A Novel Electronic Nose Using Biomimetic Spiking Neural Network for Mixed Gas Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Preprocessing and Spike Encoding
2.3. Sensor Responses Encoding
2.4. Concentration Identification Model
2.5. Model Performance Evaluation
3. Results and Discussion
3.1. Preprocessing and Encoding Results
3.2. Recognition of Gas Mixtures
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Occupational Safety and Health Administration (OSHA). Carbon Monoxide in Workplace Atmospheres. 1991. Available online: https://www.osha.gov/sites/default/files/methods/osha-id210.pdf (accessed on 15 June 2024).
- National Institute for Occupational Safety and Health. Occupational Exposure to Carbon Monoxide. 1972. Available online: https://stacks.cdc.gov/view/cdc/19324 (accessed on 15 June 2024).
- Macasaet, D.; Bandala, A.; Illahi, A.A.; Dadios, E.; Lauguico, S. Hazard Classification of Toluene, Methane and Carbon Dioxide for Bomb Detection Using Fuzzy Logic. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019. [Google Scholar] [CrossRef]
- Chen, H.; Huo, D.X.; Zhang, J.L. Gas Recognition in E-Nose System: A Review. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xue, Y.; Sun, Q.; Zhang, T.; Chen, Y.; Yu, W.; Xiong, Y.; Wei, X.; Yu, G.; Wan, H. A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases. Sens. Actuators B Chem. 2021, 326, 128822. [Google Scholar] [CrossRef]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic nose and its applications: A survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef]
- Ali, M.M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar]
- Nag, S.; Castro, M.; Choudhary, V.; Feller, J.F. Sulfonated poly(ether ether ketone) [SPEEK] nanocomposites based on hybrid nanocarbons for the detection and discrimination of some lung cancer VOC biomarkers. J. Mater. Chem. B 2017, 5, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Freddi, S.; Gonzalez, M.C.R.; Casotto, A.; Sangaletti, L.; De Feyter, S. Machine-Learning-Aided NO2 Discrimination with an Array of Graphene Chemiresistors Covalently Functionalized by Diazonium Chemistry. Chem. Eur. J. 2023, 29, e202302154. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Kim, Y.W.; Na, K.J.; Jeon, G.J. Wireless electronic nose system for real-time quantitative analysis of gas mixtures using micro-gas sensor array and neuro-fuzzy network. Sens. Actuat. B-Chem. 2008, 134, 104–111. [Google Scholar] [CrossRef]
- Chen, Y.S.; Xia, W.Y.; Chen, D.Y.; Zhang, T.Y.; Song, T.T.; Zhao, W.J.; Song, K. A Qualitative and Quantitative Analysis Strategy for Continuous Turbulent Gas Mixture Monitoring. Chemosensors 2022, 10, 499. [Google Scholar] [CrossRef]
- Xu, Y.H.; Zhao, X.; Chen, Y.S.; Zhao, W.J. Research on a Mixed Gas Recognition and Concentration Detection Algorithm Based on a Metal Oxide Semiconductor Olfactory System Sensor Array. Sensors 2018, 18, 3264. [Google Scholar] [CrossRef] [PubMed]
- Taherkhani, A.; Belatreche, A.; Li, Y.H.; Cosma, G.; Maguire, L.P.; McGinnity, T.M. A review of learning in biologically plausible spiking neural networks. Neural Netw. 2020, 122, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.B.; Chua, Y.S.; Zhang, M.L.; Li, G.Q.; Li, H.Z.; Tan, K.C. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks. Ieee Trans. Neural Netw. Learn. Syst. 2023, 34, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.D.; Perez-Gonzalez, D.; Rees, A.; Erwin, H.; Wermter, S. A biologically inspired spiking neural network model of the auditory midbrain for sound source localisation. Neurocomputing 2010, 74, 129–139. [Google Scholar] [CrossRef]
- Diamond, A.; Schmuker, M.; Berna, A.Z.; Trowell, S.; Nowotny, T. Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system. Bioinspir. Biomim. 2016, 11, 026002. [Google Scholar] [CrossRef] [PubMed]
- Imam, N.; Cleland, T.A. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2020, 2, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zheng, Y.G. Robust gas recognition with mixed interference using a spiking neural network. Meas. Sci. Technol. 2022, 33, 015105. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Y.; Zhang, T.; Chen, Y.; Wei, X.; Wan, H.; Wang, P. Detection of Hazardous Gas Mixtures in the Smart Kitchen Using an Electronic Nose with Support Vector Machine. J. Electrochem. Soc. 2020, 167, 147519. [Google Scholar] [CrossRef]
- Petro, B.; Kasabov, N.; Kiss, R.M. Selection and Optimization of Temporal Spike Encoding Methods for Spiking Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Magna, G.; Martinelli, E.; Paolesse, R.; Di Natale, C. Bio-inspired encoding for a real-time and stable single component odor detection with a highly-redundant optical artificial olfactory system. Sens. Actuat. B-Chem. 2022, 373, 132719. [Google Scholar] [CrossRef]
- Stewart, K.; Shea, T.M.; Pacik-Nelson, N.; Gallo, E.; Danielescu, A. Speech2Spikes: Efficient Audio Encoding Pipeline for Real-time Neuromorphic Systems. In Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference, Nice 2023, San Antonio, TX, USA, 11–14 April 2023; pp. 71–78. [Google Scholar] [CrossRef]
- Tan, C.; Sarlija, M.; Kasabov, N. NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns. Neurocomputing 2021, 434, 137–148. [Google Scholar] [CrossRef]
- Guo, W.Z.; Fouda, M.E.; Eltawil, A.M.; Salama, K.N. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems. Front. Neurosci. 2021, 15, 638474. [Google Scholar] [CrossRef] [PubMed]
- Li, W.S.; Chen, H.T.; Guo, J.Y.; Zhang, Z.Y.; Wang, Y.H. Brain-inspired Multilayer Perceptron with Spiking Neurons. In Proceedings of the 2022 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr 2022), New Orleans, LA, USA, 18–24 June 2022; pp. 773–783. [Google Scholar] [CrossRef]
- Guerrero, E.; Quintana, F.M.; Guerrero-Lebrero, M.P. Event-Based Regression with Spiking Networks. In International Work-Conference on Artificial Neural Networks; Springer: Cham, Switzerland, 2023; Volume 14135, pp. 617–628. [Google Scholar] [CrossRef]
Sensor Model | Number | Sensing Gas | Detection Range (ppm) |
---|---|---|---|
MP-9 | S1 | Carbon Monoxide, Methane | 50–1000 (CO); 300–10,000 (CH4) |
MP-4 | S2 | Methane, Natural gas, Biogas | 300–10,000 (CH4) |
MP503 | S3 | Alcohol, Smoke, Isobutane, Formaldehyde, Methane | 1–1000 (CH4) |
TGS821 | S4 | Hydrogen, Carbon Monoxide, Ethanol, Methane | 1000–5000 (CO, CH4) |
TGS816 | S5 | Carbon Monoxide, Methane, Ethanol, Propane, Isobutane, Hydrogen | 500–10,000 (CO, CH4) |
TGS2602 | S6 | Ammonia, Hydrogen Sulfide, Ethanol, Hydrogen, VOCs (e.g., Toluene) | 1–30 (VOCs) |
MSE | MAE | |
---|---|---|
Random forest | 0.0145 | 0.0742 |
Decision tree | 0.0215 | 0.0961 |
NGCI | 0.0099 | 0.0723 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Mou, S.; Chen, C.; Yu, W.; Wan, H.; Zhuang, L.; Wang, P. A Novel Electronic Nose Using Biomimetic Spiking Neural Network for Mixed Gas Recognition. Chemosensors 2024, 12, 139. https://doi.org/10.3390/chemosensors12070139
Xue Y, Mou S, Chen C, Yu W, Wan H, Zhuang L, Wang P. A Novel Electronic Nose Using Biomimetic Spiking Neural Network for Mixed Gas Recognition. Chemosensors. 2024; 12(7):139. https://doi.org/10.3390/chemosensors12070139
Chicago/Turabian StyleXue, Yingying, Shimeng Mou, Changming Chen, Weijie Yu, Hao Wan, Liujing Zhuang, and Ping Wang. 2024. "A Novel Electronic Nose Using Biomimetic Spiking Neural Network for Mixed Gas Recognition" Chemosensors 12, no. 7: 139. https://doi.org/10.3390/chemosensors12070139