and psychological data, with precise circadian and age-related markers, are compatible with the above-mentioned results, in which melatonin measurements were included, and correspond to the current state of knowledge. He established empirical developmental psychology using the diary method [35].
- 1.
- The tryptophan scandal of the 1990s serves as a serious warning against the supplementation of industrial infant formula with tryptophan. A Japanese company had launched a tryptophan product on the market that was designed to help adults build stronger muscles. Numerous people fell ill with eosinophilia-myalgia syndrome and there were also deaths. Some data indicated that this preparation did not distinguish between L-tryptophan, the physiologically active substance, and differently configured racemates. The approval requirements were subsequently tightened internationally, so that a purity level of at least 97% L-tryptophan is required in tryptophan products [44,45,46,47,48]. In addition, tolerable upper limits for tryptophan supplementation were proposed for adults [49]. Subsequently, a case report was published on this clinical picture following significant overdoses of L-tryptophan [47].
- 2.
- In addition, L-tryptophan can only cross the blood-brain barrier (BBB) if there is a defined concentration ratio between L-tryptophan and large neutral amino acids (LNAA) competing for BBB passage (LNAA = valine, leucine, isoleucine, histidine, lysine, methionine, threonine, tryptophan, and tyrosine) [22,50,51,52,53], and if sufficient albumin is available in the blood as a transport protein for L-tryptophan [52,54].
- 3.
- -
- that the melatonin concentrations in breast milk during the day and at night are likely to represent the gold standard for timing functions in infants, established over millions of years of evolution [22];
- -
- -
2. Method
- -
- additional study protocols without data (2),
- -
- a report on children with Smith-Magenis syndrome (1),
- -
- a study on sleep and breathing disorders in FBXO11 and RAF1 mutations (1),
- -
- a report on a 5-year-old boy with tobacco embryopathy, autism spectrum disorder, ADHD, and insomnia (1),
- -
- studies on neonatal asphyxia or perinatally acquired brain damage (11),
- -
- a study on the general advantages of tryptohan without specific data on infants (1),
- -
- studies on treatment of pain (2),
- -
- reports regarding prophylaxis of bronchopulmonary dysplasia or later cardiovascular complications or later borderline personality disorders (3),
- -
- studies on the effects of maternal obesity on the composition of colostrum (2),
- -
- in vitro studies on the activation of phagocytosis by melatonin in colostrum cells respectively on the effects of melatonin on mononuclear cells in umbilical cord blood (2),
- -
- a study on the effects of circadian-adapted lighting in a neonatal intensive care unit (1),
- -
- studies on postpartum depression or postpartum fatigue in mothers (2),
- -
- studies on maternal magnesium deficiency (2),
- -
- speculations without measured values about yin-yang models and noradrenaline with references to numerous diseases (1),
- -
- speculations without measured values about yin-yang models and noradrenaline with references to stroke and coronary heart disease (1),
- -
- theses without a corresponding database on ‘melatonin dysregulation’ as a ‘causal factor’ for autism spectrum and ADHD (1),
- -
- theses without a corresponding database on ‘melatonin dysregulation’ as a ‘causal factor’ for sudden infant death syndrome (8),
- -
- a study with a healthy control group examining sleep architecture after acute cyanotic apnoea without data on melatonin (1),
- -
- theses without data on the influence of calcium, serotonin, and melatonin on infant colic (3),
- -
- a report on the diagnosis of cow’s milk allergy (1),
- -
- reports on physiology of puberty (2),
- -
- a thesis on manic states in mothers (1),
- -
- a study on the effect of season on the sleep architecture of infants without estimation of light exposure and melatonin levels (1),
- -
- an investigation of diurnal variation in the frequency of the time of delivery (1),
- -
- a study on the effect of supplementation of nutrition with tryptophan, adenosine, and uridine in infants aged 8–16 months, cited by Friedman 2018 [95] (1), and
- -
Focus | Author (Year) | Type of Study |
---|---|---|
Postnatal development of the circadian melatonin rhythm in infants | Kennaway (2000) [136] | Narrative review with reference to several studies showing that infants do not exhibit their own circadian melatonin rhythm in the first week after birth [26,138], in the second week [139], or until the third month [140]. In full-term infants, this was not found until the age of 9–15 weeks. A hypothetical dose calculation for oral melatonin administration in infants based on the amount of melatonin administered in breast milk during a night, with reference to the data from Illnerova 1993 [37], is interesting. According to this, infants would require a dose 600 times lower than adults to achieve a night-time melatonin peak. Critical discussion of speculation about unfounded connections between dysfunction of the pineal gland and sudden infant death syndrome or scoliosis. |
McGraw 1999 [31] | Longitudinal study (N = 1, documentation “of the interaction between the development of the circadian rhythm of sleep, wakefulness, temperature, melatonin in saliva, and feeding in human infants and the influence of photic and non-photic factors on the initiation of entrainment” for 6 months). “The sleep circadian rhythm appeared last, attaining significance after day 56. …The infant’s nocturnal sleep onset was coupled to sunset before day 60 and subsequently to family bedtime, giving evidence of initial photic entrainment followed by social entrainment”. | |
Carballo 1996 [141] | Cross-sectional study in several age groups from 3 months to 15 years of age, with determination of melatonin concentration during the day (9:00 a.m. to 9:00 p.m.) and at night (9:00 p.m. to 9:00 a.m.). In the age group 3–18 months, low melatonin concentrations without a clear day–night rhythm (during the day 34.51 ± 8.83 pg/mL, N = 8; at night 43.04 ± 21.9 pg/mL, N = 9). A clear day–night rhythm was only observed in the group aged 18 months to 6 years. | |
Kennaway 1996 [137] | Prospective longitudinal study on factors associated with development of the circadian rhythm of 6-sulfatoxy-melatonin excretion in urine within 24 h in four time intervals in infants up to 6 months of age (N = 163, including 31 full-term newborns at the age of 55 weeks post-conception and premature infants with five defined risk factors, such as premature rupture of membranes or being a sibling of a sudden infant death syndrome (SIDS) case, and examination of seasonal factors). The circadian melatonin rhythm was found to be programmed to start between the 49th and 52nd post-conception week in full-term infants. At the postnatal age of 6 to 15 weeks, a seven-fold increase in 6-sulfatoxy-melatonin excretion occurred in full-term infants. Perinatal factors were found to be implicated in delaying this development. Premature rupture of the membranes was associated with significant delay in the development of circadian melatonin rhythmicity. Seasonal influences were not detectable. SIDS was not associated with delays in the sibling cohort. | |
Melatonin in human milk | Italianer 2020 [70] | Systematic review (83 reports, 71 human milk components). Eight substances showed significant circadian rhythms (melatonin [20,37,142,143,144,145,146], tryptophan, cholesterol, fats, iron, cortisol, cortisone, and triacylglycerol). |
Oliveira 2024 [147] | Scoping review (29 reports, 1993–2023), including 11 studies in which melatonin concentrations were measured during the day and at night. Some of these data are shown in aggregated form in Figure 2 These data suggest that infants from the first day of life until at least 6 months of age receive natural chrononutrition with high melatonin concentrations at night and significantly lower concentrations during the day via the gold standard of breast milk. | |
Akanalci 2024 [148] | Narrative review (Melatonin, two reports: Qin et al., 2019, Katzer et al., 2016 [38,146]). | |
LactMed 2024 [149] | Short narrative review. Reference to five studies on melatonin concentration in human breast milk in a day–night comparison (Katzer 2016, Molad 2019, Qin 2019, Biran 2019, Italianer 2020 [38,70,143,146,150]). | |
Jin 2021 [151], Monfort 2021 [152] | Laboratory analysis of melatonin in human milk. Sample volume of 100 μL used for analysis, overall peak recovery 101.7% with relative standard deviation (RSD) 5.1% [151], stable in breast milk at room temperature for 24 h, at −20 °C for two weeks, and at −80 °C for one month [152]. | |
Anderson 2017 [153] | Narrative review with following statements:
| |
Cohen Engler 2012 [20] | Cohort study N = 94 mothers, of whom 57% exclusively breastfed and 43% exclusively formula-fed their 2–4 month-old infants, questionnaire on infant colic and sleep disorders in infants) and measurement of melatonin concentration in milk samples from five mothers every 2 h over 24 h, compared with 15 samples from three different types of formula without product information).
| |
Nabukhotnyi 1991 [155] | Cohort study. Detection of increased melatonin concentrations in the blood plasma of infants and in early breast milk in the first 3 days of life. Both concentrations decreased between the 5th and 7th day of life. These data indicate that infants depend on melatonin transfer via breast milk in the first week of life. | |
Kivelä 1990 [139] | Longitudinal study (N = 14–22 mothers and their infants from birth to the 8th day of life). No differences in melatonin concentration in the blood of the mother and in the umbilical cord blood. No differences in the 6-sulfatoxy-melatonin concentration between mother and child during the day (8:00–20:00) and at night (20:00–8:00). A day–night rhythm was not yet detectable in either of them in the first week of life. The melatonin excretion of the newborns was only 1–5% of that of adults, at 2–5 pmol/12 h. Two different melatonin metabolites were detected in the urine of the infants. This could indicate that the neonatal melatonin metabolism is still immature. Overall, the data indicate that the melatonin concentrations of infants immediately after birth reflect maternal melatonin secretion. | |
Chrononutrition for infants and breast milk | Caba-Flores 2022 [71] | Narrative review which contains information on five studies regarding the day–night rhythmicity of melatonin
|
Booker 2022 [158] | Online anonymous survey (N = 329 mothers). Delayed sleep onset of infants in association with mistimed expressed breast milk vs. direct breastfeed (p < 0.001). | |
Wong 2022 [159] | Narrative review with reference to three studies on infant chrononutrion via breast milk and the underlying day–night rhythm of melatonin concentration in breast milk [20,37,41]; reference to increased sleep disorders [41] and infant colic [20] in non-breastfed infants. | |
McKenna 2018 [160] | Narrative review providing suggestions for taking circadian rhythms (light, nutrition) into account in neonatal intensive care units. | |
Arslanoglu 2012 [66] | Narrative review. “WAPM Working Group on Nutrition” report on circadian fluctuations in the concentration of melatonin in breast milk and the day–night rhythm of infant sleep, which can only be observed from the age of four months. Biochemically based recommendations for chrononutrition in infants are derived from this. | |
Aparicio 2007 [65] | Prospective randomised cohort study with three intervention arms. N = 18 healthy infants, age 12–20 weeks, who had previously been fed with artificial milk. Three study arms, each 1 week in duration: (a) standard commercial infant milk Blemil plus forte, Ordesa with 1.5 g tryptophan/100 g protein, (b) at night 18:00 to 06:00 Blemil, during the day Blemil with 3.4 g tryptophan/100 g protein, (c) during the day Blemil, at night Blemil with 3.4 g tryptophan/100 g protein. Diary method and actigraphy with an actiwatch device utilized, along with night-time urine examination to determine the concentration of noradrenaline, dopa, dopamine, 5-hydroxyindolacetate, 5-HT serotonin, and 5-hydroxy tryptophan. Small but significant improvement in defined sleep parameters in groups b and c compared to a, but no differences between b and c. Concluding comments:
| |
Cubero 2005 [156] | Prospective cohort study (N = 16 infants of 12 weeks of age undergoing natural or artificial feeding, sleep parameters measured by actimeter for a week. Detection of circadian rhythm of 6-sulfatoxy-melatonin in urine, and in breast milk tryptophan was measured). Acrophase of 6-sulfatoxy-melatonin at 06:00 in the breastfed infants, and at 03:00 for tryptophan; assumed sleep, actual sleep, and sleep efficiency were significantly increased in the breastfed infants as compared to the formula-fed infants. | |
McMillen 1993 [162] | Longitudinal cohort study (N = 23 full-term and 22 preterm infants and their mothers, sleep diary for mother and child and 24 h profile of melatonin and cortisol in the mothers’ saliva in the 2nd to 10th week postnatally). Full-term babies found to sleep better than preterm infants; the mothers of preterm infants slept worse and had significantly lower nocturnal melatonin concentrations in their saliva (discussed as a “greater physiological disruption”). It can therefore be assumed that preterm infants receive less melatonin from their mothers’ milk than full-term infants. | |
Nocturnal melatonin synthesis in infants aged 4, 6, and 9 months | Ferber 2011 [163] | Prospective cohort study (N = 44 infants, night-time urine 19:00 to 07:00 for determining 6-sulfatoxy-melatonin at the ages of 4, 6, and 9 months, neurobehavioral Assessment of Preterm Infant Behaviour (APIB) at 2 weeks postterm age, and mental developmental index Bayley Scales of Infant Development (Baley-II) at 4, 6, and 9 months):
|
Melatonin receptors (MR) and incidence of sleep disorders in infants | Lin X 2022 [164] | Prospective cohort study (effects of maternal and father´s sleep and emotions on infant sleep) and case-control study (methylation of promoter regions for MR). Incidence of sleep disorders in infants 0–3 months was found to be 40.5% (N = 513, analysed by Brief Screening Questionnaire for Infant Sleep Problems, BISQ [165]),** associated with decreased MR expression by up-regulating melatonin receptor 1B gene (MTNR1B, chromosome 11q14.3) methylation. |
Sulkava 2020 [166] | Prospective cohort study (N = 1301). Evidence found supporting a genetically determined reduced number of type 1 melatonin receptors in 8-month-old infants in connection with a variant of the melatonin receptor gene MTNR1A on chromosome 4q. | |
Melatonin use in infants and toddlers | Owens 2024 [58] | Online survey (N = 3063 caregivers). According to this, melatonin is given to 1.7% of children aged 0–36 months in a largely uncontrolled manner. |
Melatonin and sleep in infantile epileptic spasms syndrome (IESS) | Sun 2024 [167] | Randomized, placebo-controlled, double-blind trial (RCT). N = 35 with melatonin 3 mg administered between 20:00 and 21:00 daily vs. N = 35 administered a placebo for 2 weeks, 0.5–1 h before bedtime, age 3 months to 2 years. Serum melatonin level at 06:00 h 84.8 vs. 17.5 pg/mL (p < 0.001), improved sleep quality 85.7% vs. 42.9%, (p < 0.01); Infant Sleep Assessment Score (ISAS) in 4–11-month-old patients 29.3 vs. 35.2 (p < 0.01), shortened sleep-onset latency 6.0 vs. 3.0 min (p = 0.030); no significant improvement in seizures with simultaneous administration of anticonvulsant therapy with adrenocorticotrophic hormone (ACTH) and magnesium sulfate (MgSO4). |
Melatonin and neonatal pain in premature newborns | Sanchez-Borja 2024 [168] | N = 61 non-hypoxic preterm infants; reduced melatonin concentration in plasma on the third day of life correlates with more severe pain (Premature Infant Pain Profile = PIPP score > 5, p = 0.03) *** |
Effect of pasteurisation of donor breast milk on melatonin concentration | Booker 2023 (1) [169] | Holder pasteurization of night-time milk samples (N = 10) from donors to a temperature of +62 degrees Celsius for 30 min reduced melatonin concentration (51.92 vs. 39.66 pg/mL (p < 0.01). |
Booker 2023 (2) [170] | Rapid or slow cooling of night-time milk samples (N = 27) from donors to a temperature of +4 degrees Celsius reduced the melatonin concentration. After pasteurisation, the melatonin concentration in the milk remained stable. | |
Melatonin and sudden death or apparent life-threatening event (ALTE) | Bishop-F. 2022 [55], Shimomura 2019 [171] | N = 6 and N = 1 deaths at the age of 2 months to 3 years, melatonin concentrations 3 to 1400 ng/mL in post-mortem blood due to uncontrolled overdose. |
Labay 2019 [56] | N = 2 deaths at the age of 9 or 13 months in connection with co-sleeping of twins or tobacco exposure, melatonin in blood 13 ng/mL and in gastric fluid 1200 ng/mL or 210 ng/mL in blood, respectively. | |
Gitto 2011 [172] | Narrative review. “After birth, the full-term neonate does not exhibit a day:night melatonin rhythm for 2–4 months, leading to transient melatonin deficiency [21,28,29,137,173,174]. At birth, Munoz-Hoyos et al. … observed the absence of a circadian rhythm of melatonin during the early neonatal period [175]. Premature delivery of the newborn leads to a more prolonged relative melatonin deficiency. Moreover, the onset of pineal melatonin secretion is even more delayed with the occurrence of neurologic insults [137,174]. Obviously, in both normal and neurologically damaged premature neonates, the melatonin deficiency persists for a longer period [28,137,173,174]. Thus, an infant born 3–4 months prematurely may lack significant melatonin levels for 7–8 months or longer.” (Note: some studies make questionable suggestions regarding a link between ALTE or SIDS and pineal immaturity. These studies are not discussed again here, as they have been discussed and criticised in detail by Kennaway 1996 and 2000 [136,137].) | |
Sivan 2000 [176] | Case-control study with four arms (N = 80 infants at post-conceptional age of 48–58 weeks, determination of 6-sulphatoxy-melatonin in urine with the following groups: (a) N = 35 healthy age-matched control group to groups b, c, and d, (b) N = 15 ALTE, (c) N = 15 after cyonotic apnoea episodes requiring mouth-to-mouth resuscitation, (d) N = 15 siblings of SIDS cases). Melatonin in urine after ALTE was significantly reduced compared to controls; no differences between groups a, c, and d. | |
Sturner 1990 [177] | Autopsy data SIDS vs. control group. Data from 68 infants whose death was attributed to either SIDS (N = 32, 0.5–5.0 months old; mean +/− SEM, 2.6 +/− 0.2 months) or other causes (non-SIDS, n = 36, 0.3–8.0 months old, 4.3 +/− 0.3 months). Measurement of melatonin concentration in whole blood, ventricular cerebrospinal fluid (CSF), and/or vitreous humour (VH). Significant correlation found between melatonin concentrations in different body fluids of the same individual. After adjustment for age differences, the melatonin level in the cerebrospinal fluid was significantly lower in SIDS children (91 +/− 29 pmol/L, n = 32) than in children who died for other reasons (180 +/− 27; n = 35, p < 0.05). “These differences did not appear to be explained by the interval between death and autopsy, gender, premortem infection, or therapeutic measures initiated before death. A reduced melatonin production could possibly indicate a disruption of the maturation of the physiological circadian organisation in association with SIDS”. (For a critical commentary on this study, see Kennaway 1996 and 2000 [136,137].) | |
Basics | Heine 1995 and 1999 [52,53] | Heine has demonstrated that the pineal synthesis of melatonin in infants is only possible after the successful enteral absorption of tryptophan as the key precursor. This means that a sufficient amount of alpha-lactalbumin is required as the transport protein in blood. In addition, there is significant competition between tryptophan and neutral long-chain amino acids (LNAA) for passage through the blood-brain barrier (BBB). Therefore, a defined concentration ratio between tryptophan and LNAA must be present, which should be taken into account in the production of formula nutrition. |
3. Results
- -
- In 1898, Otto Heubner reported on a 4.5-year-old boy with precocious puberty and tall stature, in whom a pineal tumour was detected at autopsy [180]. This case report drew attention to the endocrinological functions of the pineal gland. The discovery of melatonin by Lerner in 1958/1959 [181,182] marked the beginning of an exponential increase in knowledge about melatonin, which continues to this day.
- -
- In 1924, Ladislaus von Meduna (1896–1964) submitted a fundamental histological study on “the development of the pineal gland in infancy”, in which anatomical preparations of 30 pineal glands from children from the neonatal period to the age of 4 (N = 26) and after the age of 4 (N = 4) were examined [183]. These studies clearly show that the microstructure of the pineal gland develops and differentiates in several phases only within the first year of life, so that its functional capacity is not established until several months after birth.
Autor (Year) | Setting | Results | Assessment |
---|---|---|---|
Bülbul (2024) [191] | N = 35, birth weight 3321 ± 474 g, gestational age 38.1 ± 1 weeks, spontaneous birth 37.2% (13/35), Caesarean section 62.8% (22/35), gemale 60% (21/35), babies stayed with their mothers, room light 6–10 lux. | Serum melatonin at 2:00 a.m. (pg/mL) 19.9 ± 4.38 (9.9–26.3). | No information on the age of the babies. It can be assumed that they received breast milk (for comparative data, see above in the text). |
Muñoz-Hoyos (2007) [192] | N = 35, birth weight 1800 g (870–4400 g), gestational age 32.5 (26–40) weeks, with respiratory distress syndrome, without sepsis, light: 300–450 lux in the morning. | Serum melatonin at 9:00 a.m. in the group > 1500 g on the 1st and 7th day 104.2 ± 22.9 and 109.4 ± 24.0 pg/mL; in the group < 1500 g on the 1st and 7th day 63.2 ± 6.2 and 79.3 ± 6.8 pg/mL (p = 0.017). | No information on diet, so it can be assumed that the babies received breast milk. Significantly lower melatonin concentrations in the group with a weight < 1500 g. |
Sánchez-Borja (2024) [168] | N = 61 preterm infants < 25, birth weight 1350 (800–2055 g), gestational age 29.9 (24–34) weeks, 65.6% (40/61) with parenteral nutrition. | Serum melatonin on the 3rd day of life between 8:00 and 9:00 a.m. 30.6 (12.3–76.6) pg/mL. | No information on oral feeding. |
4. Discussion
- -
- -
- the results of the prospective cohort study by Ferber et al., 2011 [163], which showed that attention should not only be paid to the melatonin concentrations in day and night milk, but that maturation processes also correlate with noradrenergic effects on pineal melatonin synthesis and neuropsychological developmental parameters up to the ninth month of life (Table 1, subject group on nocturnal melatonin synthesis);
- -
- the results of the longitudinal study by McMillen et al., 1993 [162], which showed a correlation between circadian rhythms and infant maturity and the fact that there is a ‘greater physiological disruption’ of these circadian rhythms in premature infants;
- -
- the results of the intervention studies with control groups by Cubero et al., 2006/2007 [40,41], which were reported in the introduction of the present systematic review, showed that in infants aged 4 to 20 weeks, sleep could be improved by supplementation with tryptophan as a precursor for melatonin formation [40,41]. The disadvantages of artificial tryptophan supplements have already been mentioned in the introduction. This does not change the orientation towards the evolutionary establishment of chrononutrition with human breast milk as the gold standard, which should serve as a basis for breastfeeding mothers, human milk banks, and infant formula manufacturers.
Supplementary Materials
Funding
Conflicts of Interest
References
- Tan, D.X.; Manchester, L.C.; Reiter, R.J. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal. Med. Hypotheses 2016, 86, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Reiter, R.J.; Zimmerman, S.; Hardeland, R. Melatonin: Both a Messenger of Darkness and a Participant in the Cellular Actions of Non-Visible Solar Radiation of Near Infrared Light. Biology 2023, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Fischer, T.W.; Zmijewski, M.A.; Wortsman, J.; Semak, I.; Zbytek, B.; Slominski, R.M.; Tobin, D.J. On the role of melatonin in skin physiology and pathology. Endocrine 2005, 27, 137–148. [Google Scholar] [CrossRef]
- Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab. TEM 2008, 19, 17–24. [Google Scholar] [CrossRef]
- Slominski, A.T.; Zmijewski, M.A.; Semak, I.; Kim, T.K.; Janjetovic, Z.; Slominski, R.M.; Zmijewski, J.W. Melatonin, mitochondria, and the skin. Cell. Mol. Life Sci. CMLS 2017, 74, 3913–3925. [Google Scholar] [CrossRef]
- Hardeland, R. Divergent Importance of Chronobiological Considerations in High- and Low-dose Melatonin Therapies. Diseases 2021, 9, 18. [Google Scholar] [CrossRef]
- Tan, D.X.; Hardeland, R.; Manchester, L.C.; Paredes, S.D.; Korkmaz, A.; Sainz, R.M.; Mayo, J.C.; Fuentes-Broto, L.; Reiter, R.J. The changing biological roles of melatonin during evolution: From an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. Camb. Philos. Soc. 2010, 85, 607–623. [Google Scholar] [CrossRef]
- Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Extrapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life Sci. CMLS 2014, 71, 2997–3025. [Google Scholar] [CrossRef]
- D’Angelo, G.; Chimenz, R.; Reiter, R.J.; Gitto, E. Use of Melatonin in Oxidative Stress Related Neonatal Diseases. Antioxidants 2020, 9, 477. [Google Scholar] [CrossRef]
- Gitto, E.; Aversa, S.; Salpietro, C.D.; Barberi, I.; Arrigo, T.; Trimarchi, G.; Reiter, R.J.; Pellegrino, S. Pain in neonatal intensive care: Role of melatonin as an analgesic antioxidant. J. Pineal Res. 2012, 52, 291–295. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Tan, D.-X.; Chuffa, L.G.d.A.; da Silva, D.G.H.; Slominski, A.T.; Steinbrink, K.; Kleszczynski, K. Dual sources of melatonin and evidence for different primary functions. Front. Endocrinol. 2024, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front. Endocrinol. 2019, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Lumsden, S.C.; Clarkson, A.N.; Cakmak, Y.O. Neuromodulation of the Pineal Gland via Electrical Stimulation of Its Sympathetic Innervation Pathway. Front. Neurosci. 2020, 14, 264. [Google Scholar] [CrossRef] [PubMed]
- Simonneaux, V.; Ribelayga, C.P. Generation of the Melatonin Endocrine Message in Mammals: A Review of the Complex Regulation of Melatonin Synthesis by Norepinephrine, Peptides, and Other Pineal Transmitters. Pharmacol. Rev. 2003, 55, 325–395. [Google Scholar] [CrossRef]
- Gupta, B.B.; Spessert, R.; Vollrath, L. Molecular components and mechanism of adrenergic signal transduction in mammalian pineal gland: Regulation of melatonin synthesis. Indian. J. Exp. Biol. 2005, 43, 115–149. [Google Scholar] [PubMed]
- Herlenius, E.; Lagercrantz, H. Development of neurotransmitter systems during critical periods. Exp. Neurol. 2004, 190 (Suppl. S1), S8–S21. [Google Scholar] [CrossRef]
- Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.; Stopa, E.G. Putative melatonin receptors in a human biological clock. Science 1988, 242, 78–81. [Google Scholar] [CrossRef]
- Paditz, E. Melatonin in infants—Physiology, pathophysiology and intervention options. Somnologie 2024, 28, 103–109. [Google Scholar] [CrossRef]
- Ucuncu Egeli, T.; Tufekci, K.U.; Ural, C.; Durur, D.Y.; Tuzun Erdogan, F.; Cavdar, Z.; Genc, S.; Keskinoglu, P.; Duman, N.; Ozkan, H. A New Perspective on the Pathogenesis of Infantile Colic: Is Infantile Colic a Biorhythm Disorder? J. Pediatr. Gastroenterol. Nutr. 2023, 77, 171–177. [Google Scholar] [CrossRef]
- Cohen Engler, A.; Hadash, A.; Shehadeh, N.; Pillar, G. Breastfeeding may improve nocturnal sleep and reduce infantile colic: Potential role of breast milk melatonin. Eur. J. Pediatr. 2012, 171, 729–732. [Google Scholar] [CrossRef]
- Ardura, J.; Gutierrez, R.; Andres, J.; Agapito, T. Emergence and evolution of the circadian rhythm of melatonin in children. Horm. Res. 2003, 59, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Paditz, E. Chronobiologische Besonderheiten der frühkindlichen Ernährung. In Kinderschlafmedizin interdisziplinär. Aktuelle Kinderschlafmedizin 2024; Hübler, A., Lobstein, S., Strobel, K., Eds.; Kleanthes: Dresden, Germany, 2024; pp. 58–99. [Google Scholar]
- Hartmann, L.; Roger, M.; Lemaitre, B.J.; Massias, J.F.; Chaussain, J.L. Plasma and urinary melatonin in male infants during the first 12 months of life. Clin. Chim. Acta; Int. J. Clin. Chem. 1982, 121, 37–42. [Google Scholar] [CrossRef]
- Attanasio, A.; Jetter, C.; Haas, G.; Buchwald-Saal, M.; Krägeloh, I.; Michaelis, R.; Gupta, D. Tag-Nacht-Rhythmen von Melatonin und anderen Neurohormonen bei neurologisch kranken Kindern. Springer: Berlin/Heidelberg, Germany, 1987; pp. 101–111. [Google Scholar]
- Waldhauser, F.; Weiszenbacher, G.; Tatzer, E.; Gisinger, B.; Waldhauser, M.; Schemper, M.; Frisch, H. Alterations in nocturnal serum melatonin levels in humans with growth and aging. J. Clin. Endocrinol. Metab. 1988, 66, 648–652. [Google Scholar] [CrossRef]
- Commentz, J.C.; Henke, A.; Dammann, O.; Hellwege, H.H.; Willig, R.P. Decreasing melatonin and 6-hydroxymelatonin sulfate excretion with advancing gestational age in preterm and term newborn male infants. Eur. J. Endocrinol. 1996, 135, 184–187. [Google Scholar] [CrossRef]
- Joseph, D.; Chong, N.W.; Shanks, M.E.; Rosato, E.; Taub, N.A.; Petersen, S.A.; Symonds, M.E.; Whitehouse, W.P.; Wailoo, M. Getting rhythm: How do babies do it? Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F50–F54. [Google Scholar] [CrossRef]
- Kennaway, D.J.; Stamp, G.E.; Goble, F.C. Development of melatonin production in infants and the impact of prematurity. J. Clin. Endocrinol. Metab. 1992, 75, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Sivan, Y.; Laudon, M.; Tauman, R.; Zisapel, N. Melatonin production in healthy infants: Evidence for seasonal variations. Pediatr. Res. 2001, 49, 63–68. [Google Scholar] [CrossRef]
- Sadeh, A. Sleep and melatonin in infants: A preliminary study. Sleep 1997, 20, 185–191. [Google Scholar] [PubMed]
- McGraw, K.; Hoffmann, R.; Harker, C.; Herman, J.H. The development of circadian rhythms in a human infant. Sleep 1999, 22, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Kleitman, N.; Engelmann, T.G. Sleep characteristics of infants. J. Appl. Physiol. 1953, 6, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Wissar, D.M.; Bai, J.; Benjamin-Neelon, S.E.; Wolfson, A.R.; Spira, A.P. Development of circadian rest-activity rhythms during the first year of life in a racially diverse cohort. Sleep 2022, 45. [Google Scholar] [CrossRef] [PubMed]
- Wulff, K.; Dedek, A.; Siegmund, R. Circadian and Ultradian Time Patterns in Human Behavior: Part 2: Social Synchronisation During the Development of the Infant’s Diurnal Activity-Rest Pattern. Biol. Rhythm. Res. 2001, 32, 529–546. [Google Scholar] [CrossRef]
- Hoppe-Graf, S.; Hye-On, K.; Von William, T. Preyer zu William Stern: Über die Durchführung und Nutzung von Tagebuchstudien in den Kindertagen der deutschen Entwicklungspsychologie. J. Für Psychol. 2007. Available online: https://journal-fuer-psychologie.de/article/view/129/737 (accessed on 22 August 2024).
- Preyer, W.T. Die Seele des Kindes. Beobachtungen über die Geistige Entwicklung. (Darin: Chronologisches Verzeichnis psychogenetischer Beobachtungen vom 1. bis 1000. Lebenstage nebst drei Zeittafeln zur Altersbestimmung). 4. Auflage (1. Auflage 1882); Th. Griebens Verlag: Leipzig, Germany, 1895; p. 462. [Google Scholar]
- Illnerova, H.; Buresova, M.; Presl, J. Melatonin rhythm in human milk. J. Clin. Endocrinol. Metab. 1993, 77, 838–841. [Google Scholar] [CrossRef]
- Qin, Y.; Shi, W.; Zhuang, J.; Liu, Y.; Tang, L.; Bu, J.; Sun, J.; Bei, F. Variations in melatonin levels in preterm and term human breast milk during the first month after delivery. Sci. Rep. 2019, 9, 17984. [Google Scholar] [CrossRef]
- Aparici-Gonzalo, S.; Carrasco-García, Á.; Gombert, M.; Carrasco-Luna, J.; Pin-Arboledas, G.; Codoñer-Franch, P. Melatonin Content of Human Milk: The Effect of Mode of Delivery. Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2020, 15, 589–594. [Google Scholar] [CrossRef]
- Cubero, J.; Narciso, D.; Aparicio, S.; Garau, C.; Valero, V.; Rivero, M.; Esteban, S.; Rial, R.; Rodríguez, A.B.; Barriga, C. Improved circadian sleep-wake cycle in infants fed a day/night dissociated formula milk. Neuro Endocrinol. Lett. 2006, 27, 373–380. [Google Scholar]
- Cubero, J.; Narciso, D.; Terron, P.; Rial, R.; Esteban, S.; Rivero, M.; Parvez, H.; Rodriguez, A.B.; Barriga, C. Chrononutrition applied to formula milks to consolidate infants’ sleep/wake cycle. Neuro Endocrinol. Lett. 2007, 28, 360–366. [Google Scholar]
- Picone, S.; Ariganello, P.; Mondì, V.; Di Palma, F.; Martini, L.; Marziali, S.; Fariello, G.; Paolillo, P. A solution based on melatonin, tryptophan, and vitamin B6 (Melamil Tripto©) for sedation in newborns during brain MRI. Ital. J. Pediatr. 2019, 45, 122. [Google Scholar] [CrossRef]
- Della Volpe, A.; Dipietro, L.; Ricci, G.; Pastore, V.; Paccone, M.; Pirozzi, C.; Di Stadio, A. Pre-treatment with Melamil Tripto(®) induces sleep in children undergoing Auditory Brain Response (ABR) testing. Int. J. Pediatr. Otorhinolaryngol. 2018, 115, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Milburn, D.S.; Myers, C.W. Tryptophan toxicity: A pharmacoepidemiologic review of eosinophilia-myalgia syndrome. DICP Ann. Pharmacother. 1991, 25, 1259–1262. [Google Scholar] [CrossRef]
- Mayeno, A.N.; Gleich, G.J. The Eosinophilia-Myalgia Syndrome: Lessons From Germany. Mayo Clin. Proc. 1994, 69, 702–704. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.A.; Peterson, A.; Sufit, R.; Hinchcliff, M.E.; Mahoney, J.M.; Wood, T.A.; Miller, F.W.; Whitfield, M.L.; Varga, J. Post-epidemic eosinophilia-myalgia syndrome associated with L-tryptophan. Arthritis Rheum. 2011, 63, 3633–3639. [Google Scholar] [CrossRef] [PubMed]
- Barešić, M.; Bosnić, D.; Bakula, M.; Žarković, K. Eosinophilia-myalgia syndrome induced by excessive L-tryptophan intake from cashew nuts. Cent. Eur. J. Med. 2014, 9, 796–801. [Google Scholar] [CrossRef]
- Oketch-Rabah, H.A.; Roe, A.L.; Gurley, B.J.; Griffiths, J.C.; Giancaspro, G.I. The Importance of Quality Specifications in Safety Assessments of Amino Acids: The Cases of l-Tryptophan and l-Citrulline. J. Nutr. 2016, 146, 2643s–2651s. [Google Scholar] [CrossRef] [PubMed]
- Elango, R. Tolerable Upper Intake Level for Individual Amino Acids in Humans: A Narrative Review of Recent Clinical Studies. Adv. Nutr. (Bethesda Md.) 2023, 14, 885–894. [Google Scholar] [CrossRef]
- Pardridge, W.M. The role of blood-brain barrier transport of tryptophan and other neutral amino acids in the regulation of substrate-limited pathways of brain amino acid metabolism. J. Neural Transm. Suppl. 1979. [Google Scholar] [CrossRef]
- Steinberg, L.A.; O’Connell, N.C.; Hatch, T.F.; Picciano, M.F.; Birch, L.L. Tryptophan intake influences infants’ sleep latency. J. Nutr. 1992, 122, 1781–1791. [Google Scholar] [CrossRef]
- Heine, W.; Radke, M.; Wutzke, K.D. The significance of tryptophan in human nutrition. Amino Acids 1995, 9, 91–205. [Google Scholar] [CrossRef]
- Heine, W.E. The significance of tryptophan in infant nutrition. Adv. Exp. Med. Biol. 1999, 467, 705–710. [Google Scholar] [CrossRef]
- Heine, W.; Radke, M.; Wutzke, K.D.; Peters, E.; Kundt, G. alpha-Lactalbumin-enriched low-protein infant formulas: A comparison to breast milk feeding. Acta Paediatr. 1996, 85, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Bishop-Freeman, S.C.; Young, K.A.; Labay, L.M.; Beuhler, M.C.; Hudson, J.S. Melatonin Supplementation in Undetermined Pediatric Deaths. J. Anal. Toxicol. 2022, 46, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Labay, L.M.; Kraner, J.C.; Mock, A.R.; Sozio, T.J. The Importance of Melatonin Detection in Pediatric Deaths. Acad. Forensic Pathol. 2019, 9, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Paditz, E.; Renner, B.; Bauer, M. Melatoninstoffwechsel im Kindes- und Jugendalter. In Aktuelle Kinderschlafmedizin 2023; Schneider, B., Aschmann-Mühlhans, D., Eds.; Kleanthes: Dresden, Germany, 2023; pp. 40–62. [Google Scholar]
- Owens, J.; Barnett, N.; Lucchini, M.; Berger, S. Melatonin use in infants and toddlers. Sleep. Med. 2024, 120, 53–55. [Google Scholar] [CrossRef]
- Bruni, O.; Breda, M.; Nobili, L.; Fietze, I.; Capdevila, O.R.S.; Gronfier, C. European expert guidance on management of sleep onset insomnia and melatonin use in typically developing children. Eur. J. Pediatr. 2024. [Google Scholar] [CrossRef] [PubMed]
- Paditz, E. Melatonin bei Schlafstörungen im Kindes- und Jugendalter. Monatsschrift Kinderheilkd. 2024, 172, 44–51. [Google Scholar] [CrossRef]
- DGSM; Paditz, E.; Schlarb, A.; Quante, M.; Ipsiroglu, O.; Schneider, B. Melatonin zur Behandlung von nichtorganischen Schlafstörungen (F51.0, F51.2, F51.8, F51.9) bei Kindern und Jugendlichen mit Aufmerksamkeitsdefizit-Hyperaktivitäts-Syndrom (ADHS, F90.0, F90.1, F90.8, F90.9). Stellungnahme der Deutschen Gesellschaft für Schlafforschung und Schlafmedizin (DGSM). Vorlage beim Gemeinsamen Bundesausschuss GBA v. 12.02.2024. In Kinderschlafmedizin interdisziplinär. Aktuelle Kinderschlafmedizin 2024; Hübler, A., Lobstein, S., Strobel, K., Eds.; Kleanthes: Dresden, Germany, 2024. [Google Scholar]
- Merchant, N.M.; Azzopardi, D.V.; Hawwa, A.F.; McElnay, J.C.; Middleton, B.; Arendt, J.; Arichi, T.; Gressens, P.; Edwards, A.D. Pharmacokinetics of melatonin in preterm infants. Br. J. Clin. Pharmacol. 2013, 76, 725–733. [Google Scholar] [CrossRef]
- Carloni, S.; Proietti, F.; Rocchi, M.; Longini, M.; Marseglia, L.; D’Angelo, G.; Balduini, W.; Gitto, E.; Buonocore, G. Melatonin Pharmacokinetics Following Oral Administration in Preterm Neonates. Molecules 2017, 22, 2115. [Google Scholar] [CrossRef]
- Hardeland, R.; Tan, D.X.; Reiter, R.J. Kynuramines, metabolites of melatonin and other indoles: The resurrection of an almost forgotten class of biogenic amines. J. Pineal Res. 2009, 47, 109–126. [Google Scholar] [CrossRef]
- Aparicio, S.; Garau, C.; Esteban, S.; Nicolau, M.C.; Rivero, M.; Rial, R.V. Chrononutrition: Use of dissociated day/night infant milk formulas to improve the development of the wake-sleep rhythms. Effects of tryptophan. Nutr. Neurosci. 2007, 10, 137–143. [Google Scholar] [CrossRef]
- Arslanoglu, S.; Bertino, E.; Nicocia, M.; Moro, G.E. WAPM Working Group on Nutrition: Potential chronobiotic role of human milk in sleep regulation. J. Perinat. Med. 2012, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Asher, A.; Shabtay, A.; Brosh, A.; Eitam, H.; Agmon, R.; Cohen-Zinder, M.; Zubidat, A.E.; Haim, A. “Chrono-functional milk”: The difference between melatonin concentrations in night-milk versus day-milk under different night illumination conditions. Chronobiol. Int. 2015, 32, 1409–1416. [Google Scholar] [CrossRef]
- Hahn-Holbrook, J.; Saxbe, D.; Bixby, C.; Steele, C.; Glynn, L. Human milk as “chrononutrition”: Implications for child health and development. Pediatr. Res. 2019, 85, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Loy, S.L.; Loo, R.S.X.; Godfrey, K.M.; Chong, Y.S.; Shek, L.P.; Tan, K.H.; Chong, M.F.; Chan, J.K.Y.; Yap, F. Chrononutrition during Pregnancy: A Review on Maternal Night-Time Eating. Nutrients 2020, 12, 2783. [Google Scholar] [CrossRef]
- Italianer, M.F.; Naninck, E.F.G.; Roelants, J.A.; van der Horst, G.T.J.; Reiss, I.K.M.; Goudoever, J.B.V.; Joosten, K.F.M.; Chaves, I.; Vermeulen, M.J. Circadian Variation in Human Milk Composition, a Systematic Review. Nutrients 2020, 12, 2328. [Google Scholar] [CrossRef] [PubMed]
- Caba-Flores, M.D.; Ramos-Ligonio, A.; Camacho-Morales, A.; Martínez-Valenzuela, C.; Viveros-Contreras, R.; Caba, M. Breast Milk and the Importance of Chrononutrition. Front. Nutr. 2022, 9, 867507. [Google Scholar] [CrossRef]
- Moyo, G.T.; Thomas-Jackson, S.C.; Childress, A.; Dawson, J.; Thompson, L.D.; Oldewage-Theron, W. Chrononutrition and Human Milk. A Review of Circadian Variation Observed in Human Milk Immune Factors. Clin. Lact. 2022, 13, 7–17. [Google Scholar] [CrossRef]
- Paditz, E. Chronobiologische Säuglingsnahrung und Verfahren zu Deren Herstellung. WIPO/PCT/WO2023134856A1 v. Available online: https://worldwide.espacenet.com/patent/search/family/080123321/publication/WO2023134856A1?q=Paditz (accessed on 20 July 2023).
- Kok, E.Y.; Kaur, S.; Mohd Shukri, N.H.; Abdul Razak, N.; Takahashi, M. Development, validation, and reliability of the Chrononutrition Profile Questionnaire-Pregnancy (CPQ-P). BMC Pregnancy Childbirth 2024, 24, 217. [Google Scholar] [CrossRef] [PubMed]
- Häusler, S.; Lanzinger, E.; Sams, E.; Fazelnia, C.; Allmer, K.; Binder, C.; Reiter, R.J.; Felder, T.K. Melatonin in Human Breast Milk and Its Potential Role in Circadian Entrainment: A Nod towards Chrononutrition? Nutrients 2024, 16, 1422. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ (Clin. Res. Ed.) 2015, 350, g7647. [Google Scholar] [CrossRef] [PubMed]
- Paditz, E. Der Prä-Bötzinger-Komplex (PBK) als der zentrale Rhythmusgeber der Atmung—Neuigkeiten zur Morphologie, Funktion, Genetik und Pathophysiologie (Abstr. P 26). Somnologie 2019, (Suppl. S1), 541. [Google Scholar]
- Paditz, E.; Dinger, J. Atemregulation und Schlaf. In Pädiatrische Pneumologie, 3 ed.; von Mutius, E., Gappa, M., Eber, E., Frey, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 53–60. [Google Scholar]
- Garofoli, F.; Longo, S.; Pisoni, C.; Accorsi, P.; Angelini, M.; Aversa, S.; Caporali, C.; Cociglio, S.; De Silvestri, A.; Fazzi, E.; et al. Oral melatonin as a new tool for neuroprotection in preterm newborns: Study protocol for a randomized controlled trial. Trials 2021, 22, 82. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Teoh, A.N.; Shukri, N.H.M.; Shafie, S.R.; Bustami, N.A.; Takahashi, M.; Lim, P.J.; Shibata, S. Circadian rhythm and its association with birth and infant outcomes: Research protocol of a prospective cohort study. BMC Pregnancy Childbirth 2020, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Gropman, A.L.; Duncan, W.C.; Smith, A.C. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr. Neurol. 2006, 34, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Gleason, E.; Malik, K.; Sannar, E.; Kamara, D.; Serrano, V.; Augustyn, M. Challenging Case: A Multidisciplinary Approach to Demystifying Chronic Sleep Impairment in an Infant with a Complex Medical and Behavioral Profile. J. Dev. Behav. Pediatr. JDBP 2024, 45, e176–e179. [Google Scholar] [CrossRef]
- Genovese, A.; Moore, T.; Haynes, P.C.; Augustyn, M. Interoception in Practice: The Gut-Brain Connection. J. Dev. Behav. Pediatr. JDBP 2022, 43, 489–491. [Google Scholar] [CrossRef]
- Malhotra, A.; Rocha, A.K.A.A.; Yawno, T.; Sutherland, A.E.; Allison, B.J.; Nitsos, I.; Pham, Y.; Jenkin, G.; Castillo-Melendez, M.; Miller, S.L. Neuroprotective effects of maternal melatonin administration in early-onset placental insufficiency and fetal growth restriction. Pediatr. Res. 2024. [Google Scholar] [CrossRef]
- Cannavò, L.; Perrone, S.; Gitto, E. Brain-Oriented Strategies for Neuroprotection of Asphyxiated Newborns in the First Hours of Life. Pediatr. Neurol. 2023, 143, 44–49. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, Y.; Yuan, T. Brain Damage in the Preterm Infant: Clinical Aspects and Recent Progress in the Prevention and Treatment. CNS Neurol. Disord. Drug Targets 2023, 22, 27–40. [Google Scholar] [CrossRef]
- Victor, S.; Rocha-Ferreira, E.; Rahim, A.; Hagberg, H.; Edwards, D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur. J. Pediatr. 2022, 181, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Yates, N.; Gunn, A.J.; Bennet, L.; Dhillon, S.K.; Davidson, J.O. Preventing Brain Injury in the Preterm Infant-Current Controversies and Potential Therapies. Int. J. Mol. Sci. 2021, 22, 1671. [Google Scholar] [CrossRef] [PubMed]
- Solevåg, A.L.; Schmölzer, G.M.; Cheung, P.Y. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic. Biol. Med. 2019, 142, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Denihan, N.M.; Kirwan, J.A.; Walsh, B.H.; Dunn, W.B.; Broadhurst, D.I.; Boylan, G.B.; Murray, D.M. Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic-ischaemic encephalopathy. J. Cereb. Blood Flow. Metab. Off. J. Int. Soc. Cereb. Blood Flow. Metab. 2019, 39, 147–162. [Google Scholar] [CrossRef]
- Barton, S.K.; Tolcos, M.; Miller, S.L.; Christoph-Roehr, C.; Schmölzer, G.M.; Moss, T.J.; Hooper, S.B.; Wallace, E.M.; Polglase, G.R. Ventilation-Induced Brain Injury in Preterm Neonates: A Review of Potential Therapies. Neonatology 2016, 110, 155–162. [Google Scholar] [CrossRef]
- Wilkinson, D.; Shepherd, E.; Wallace, E.M. Melatonin for women in pregnancy for neuroprotection of the fetus. Cochrane Database Syst. Rev. 2016, 3, Cd010527. [Google Scholar] [CrossRef]
- Galland, B.C.; Elder, D.E.; Taylor, B.J. Interventions with a sleep outcome for children with cerebral palsy or a post-traumatic brain injury: A systematic review. Sleep. Med. Rev. 2012, 16, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int. J. Tryptophan Res. IJTR 2018, 11, 1178646918802282. [Google Scholar] [CrossRef]
- Behura, S.S.; Dhanawat, A.; Nayak, B.; Panda, S.K. Comparison between oral melatonin and 24% sucrose for pain management during retinopathy of prematurity screening: A randomized controlled trial. Turk. J. Pediatr. 2022, 64, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Jiang, S.; Deng, X.; Luo, Z.; Chen, A.; Yu, R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front. Nutr. 2022, 9, 924036. [Google Scholar] [CrossRef]
- Gombert, M.; Codoñer-Franch, P. Melatonin in Early Nutrition: Long-Term Effects on Cardiovascular System. Int. J. Mol. Sci. 2021, 22, 6809. [Google Scholar] [CrossRef]
- Anderson, G. Pathoetiology and pathophysiology of borderline personality: Role of prenatal factors, gut microbiome, mu- and kappa-opioid receptors in amygdala-PFC interactions. Prog. Progress. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 98, 109782. [Google Scholar] [CrossRef]
- Pereira, G.; Morais, T.C.; França, E.L.; Daboin, B.E.G.; Bezerra, I.M.P.; Pessoa, R.S.; de Quental, O.B.; Honório-França, A.C.; Abreu, L.C. Leptin, Adiponectin, and Melatonin Modulate Colostrum Lymphocytes in Mothers with Obesity. Int. J. Mol. Sci. 2023, 24, 2662. [Google Scholar] [CrossRef]
- Morais, T.C.; Honorio-França, A.C.; Fujimori, M.; de Quental, O.B.; Pessoa, R.S.; França, E.L.; de Abreu, L.C. Melatonin Action on the Activity of Phagocytes from the Colostrum of Obese Women. Medicina 2019, 55, 625. [Google Scholar] [CrossRef] [PubMed]
- Pires-Lapa, M.A.; Tamura, E.K.; Salustiano, E.M.; Markus, R.P. Melatonin synthesis in human colostrum mononuclear cells enhances dectin-1-mediated phagocytosis by mononuclear cells. J. Pineal Res. 2013, 55, 240–246. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, P.; Tao, L. Effect of melatonin on proliferation of neonatal cord blood mononuclear cells. World J. Pediatr. WJP 2009, 5, 300–303. [Google Scholar] [CrossRef]
- Vásquez-Ruiz, S.; Maya-Barrios, J.A.; Torres-Narváez, P.; Vega-Martínez, B.R.; Rojas-Granados, A.; Escobar, C.; Angeles-Castellanos, M. A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Hum. Dev. 2014, 90, 535–540. [Google Scholar] [CrossRef]
- Anderson, G.; Maes, M. Postpartum depression: Psychoneuroimmunological underpinnings and treatment. Neuropsychiatr. Dis. Treat. 2013, 9, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Groër, M.; Davis, M.; Casey, K.; Short, B.; Smith, K.; Groër, S. Neuroendocrine and immune relationships in postpartum fatigue. MCN. Am. J. Matern. Child. Nurs. 2005, 30, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Durlach, J.; Pagès, N.; Bac, P.; Bara, M.; Guiet-Bara, A. New data on the importance of gestational Mg deficiency. Magnes. Res. 2004, 17, 116–125. [Google Scholar] [CrossRef]
- Durlach, J.; Pagès, N.; Bac, P.; Bara, M.; Guiet-Bara, A. Biorhythms and possible central regulation of magnesium status, phototherapy, darkness therapy and chronopathological forms of magnesium depletion. Magnes. Res. 2002, 15, 49–66. [Google Scholar] [PubMed]
- Backon, J. Inhibiting noradrenergic overactivity by inhibition of thromboxane and concomitant activation of opiate receptors via dietary means. Med. Hypotheses 1989, 29, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Maurizi, C.P. Short note: The fetal origins hypothesis: Linking pineal gland hypoplasia with coronary heart disease and stroke. Med. Hypotheses 1998, 50, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Hellmer, K.; Nyström, P. Infant acetylcholine, dopamine, and melatonin dysregulation: Neonatal biomarkers and causal factors for ASD and ADHD phenotypes. Med. Hypotheses 2017, 100, 64–66. [Google Scholar] [CrossRef]
- Goldwater, P.N.; Oberg, E.O. Infection, Celestial Influences, and Sudden Infant Death Syndrome: A New Paradigm. Cureus 2021, 13, e17449. [Google Scholar] [CrossRef] [PubMed]
- Durlach, J.; Pagès, N.; Bac, P.; Bara, M.; Guiet-Bara, A. Importance of magnesium depletion with hypofunction of the biological clock in the pathophysiology of headhaches with photophobia, sudden infant death and some clinical forms of multiple sclerosis. Magnes. Res. 2004, 17, 314–326. [Google Scholar]
- Durlach, J.; Pagès, N.; Bac, P.; Bara, M.; Guiet-Bara, A. Magnesium deficit and sudden infant death syndrome (SIDS): SIDS due to magnesium deficiency and SIDS due to various forms of magnesium depletion: Possible importance of the chronopathological form. Magnes. Res. 2002, 15, 269–278. [Google Scholar] [PubMed]
- Paquette, H. The pineal gland. Neonatal Netw. NN 2000, 19, 9–11. [Google Scholar] [CrossRef]
- Maurizi, C.P. Could exogenous melatonin prevent sudden infant death syndrome? Med. Hypotheses 1997, 49, 425–427. [Google Scholar] [CrossRef]
- Weissbluth, M. Melatonin increases cyclic guanosine monophosphate: Biochemical effects mediated by porphyrins, calcium and nitric oxide. Relationships to infant colic and the Sudden Infant Death Syndrome. Med. Hypotheses 1994, 42, 390–392. [Google Scholar] [CrossRef]
- Weissbluth, L.; Weissbluth, M. Sudden infant death syndrome: A genetically determined impaired maturation of the photoneuroendocrine system. A unifying hypothesis. J. Theor. Biol. 1994, 167, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Maurizi, C.P. Could supplementary dietary tryptophan prevent sudden infant death syndrome? Med. Hypotheses 1985, 17, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, A.C.; Feigenbaum, P.; Kim, A. SIDS, abnormal nighttime REM sleep and CNS immaturity. Neuropediatrics 1998, 29, 72–79. [Google Scholar] [CrossRef]
- Weissbluth, L.; Weissbluth, M. The photo-biochemical basis of infant colic: Pineal intracellular calcium concentrations controlled by light, melatonin, and serotonin. Med. Hypotheses 1993, 40, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Weissbluth, L.; Weissbluth, M. Infant colic: The effect of serotonin and melatonin circadian rhythms on the intestinal smooth muscle. Med. Hypotheses 1992, 39, 164–167. [Google Scholar] [CrossRef]
- Weissbluth, M.; Weissbluth, L. Colic, sleep inertia, melatonin and circannual rhythms. Med. Hypotheses 1992, 38, 224–228. [Google Scholar] [CrossRef]
- Pajno, G.B.; Barberio, F.; Vita, D.; Caminiti, L.; Capristo, C.; Adelardi, S.; Zirilli, G. Diagnosis of cow’s milk allergy avoided melatonin intake in infant with insomnia. Sleep 2004, 27, 1420–1421. [Google Scholar]
- Sizonenko, P.C. Physiology of puberty. J. Endocrinol. Investig. 1989, 12, 59–63. [Google Scholar]
- Sizonenko, P.C. Normal sexual maturation. Pediatrician 1987, 14, 191–201. [Google Scholar]
- Maurizi, C.P. A preliminary understanding of mania: Roles for melatonin, vasotocin and rapid-eye-movement sleep. Med. Hypotheses 2000, 54, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Kärki, A.; Paavonen, E.J.; Satomaa, A.L.; Saarenpää-Heikkilä, O.; Himanen, S.L. Sleep architecture is related to the season of PSG recording in 8-month-old infants. Chronobiol. Int. 2020, 37, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Chaney, C.; Goetz, T.G.; Valeggia, C. A time to be born: Variation in the hour of birth in a rural population of Northern Argentina. Am. J. Phys. Anthropol. 2018, 166, 975–978. [Google Scholar] [CrossRef]
- Cubero, J.; Chanclón, B.; Sánchez, S.; Rivero, M.; Rodríguez, A.B.; Barriga, C. Improving the quality of infant sleep through the inclusion at supper of cereals enriched with tryptophan, adenosine-5’-phosphate, and uridine-5’-phosphate. Nutr. Neurosci. 2009, 12, 272–280. [Google Scholar] [CrossRef]
- O’Connor, R.P.; Persinger, M.A. Geophysical variables and behavior: LXXXII. A strong association between sudden infant death syndrome and increments of global geomagnetic activity--possible support for the melatonin hypothesis. Percept. Mot. Ski. 1997, 84, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Dupont, M.J.; McKay, B.E.; Parker, G.; Persinger, M.A. Geophysical variables and behavior: XCIX. Reductions in numbers of neurons within the parasolitary nucleus in rats exposed perinatally to a magnetic pattern designed to imitate geomagnetic continuous pulsations: Implications for sudden infant death. Percept. Mot. Ski. 2004, 98, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Ardura, J.; Andres, J.; Aragon, M.P.; Agapito, T. Congenital anophthalmia: A circadian rhythm study. Chronobiol. Int. 2004, 21, 315–321. [Google Scholar] [CrossRef]
- García-Patterson, A.; Puig-Domingo, M.; Webb, S.M. Thirty years of human pineal research: Do we know its clinical relevance? J. Pineal Res. 1996, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, A.; Borrelli, P.; Gupta, D. Circadian rhythms in serum melatonin from infancy to adolescence. J. Clin. Endocrinol. Metab. 1985, 61, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Kennaway, D.J. Melatonin and development: Physiology and pharmacology. Semin. Perinatol. 2000, 24, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Kennaway, D.J.; Goble, F.C.; Stamp, G.E. Factors influencing the development of melatonin rhythmicity in humans. J. Clin. Endocrinol. Metab. 1996, 81, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Mantagos, S.; Moustogiannis, A.; Makri, M.; Vagenakis, A. The effect of light on plasma melatonin levels in premature infants. J. Pediatr. Endocrinol. Metab. JPEM 1996, 9, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Kivelä, A.; Kauppila, A.; Leppäluoto, J.; Vakkuri, O. Melatonin in infants and mothers at delivery and in infants during the first week of life. Clin. Endocrinol. 1990, 32, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, A.; Rager, K.; Gupta, D. Ontogeny of circadian rhythmicity for melatonin, serotonin, and N-acetylserotonin in humans. J. Pineal Res. 1986, 3, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Molina Carballo, A.; Muñoz Hoyos, A.; Uberos Fernández, J.; Acuña Castroviejo, D.; Molina Font, J.A. [Pineal functioning (melatonin levels) in healthy children of different ages. An update and the value of pineal gland study in pediatrics]. An. Esp. De. Pediatr. 1996, 45, 33–44. [Google Scholar]
- Honorio-Franca, A.C.; Pernet Hara, C.C.; Ormonde, J.V.S.; Triches Nunes, G.; Luzia Franca, E. Human colostrum melatonin exhibits a day-night variation and modulates the activity of colostral phagocytes. J. Appl. Biomed. 2013, 11, 153–162. [Google Scholar] [CrossRef]
- Molad, M.; Ashkenazi, L.; Gover, A.; Lavie-Nevo, K.; Zaltsberg-Barak, T.; Shaked-Mishan, P.; Soloveichik, M.; Kessel, I.; Rotschild, A.; Etzioni, T. Melatonin Stability in Human Milk. Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2019, 14, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Pontes, G.N.; Cardoso, E.C.; Carneiro-Sampaio, M.M.; Markus, R.P. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes)—melatonin in human colostrum and colostrum phagocytes. J. Pineal Res. 2006, 41, 136–141. [Google Scholar] [CrossRef]
- Silva, N.A.; Honorio-Franca, A.C.; Giachini, F.R.; Mores, L.; Souza, E.G.d.; Franca, E.L. Bioactive Factors of Colostrum and Human Milk Exhibits a Day-Night Variation. Am. J. Immunol. 2013, 9. [Google Scholar] [CrossRef]
- Katzer, D.; Pauli, L.; Mueller, A.; Reutter, H.; Reinsberg, J.; Fimmers, R.; Bartmann, P.; Bagci, S. Melatonin Concentrations and Antioxidative Capacity of Human Breast Milk According to Gestational Age and the Time of Day. J. Hum. Lact. Off. J. Int. Lact. Consult. Assoc. 2016, 32, Np105–Np110. [Google Scholar] [CrossRef]
- Oliveira, F.S.; Dieckman, K.; Mota, D.; Zenner, A.J.; Schleusner, M.A.; Cecilio, J.O.; Vieira, F.V.M. Melatonin in Human Milk: A Scoping Review. Biol. Res. Nurs. 2024, 10998004241263100. [Google Scholar] [CrossRef]
- Akanalçı, C.; Bilici, S. Biological clock and circadian rhythm of breast milk composition. Chronobiol. Int. 2024, 41, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Melatonin. Drugs and Lactation Database (LactMed®); National Institute of Child Health and Human Development: Bethesda, MD, USA, 2006. [Google Scholar]
- Biran, V.; Decobert, F.; Bednarek, N.; Boizeau, P.; Benoist, J.F.; Claustrat, B.; Barre, J.; Colella, M.; Frerot, A.; Garnotel, R.; et al. Melatonin Levels in Preterm and Term Infants and Their Mothers. Int. J. Mol. Sci. 2019, 20, 2077. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Gui, J.; Li, G.; Jiang, F.; Han, D. High-throughput quantitation of trace level melatonin in human milk by on-line enrichment liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2021, 1176, 338764. [Google Scholar] [CrossRef] [PubMed]
- Monfort, A.; Jutras, M.; Martin, B.; Boucoiran, I.; Ferreira, E.; Leclair, G. Simultaneous quantification of 19 analytes in breast milk by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Pharm. Biomed. Anal. 2021, 204, 114236. [Google Scholar] [CrossRef]
- Anderson, G.; Vaillancourt, C.; Maes, M.; Reiter, R.J. Breastfeeding and the gut-brain axis: Is there a role for melatonin? Biomol. Concepts 2017, 8, 185–195. [Google Scholar] [CrossRef]
- George, A.; Cathy, V.; Michael, M.; Russel, J.R. Breast Feeding and Melatonin: Implications for Improving Perinatal Health. J. Of. Breastfeed. Biol. 2016, 1, 8–20. [Google Scholar] [CrossRef]
- Nabukhotnyĭ, T.K.; Kolesnik, T.V.; Chepurnaia, T.V. [Hormones of the hypophyseo-adrenal system and their role in postnatal adaptation of newborns]. Probl. Endokrinol. 1991, 37, 7–10. [Google Scholar]
- Cubero, J.; Valero, V.; Sanchez, J.; Rivero, M.; Parvez, H.; Rodriguez, A.B.; Barriga, C. The circadian rhythm of tryptophan in breast milk affects the rhythms of 6-sulfatoxymelatonin and sleep in newborn. Neuro Endocrinol. Lett. 2005, 26, 657–661. [Google Scholar]
- Fernandes, P.A.C.M.; Cecon, E.; Markus, R.P.; Ferreira, Z.S. Effect of TNF-α on the melatonin synthetic pathway in the rat pineal gland: Basis for a ‘feedback’ of the immune response on circadian timing. J. Pineal Res. 2006, 41, 344–350. [Google Scholar] [CrossRef]
- Booker, L.A.; Spong, J.; Deacon-Crouch, M.; Skinner, T.C. Preliminary Exploration into the Impact of Mistimed Expressed Breast Milk Feeding on Infant Sleep Outcomes, Compared to Other Feeding Patterns. Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2022, 17, 853–858. [Google Scholar] [CrossRef]
- Wong, S.D.; Wright, K.P., Jr.; Spencer, R.L.; Vetter, C.; Hicks, L.M.; Jenni, O.G.; LeBourgeois, M.K. Development of the circadian system in early life: Maternal and environmental factors. J. Physiol. Anthropol. 2022, 41, 22. [Google Scholar] [CrossRef] [PubMed]
- McKenna, H.; Reiss, I.K.M. The case for a chronobiological approach to neonatal care. Early Hum. Dev. 2018, 126, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Löhr, B.; Siegmund, R. Ultradian and circadian rhythms of sleep-wake and food-intake behavior during early infancy. Chronobiol. Int. 1999, 16, 129–148. [Google Scholar] [CrossRef] [PubMed]
- McMillen, I.C.; Mulvogue, H.M.; Kok, J.S.; Deayton, J.M.; Nowak, R.; Adamson, T.M. Circadian rhythms in sleep and wakefulness and in salivary melatonin and cortisol concentrations in mothers of term and preterm infants. Sleep 1993, 16, 624–631. [Google Scholar] [CrossRef]
- Ferber, S.G.; Als, H.; McAnulty, G.; Peretz, H.; Zisapel, N. Melatonin and mental capacities in newborn infants. J. Pediatr. 2011, 159, 99–103.e101. [Google Scholar] [CrossRef]
- Lin, X.; Zhai, R.; Mo, J.; Sun, J.; Chen, P.; Huang, Y. How do maternal emotion and sleep conditions affect infant sleep: A prospective cohort study. BMC Pregnancy Childbirth 2022, 22, 237. [Google Scholar] [CrossRef]
- Sadeh, A. A brief screening questionnaire for infant sleep problems: Validation and findings for an Internet sample. Pediatrics 2004, 113, e570–e577. [Google Scholar] [CrossRef] [PubMed]
- Sulkava, S.; Taka, A.M.; Kantojärvi, K.; Pölkki, P.; Morales-Muñoz, I.; Milani, L.; Porkka-Heiskanen, T.; Saarenpää-Heikkilä, O.; Kylliäinen, A.; Juulia Paavonen, E.; et al. Variation near MTNR1A associates with early development and interacts with seasons. J. Sleep. Res. 2020, 29, e12925. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Shi, X.; Li, Z.; Wan, L.; Yan, H.; Chen, Y.; Wang, J.; Wang, J.; Zou, L.; et al. Safety and efficacy of melatonin supplementation as an add-on treatment for infantile epileptic spasms syndrome: A randomized, placebo-controlled, double-blind trial. J. Pineal Res. 2024, 76, e12922. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Borja, C.; Cristóbal-Cañadas, D.; Rodríguez-Lucenilla, M.I.; Muñoz-Hoyos, A.; Agil, A.; Vázquez-López, M.; Parrón-Carreño, T.; Nievas-Soriano, B.J.; Bonillo-Perales, A.; Bonillo-Perales, J.C. Lower plasma melatonin levels in non-hypoxic premature newborns associated with neonatal pain. Eur. J. Pediatr. 2024. [Google Scholar] [CrossRef]
- Booker, L.A.; Lenz, K.E.; Spong, J.; Deacon-Crouch, M.; Wilson, D.L.; Nguyen, T.H.; Skinner, T.C. High-Temperature Pasteurization Used at Donor Breast Milk Banks Reduces Melatonin Levels in Breast Milk. Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2023, 18, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Booker, L.A.; Fitzgibbon, C.; Spong, J.; Deacon-Crouch, M.; Wilson, D.L.; Skinner, T.C. Rapid Versus Slow Cooling Pasteurization of Donor Breast Milk: Does the Cooling Rate Effect Melatonin Reduction? Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2023, 18, 951–955. [Google Scholar] [CrossRef]
- Shimomura, E.T.; Briones, A.J.; Gordon, C.J.; Warren, W.S.; Jackson, G.F. Case report of sudden death in a twin infant given melatonin supplementation: A challenging interpretation of postmortem toxicology. Forensic Sci. Int. 2019, 304, 109962. [Google Scholar] [CrossRef]
- Gitto, E.; Aversa, S.; Reiter, R.J.; Barberi, I.; Pellegrino, S. Update on the use of melatonin in pediatrics. J. Pineal Res. 2011, 50, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Serón-Ferré, M.; Torres-Farfán, C.; Forcelledo, M.L.; Valenzuela, G.J. The development of circadian rhythms in the fetus and neonate. Semin. Perinatol. 2001, 25, 363–370. [Google Scholar] [CrossRef]
- Tauman, R.; Zisapel, N.; Laudon, M.; Nehama, H.; Sivan, Y. Melatonin production in infants. Pediatr. Neurol. 2002, 26, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Hoyos, A.; Jaldo-Alba, F.; Molina-Carballo, A.; Rodríguez-Cabezas, T.; Molina-Font, J.A.; Acuña-Castroviejo, D. Absence of plasma melatonin circadian rhythm during the first 72 hours of life in human infants. J. Clin. Endocrinol. Metab. 1993, 77, 699–703. [Google Scholar] [CrossRef]
- Sivan, Y.; Laudon, M.; Kuint, J.; Zisapel, N. Low melatonin production in infants with a life-threatening event. Dev. Med. Child. Neurol. 2000, 42, 487–491. [Google Scholar] [CrossRef]
- Sturner, W.Q.; Lynch, H.J.; Deng, M.H.; Gleason, R.E.; Wurtman, R.J. Melatonin concentrations in the sudden infant death syndrome. Forensic Sci. Int. 1990, 45, 171–180. [Google Scholar] [CrossRef]
- Heubner, O. Fall von Tumor der Glandula pinealis mit eigentümlichen Wachstumsanomalien. In Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte. 70. Versammlung zu Düsseldorf. 19.-24. September 1898. Zweiter Theil. Zweite Hälfte. Medizinische Abtheilungen; Wangerin, A., Taschenberg, O., Eds.; Verlga von F.C.W. Vogel: Leipzig, Germany, 1899; pp. 220–221. [Google Scholar]
- Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of Melatonin, the Pineal Gland Factor That Lightens Melanocytes1. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Lerner, A.B.; Case, J.D.; Heinzelman, R.V. Structure of Melatonin. J. Am. Chem. Soc. 1959, 81, 6084–6085. [Google Scholar] [CrossRef]
- von Meduna, L. Die Entwicklung der Zirbeldrüse im Säuglingsalter. Z. Für Anat. Und Entwicklungsgesch. 1925, 76, 534–547. [Google Scholar] [CrossRef]
- Pontes, G.N.; Cardoso, E.C.; Carneiro-Sampaio, M.M.; Markus, R.P. Pineal melatonin and the innate immune response: The TNF-alpha increase after cesarean section suppresses nocturnal melatonin production. J. Pineal Res. 2007, 43, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kimata, H. Laughter elevates the levels of breast-milk melatonin. J. Psychosom. Res. 2007, 62, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Min, K.W.; Seo, I.S.; Song, J. Postnatal evolution of the human pineal gland. An immunohistochemical study. Lab. Investig. A J. Tech. Methods Pathol. 1987, 57, 724–728. [Google Scholar]
- Nishimura, M.; Takashima, S.; Takeshita, K.; Tanaka, J. Developmental changes of neuron-specific enolase in human brain: An immunohistochemical study. Brain Dev. 1985, 7, 1–6. [Google Scholar] [CrossRef]
- Ibañez Rodriguez, M.P.; Noctor, S.C.; Muñoz, E.M. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator. PLoS ONE 2016, 11, e0167063. [Google Scholar] [CrossRef]
- Redondo, E.; Regodon, S.; Masot, J.; Gázquez, A.; Franco, A. Postnatal development of female sheep pineal gland under natural inhibitory photoperiods: An immunocytochemical and physiological (melatonin concentration) study. Histol. Histopathol. 2003, 18, 7–17. [Google Scholar] [CrossRef]
- Nowicki, M.; Przybylska-Gornowicz, B. Postnatal development of the pineal gland in the goat (Capra hircus)—Light and electron microscopy studies. Pol. J. Vet. Sci. 2006, 9, 87–99. [Google Scholar]
- Stehle, J.H.; Foulkes, N.S.; Pévet, P.; Sassone-Corsi, P. Developmental maturation of pineal gland function: Synchronized CREM inducibility and adrenergic stimulation. Mol. Endocrinol. 1995, 9, 706–716. [Google Scholar] [CrossRef]
- Sengupta, P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013, 4, 624–630. [Google Scholar] [PubMed]
- Bülbül, A.; Özmeral Odabasi, I.; Besnili Acar, D.; Tiryaki Demir, S. The effect of phototherapy treatment on serum melatonin levels in term newborns. Turk. J. Med. Sci. 2024, 52, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Hoyos, A.; Bonillo-Perales, A.; Avila-Villegas, R.; González-Ripoll, M.; Uberos, J.; Florido-Navío, J.; Molina-Carballo, A. Melatonin levels during the first week of life and their relation with the antioxidant response in the perinatal period. Neonatology 2007, 92, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Møller, M.; Baeres, F.M. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 2002, 309, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Coon, S.L.; Fu, C.; Hartley, S.W.; Holtzclaw, L.; Mays, J.C.; Kelly, M.C.; Kelley, M.W.; Mullikin, J.C.; Rath, M.F.; Savastano, L.E.; et al. Single Cell Sequencing of the Pineal Gland: The Next Chapter. Front. Endocrinol. 2019, 10, 590. [Google Scholar] [CrossRef] [PubMed]
- Mays, J.C.; Kelly, M.C.; Coon, S.L.; Holtzclaw, L.; Rath, M.F.; Kelley, M.W.; Klein, D.C. Single-cell RNA sequencing of the mammalian pineal gland identifies two pinealocyte subtypes and cell type-specific daily patterns of gene expression. PLoS ONE 2018, 13, e0205883. [Google Scholar] [CrossRef] [PubMed]
- Gregory, K.; Warner, T.; Cardona, J.J.; Chaiyamoon, A.; Iwanaga, J.; Dumont, A.S.; Tubbs, R.S. Innervation of pineal gland by the nervus conarii: A review of this almost forgotten structure. Anat. Cell Biol. 2023, 56, 304–307. [Google Scholar] [CrossRef]
- Kappers, J.A. Survey of the Innervation of the Pineal Organ in Vertebrates. Am. Zool. 1964, 4, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Hertz, H.; Carstensen, M.B.; Bering, T.; Rohde, K.; Møller, M.; Granau, A.M.; Coon, S.L.; Klein, D.C.; Rath, M.F. The Lhx4 homeobox transcript in the rat pineal gland: Adrenergic regulation and impact on transcripts encoding melatonin-synthesizing enzymes. J. Pineal Res. 2020, 68, e12616. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, M.; Yu, S.; Zhou, Y.; Wang, J.; Yuan, J.; Qiang, B. cDNA cloning, chromosomal localization and expression pattern analysis of human LIM-homeobox gene LHX4. Brain Res. 2002, 928, 147–155. [Google Scholar] [CrossRef]
- Hertz, H.; Blancas-Velazquez, A.S.; Rath, M.F. The role of homeobox gene-encoded transcription factors in regulation of phototransduction: Implementing the primary pinealocyte culture as a photoreceptor model. J. Pineal Res. 2021, 71, e12753. [Google Scholar] [CrossRef] [PubMed]
- Bach, I. The LIM domain: Regulation by association. Mech. Dev. 2000, 91, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Park, J.I.; Ahmed, N.U.; Jung, H.J.; Arasan, S.K.; Chung, M.Y.; Cho, Y.G.; Watanabe, M.; Nou, I.S. Identification and characterization of LIM gene family in Brassica rapa. BMC Genom. 2014, 15, 641. [Google Scholar] [CrossRef] [PubMed]
- Grishin, N.V. Treble clef finger--a functionally diverse zinc-binding structural motif. Nucleic Acids Res. 2001, 29, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, G.; Comai, S. Differential Function of Melatonin MT1 and MT2 Receptors in REM and NREM Sleep. Front. Endocrinol. 2019, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Jiang, X.; Liu, W.; Lu, H. The location, physiology, pathology of hippocampus Melatonin MT(2) receptor and MT(2)-selective modulators. Eur. J. Med. Chem. 2023, 262, 115888. [Google Scholar] [CrossRef] [PubMed]
- Spitschan, M. Melanopsin contributions to non-visual and visual function. Curr. Opin. Behav. Sci. 2019, 30, 67–72. [Google Scholar] [CrossRef]
- Stehle, J.H.; Saade, A.; Rawashdeh, O.; Ackermann, K.; Jilg, A.; Sebesteny, T.; Maronde, E. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J. Pineal Res. 2011, 51, 17–43. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.-X.; Korkmaz, A.; Ma, S. Obesity and metabolic syndrome: Association with chronodisruption, sleep deprivation, and melatonin suppression. Ann. Med. 2012, 44, 564–577. [Google Scholar] [CrossRef]
- Paditz, E.; Erler, T.; Kirchhoff, F.; Schlarb, A. Melatonin im Kindes- und Jugendalter. Kinderarztl. Prax. 2019, 6, 402–406. [Google Scholar]
- Joseph, T.T.; Schuch, V.; Hossack, D.J.; Chakraborty, R.; Johnson, E.L. Melatonin: The placental antioxidant and anti-inflammatory. Front. Immunol. 2024, 15, 1339304. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Korkmaz, A.; Rosales-Corral, S.A. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum. Human. Reprod. Update 2014, 20, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Teoh, A.N.; Kaur, S.; Shafie, S.R.; Shukri, N.H.M.; Bustami, N.A.; Takahashi, M.; Shibata, S. Maternal melatonin levels and temporal dietary intake: Results from MY-CARE cohort study. BMC Pregnancy Childbirth 2023, 23, 491. [Google Scholar] [CrossRef]
- Zhdanova, I.V.; Wurtman, R.J.; Balcioglu, A.; Kartashov, A.I.; Lynch, H.J. Endogenous melatonin levels and the fate of exogenous melatonin: Age effects. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1998, 53, B293–B298. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C.; Ellenberger, H.H.; Ballanyi, K.; Richter, D.W.; Feldman, J.L. Pre-Botzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 1991, 254, 726–729. [Google Scholar] [CrossRef]
- Schwarzacher, S.W.; Rub, U.; Deller, T. Neuroanatomical characteristics of the human pre-Botzinger complex and its involvement in neurodegenerative brainstem diseases. Brain A J. Neurol. 2011, 134, 24–35. [Google Scholar] [CrossRef]
- Ramirez, J.M. The human pre-Botzinger complex identified. Brain A J. Neurol. 2011, 134, 8–10. [Google Scholar] [CrossRef]
- Carmona-Alcocer, V.; Rohr, K.E.; Joye, D.A.M.; Evans, J.A. Circuit development in the master clock network of mammals. Eur. J. Neurosci. 2020, 51, 82–108. [Google Scholar] [CrossRef]
- Eriksson, L.; Valtonen, M.; Laitinen, J.T.; Paananen, M.; Kaikkonen, M. Diurnal rhythm of melatonin in bovine milk: Pharmacokinetics of exogenous melatonin in lactating cows and goats. Acta Vet. Scand. 1998, 39, 301–310. [Google Scholar] [CrossRef]
- Milagres, M.P.; Minim, V.P.; Minim, L.A.; Simiqueli, A.A.; Moraes, L.E.; Martino, H.S. Night milking adds value to cow’s milk. J. Sci. Food Agric. 2014, 94, 1688–1692. [Google Scholar] [CrossRef]
- Romanini, E.B.; Volpato, A.M.; Sifuentes dos Santos, J.; de Santana, E.H.W.; de Souza, C.H.B.; Ludovico, A. Melatonin concentration in cow’s milk and sources of its variation. J. Appl. Anim. Res. 2019, 47, 140–145. [Google Scholar] [CrossRef]
- Keskin, İ.; Şahin, Ö.; Akyürek, F.; Aytekin, İ.; Boztepe, S. Determination of Melatonin Differences between Day and Night Milk in Dairy Cattle. J. Agric. Sci. 2021, 27, 449–453. [Google Scholar] [CrossRef]
- Teng, Z.W.; Yang, G.Q.; Wang, L.F.; Fu, T.; Lian, H.X.; Sun, Y.; Han, L.Q.; Zhang, L.Y.; Gao, T.Y. Effects of the circadian rhythm on milk composition in dairy cows: Does day milk differ from night milk? J. Dairy. Sci. 2021, 104, 8301–8313. [Google Scholar] [CrossRef] [PubMed]
- Andrani, M.; Dall’Olio, E.; De Rensis, F.; Tummaruk, P.; Saleri, R. Bioactive Peptides in Dairy Milk: Highlighting the Role of Melatonin. Biomolecules 2024, 14, 934. [Google Scholar] [CrossRef]
- Yao, S.; Liu, Y.; Liu, X.; Liu, G. Effects of SNPs in AANAT and ASMT Genes on Milk and Peripheral Blood Melatonin Concentrations in Holstein Cows (Bos taurus). Genes 2022, 13, 1196. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.P.; Werner, M.U.; Rosenkilde, M.M.; Harpsøe, N.G.; Fuglsang, H.; Rosenberg, J.; Gögenur, I. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol. Toxicol. 2016, 17, 8. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Cucielo, M.S.; Tan, D.X.; Rosales-Corral, S.; Gancitano, G.; de Almeida Chuffa, L.G. Brain washing and neural health: Role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell. Mol. Life Sci. CMLS 2023, 80, 88. [Google Scholar] [CrossRef]
- Skinner, D.C.; Malpaux, B. High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 1999, 140, 4399–4405. [Google Scholar] [CrossRef]
- Bapistella, S.; Hamprecht, K.; Thomas, W.; Speer, C.P.; Dietz, K.; Maschmann, J.; Poets, C.F.; Goelz, R. Short-term Pasteurization of Breast Milk to Prevent Postnatal Cytomegalovirus Transmission in Very Preterm Infants. Clin. Infect. Dis. 2018, 69, 438–444. [Google Scholar] [CrossRef]
- Maschmann, J.; Müller, D.; Lazar, K.; Goelz, R.; Hamprecht, K. New short-term heat inactivation method of cytomegalovirus (CMV) in breast milk: Impact on CMV inactivation, CMV antibodies and enzyme activities. Arch. Dis. Child.-Fetal Neonatal Ed. 2019, 104, F604. [Google Scholar] [CrossRef]
- Wiechers, C.; Fusch, C.C.; Poets, C.F.; Franz, A.R.; Goelz, R. Kurzzeitpasteurisierung von Muttermilch bei 62 °C. Monatsschrift Kinderheilkd. 2022, 170, 556–557. [Google Scholar] [CrossRef]
- Kilic-Akyilmaz, M.; Ozer, B.; Bulat, T.; Topcu, A. Effect of heat treatment on micronutrients, fatty acids and some bioactive components of milk. Int. Dairy. J. 2022, 126, 105231. [Google Scholar] [CrossRef]
- Kim, T.K.; Atigadda, V.R.; Brzeminski, P.; Fabisiak, A.; Tang, E.K.Y.; Tuckey, R.C.; Reiter, R.J.; Slominski, A.T. Detection of Serotonin, Melatonin, and Their Metabolites in Honey. ACS Food Sci. Technol. 2021, 1, 1228–1235. [Google Scholar] [CrossRef]
- Arnon, S.S. Honey, infant botulism and the sudden infant death syndrome. West. J. Med. 1980, 132, 58–59. [Google Scholar]
- Bamumin, A.; Bamumin, S.; Ahmadini, H.A.; Alhindi, Y.; Alsanosi, S.; Alqashqari, H.; Esheb, G.; Ayoub, N.; Falemban, A. Knowledge, attitude and practice among mothers on the relationship between honey and botulism in Saudi Arabian infants: A cross-section study. Ann. Med. 2023, 55, 2279746. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ (Clin. Res. Ed.) 2021, 372, n160. [Google Scholar] [CrossRef]
- Boutin, J.A.; Jockers, R. Melatonin controversies, an update. J. Pineal Res. 2021, 70, e12702. [Google Scholar] [CrossRef]
- Boutin, J.A.; Kennaway, D.J.; Jockers, R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules 2023, 13, 943. [Google Scholar] [CrossRef] [PubMed]
- Paditz, E.; Hochheiden, G.; Jürgensen, D.S. Chrononutrition: Babynahrung mit Melatonin Ohne Künstliche Zusätze; Kleanthes Verlag für Medizin und Prävention Dresden, EVA Erklärvideoagentur Berlin. Available online: https://www.youtube.com/watch?v=YR3TBvruD7M (accessed on 30 April 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paditz, E. Postnatal Development of the Circadian Rhythmicity of Human Pineal Melatonin Synthesis and Secretion (Systematic Review). Children 2024, 11, 1197. https://doi.org/10.3390/children11101197
Paditz E. Postnatal Development of the Circadian Rhythmicity of Human Pineal Melatonin Synthesis and Secretion (Systematic Review). Children. 2024; 11(10):1197. https://doi.org/10.3390/children11101197
Chicago/Turabian StylePaditz, Ekkehart. 2024. "Postnatal Development of the Circadian Rhythmicity of Human Pineal Melatonin Synthesis and Secretion (Systematic Review)" Children 11, no. 10: 1197. https://doi.org/10.3390/children11101197