Mitigation of Ammonia Emissions from Cattle Manure Slurry by Tannins and Tannin-Based Polymers
Abstract
:1. Introduction
- Covering the manure heap also temporary contributes to the reduction of ammonia emissions, and, hence their oxidation to NOx.
- Modifying the application method of the manure on the field.
- Lowering of the pH value of the manure below 5.5, causing a reduction of the ammonia emission by 62% as well as a reduction of methane by 68% [12].
- Mixing of the manure with different additives, such as urease inhibitor, which blocks the hydrolysis of urea and, therefore, reduces the ammonia emission [13,14]. Other additives, e.g., brown coal, increase the function of the H+ ion through cation exchange. Humic acid acts by suppressing the hydrolysis of urea to ammonia [15]. Activated charcoal, pyrochar, or hydrochar have also shown a reduction of ammonia emission due to the adsorption of NH4+ ions and NH3 [4,16,17]. Other extensively studied amendments include inorganic compounds, like lime and coal fly ash [18], alum [19], zeolite [20], or clay [21]. Most of these additives also involve the reduction of the pH.
2. Materials and Methods
2.1. Chemicals
2.2. Adsorbent Preparation and Characterization
2.3. The pH Measurements
2.4. Adsorption Experiments
2.5. Attenuated Total Reflectance Fourier-Transform Infrared (ATR FT-IR) Spectroscopy
2.6. Data Processing and Analysis
3. Results and Discussion
3.1. Adsorption from Aqueous Ammonia Solution
3.2. Results of the Adsorption Experiment for Liquid Manure
3.3. Emission Kinetics of Ammonia from Liquid Manure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Erisman, J.W.; Bleeker, A.; Hensen, A.; Vermeulen, A. Agricultural air quality in Europe and the future perspectives. Atmos. Environ. 2008, 42, 3209–3217. [Google Scholar] [CrossRef] [Green Version]
- Paulot, F.; Jacob, D.J.; Pinder, R.W.; Bash, J.O.; Travis, K.; Henze, D.K. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 2014, 119, 4343–4364. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Yang, J.; Tian, Z.; Sun, Q.; Xue, W.; Dong, H. Mitigating Greenhouse Gas and Ammonia Emissions from Beef Cattle Feedlot Production: A System Meta-Analysis. Environ. Sci. Technol. 2018, 52, 11232–11242. [Google Scholar] [CrossRef] [PubMed]
- Gronwald, M.; Helfrich, M.; Don, A.; Fuß, R.; Well, R.; Flessa, H. Application of hydrochar and pyrochar to manure is not effective for mitigation of ammonia emissions from cattle slurry and poultry manure. Biol. Fertil. Soils 2018, 54, 451–465. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Lai, J.-K.; Wachs, I.E. Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts. Appl. Catal. B Environ. 2018, 224, 836–840. [Google Scholar] [CrossRef]
- Bergstrom, A.-K.; Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Chang. Biol. 2006, 12, 635–643. [Google Scholar] [CrossRef]
- Song, H.; Che, Z.; Cao, W.; Huang, T.; Wang, J.; Dong, Z. Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen. Environ. Sci. Pollut. Res. 2016, 23, 11964–11974. [Google Scholar] [CrossRef]
- Commission of the European Communities. Communication from the Commission to the Council and the European Parliament. Available online: https://ec.europa.eu/knowledge4policy/publication/commission-european-communities-communication-commission-council-european-parliament_en (accessed on 5 March 2020).
- European Environment Agency. Ammonia Emissions from Agriculture Continue to Pose Problems for Europe. Available online: https://www.eea.europa.eu/highlights/ammonia-emissions-from-agriculture-continue (accessed on 3 March 2020).
- Wang, Y.; Xue, W.; Zhu, Z.; Yang, J.; Li, X.; Tian, Z.; Dong, H.; Zou, G. Mitigating ammonia emissions from typical broiler and layer manure management—A system analysis. Waste Manag. 2019, 93, 23–33. [Google Scholar] [CrossRef]
- Sommer, S.G.; Clough, T.J.; Balaine, N.; Hafner, S.D.; Cameron, K.C. Transformation of Organic Matter and the Emissions of Methane and Ammonia during Storage of Liquid Manure as Affected by Acidification. J. Environ. Qual. 2017, 46, 514–521. [Google Scholar] [CrossRef]
- Varel, V.H.; Nienaber, J.A.; Freetly, H.C. Conservation of nitrogen in cattle feedlot waste with urease inhibitors. J. Anim. Sci. 1999, 77, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Hagenkamp-Korth, F.; Haeussermann, A.; Hartung, E.; Reinhardt-Hanisch, A. Reduction of ammonia emissions from dairy manure using novel urease inhibitor formulations under laboratory conditions. Biosyst. Eng. 2015, 130, 43–51. [Google Scholar] [CrossRef]
- Chen, D.; Sun, J.; Bai, M.; Dassanayake, K.B.; Denmead, O.T.; Hill, J. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: Application of lignite. Sci. Rep. 2015, 5, 16689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, C.; Das, K.C.; Melear, N.; Lakly, D. Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spokas, K.A.; Novak, J.M.; Venterea, R.T. Biochar’s role as an alternative N-fertilizer: Ammonia capture. Plant Soil 2012, 350, 35–42. [Google Scholar] [CrossRef]
- Wong, J.W.-C.; Fung, S.O.; Selvam, A. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting. Bioresour. Technol. 2009, 100, 3324–3331. [Google Scholar] [CrossRef]
- Shi, Y.; Parker, D.B.; Cole, N.A.; Auvermann, B.W.; Mehlhorn, J.E. Surface amendments to minimize ammonia emissions from beef cattle feedlots. Trans. ASAE 2001, 44, 677. [Google Scholar]
- Chan, M.T.; Selvam, A.; Wong, J.W.C. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment. Bioresour. Technol. 2016, 200, 838–844. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, M.K.; Liu, T.; Zhao, J.; Ren, X.; Wang, M.; Duan, Y.; Awasthi, S.K.; Zhang, Z. Influence of clay as additive on greenhouse gases emission and maturity evaluation during chicken manure composting. Bioresour. Technol. 2018, 266, 82–88. [Google Scholar] [CrossRef]
- Comandini, P.; Lerma-García, M.J.; Simó-Alfonso, E.F.; Toschi, T.G. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD–MS. Food Chem. 2014, 157, 290–295. [Google Scholar] [CrossRef]
- Hagerman, A.E. The Tannin Handbook; Miami University: Oxford, OH, USA, 2002. [Google Scholar]
- Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A.E. Retention of tannin-C is associated with decreased soluble nitrogen and increased cation exchange capacity in a broad range of soils. Soil Sci. Soc. Am. J. 2013, 77, 1199–1213. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, M.; Yamamoto, M.; Komai, T.; Yamamoto, K. Studies of structural alterations of humic acids from conifer bark residue during composting by pyrolysis-gas chromatography/mass spectrometry using tetramethylammonium hydroxide (TMAH-py-GC/MS). J. Anal. Appl. Pyrolysis 2009, 86, 200–206. [Google Scholar] [CrossRef]
- Grand View Research. Tannin Market Analysis by Sources (Plants, Brown Algae), by Product (Hydrolysable, Non-Hydrolysable, Phlorotannins), by Application (Leather Tanning, Wine Production, Wood Adhesives), & Segment Forecasts, 2014–2025; Grand View Research Inc.: San Francisco, CA, USA, 2017. [Google Scholar]
- Bueno, F.G.; Panizzon, G.P.; de Leite Mello, E.V.S.; Lechtenberg, M.; Petereit, F.; de Mello, J.C.P.; Hensel, A. Hydrolyzable tannins from hydroalcoholic extract from Poincianella pluviosa stem bark and its wound-healing properties: Phytochemical investigations and influence on in vitro cell physiology of human keratinocytes and dermal fibroblasts. Fitoterapia 2014, 99, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, A. Tannins: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 179–199. [Google Scholar]
- Buzzini, P.; Arapitsas, P.; Goretti, M.; Branda, E.; Turchetti, B.; Pinelli, P.; Ieri, F.; Romani, A. Antimicrobial and Antiviral Activity of Hydrolysable Tannins. Mini-Reviews Med. Chem. 2008, 8, 1179–1187. [Google Scholar] [CrossRef]
- Shahat, A.A.; Marzouk, M.S. Tannins and Related Compounds from Medicinal Plants of Africa. In Medicinal Plant Research in Africa; Elsevier: Amsterdam, The Netherlands, 2013; pp. 479–555. [Google Scholar]
- Lei, H.; Pizzi, A.; Du, G. Environmentally friendly mixed tannin/lignin wood resins. J. Appl. Polym. Sci. 2008, 107, 203–209. [Google Scholar] [CrossRef]
- Moubarik, A.; Pizzi, A.; Allal, A.; Charrier, F.; Charrier, B. Cornstarch and tannin in phenol–formaldehyde resins for plywood production. Ind. Crops Prod. 2009, 30, 188–193. [Google Scholar] [CrossRef]
- Tondi, G.; Wieland, S.; Wimmer, T.; Thevenon, M.F.; Pizzi, A.; Petutschnigg, A. Tannin-boron preservatives for wood buildings: Mechanical and fire properties. Eur. J. Wood Wood Prod. 2012, 70, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Sommerauer, L.; Thevenon, M.-F.; Petutschnigg, A.; Tondi, G. Effect of hardening parameters of wood preservatives based on tannin copolymers. Holzforschung 2019, 73, 457–467. [Google Scholar] [CrossRef]
- Pizzi, A. Recent developments in eco-efficient bio-based adhesives for wood bonding: Opportunities and issues. J. Adhes. Sci. Technol. 2006, 20, 829–846. [Google Scholar] [CrossRef]
- Pizzi, A. Tannin based Wood Adhesives Technology. In Advanced Wood Adhesives Technology; Decker: New York, NY, USA, 1994; p. 304. ISBN 9780824792664. [Google Scholar]
- Pizzi, A.; Meikleham, N.; Dombo, B.; Roll, W. Autocondensation-based, zero-emission, tannin adhesives for particleboard. Holz Roh Werkst. 1995, 53, 201–204. [Google Scholar] [CrossRef]
- Moubarik, A.; Mansouri, H.R.; Pizzi, A.; Charrier, F.; Allal, A.; Charrier, B. Corn flour-mimosa tannin-based adhesives without formaldehyde for interior particleboard production. Wood Sci. Technol. 2013, 47, 675–683. [Google Scholar] [CrossRef]
- Szczurek, A.; Amaral-Labat, G.; Fierro, V.; Pizzi, A.; Celzard, A. The use of tannin to prepare carbon gels. Part II. Carbon cryogels. Carbon 2011, 49, 2785–2794. [Google Scholar] [CrossRef]
- Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Celzard, A. Unique bimodal carbon xerogels from soft templating of tannin. Mater. Chem. Phys. 2015, 149, 193–201. [Google Scholar] [CrossRef]
- Rey-Raap, N.; Szczurek, A.; Fierro, V.; Celzard, A.; Menéndez, J.A.; Arenillas, A. Advances in tailoring the porosity of tannin-based carbon xerogels. Ind. Crops Prod. 2016, 82, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. Tannins as a sustainable raw material for green chemistry: A review. Ind. Crops Prod. 2018, 126, 316–332. [Google Scholar] [CrossRef]
- Kolbitsch, C.; Link, M.; Petutschnigg, A.; Wieland, S.; Tondi, G. Microwave Produced Tannin-furanic Foams. J. Mater. Sci. Res. 2012, 1, 84. [Google Scholar] [CrossRef] [Green Version]
- Link, M.; Kolbitsch, C.; Tondi, G.; Ebner, M.; Wieland, S.; Petutschnigg, A. Formaldehyde-free tannin-based foams and their use as lightweight panels. BioResources 2011, 6, 4218–4228. [Google Scholar]
- Tondi, G.; Pizzi, A. Tannin-based rigid foams: Characterization and modification. Ind. Crops Prod. 2009, 29, 356–363. [Google Scholar] [CrossRef]
- Tondi, G.; Link, M.; Kolbitsch, C.; Lesacher, R.; Petutschnigg, A. Pilot plant up-scaling of tannin foams. Ind. Crops Prod. 2016, 79, 211–218. [Google Scholar] [CrossRef]
- Eckardt, J.; Neubauer, J.; Sepperer, T.; Donato, S.; Zanetti, M.; Cefarin, N.; Vaccari, L.; Lippert, M.; Wind, M.; Schnabel, T.; et al. Synthesis and Characterization of High-Performing Sulfur-Free Tannin Foams. Polymers 2020, 12, 564. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Martín, J.; Beltrán-Heredia, J.; Carmona-Murillo, C. Adsorbents from Schinopsis balansae: Optimisation of significant variables. Ind. Crops Prod. 2011, 33, 409–417. [Google Scholar] [CrossRef]
- Sepperer, T.; Neubauer, J.; Eckardt, J.; Schnabel, T.; Petutschnigg, A.; Tondi, G. Pollutant Absorption as a Possible End-Of-Life Solution for Polyphenolic Polymers. Polymers 2019, 11, 911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurung, M.; Adhikari, B.B.; Kawakita, H.; Ohto, K.; Inoue, K.; Alam, S. Recovery of Au(III) by using low cost adsorbent prepared from persimmon tannin extract. Chem. Eng. J. 2011, 174, 556–563. [Google Scholar] [CrossRef]
- Tondi, G.; Oo, C.W.; Pizzi, A.; Trosa, A.; Thevenon, M.F. Metal adsorption of tannin based rigid foams. Ind. Crops Prod. 2009, 29, 336–340. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; González-Velasco, M.; Beltrán-Heredia, J.; Gragera-Carvajal, J.; Salguero-Fernández, J. Novel tannin-based adsorbent in removing cationic dye (Methylene Blue) from aqueous solution. Kinetics and equilibrium studies. J. Hazard. Mater. 2010, 174, 9–16. [Google Scholar] [CrossRef]
- Tondi, G.; Petutschnigg, A. Middle infrared (ATR FT-MIR) characterization of industrial tannin extracts. Ind. Crops Prod. 2015, 65, 422–428. [Google Scholar] [CrossRef]
- Chemical Education Digital Library Models 360. Available online: http://www.chemeddl.org/resources/models360/models.php?pubchem=6329# (accessed on 5 March 2020).
- Akter, N.; Hossain, M.A.; Hassan, M.J.; Amin, M.K.K.; Elias, M.; Rahman, M.M.; Asiri, A.M.; Siddiquey, I.A.; Hasnat, M.A. Amine modified tannin gel for adsorptive removal of Brilliant Green dye. J. Environ. Chem. Eng. 2016, 4, 1231–1241. [Google Scholar] [CrossRef]
- Aslan, A. Improving the Dyeing Properties of Vegetable Tanned Leathers Using Chitosan Formate. Ekoloji 2013, 22, 26–35. [Google Scholar] [CrossRef]
- Koren, D.W.; Gould, W.D.; Bédard, P. Biological removal of ammonia and nitrate from simulated mine and mill effluents. Hydrometallurgy 2000, 56, 127–144. [Google Scholar] [CrossRef]
Adsorbent | Concentration [%] | pH | Absolute Emission [ppm] | Relative Adsorption [%] |
---|---|---|---|---|
NH4OH reference | 10.78 (0.05) | 15.80 (0.51) | 00.0 (3.23) | |
Chestnut tannin | 1 | 9.35 (0.23) | 11.27 (0.21) | 28.7 (1.34) |
5 | 8.56 (0.12) | 8.20 (0.38) | 48.1 (2.39) | |
10 | 7.18 (0.09) | 6.23 (0.29) | 60.6 (1.84) | |
Mimosa tannin | 1 | 9.67 (0.15) | 8.07 (0.35) | 48.9 (2.19) |
5 | 8.69 (0.24) | 5.89 (0.21) | 62.7 (1.35) | |
10 | 8.11 (0.13) | 4.59 (0.09) | 70.9 (0.58) | |
Tannin gel | 1 | 10.10 (0.11) | 8.36 (0.18) | 47.1 (1.15) |
5 | 8.37 (0.09) | 6.70 (0.36) | 57.6 (2.26) | |
10 | 7.45 (0.25) | 3.52 (0.20) | 77.7 (1.28) | |
Tannin-foam powder | 1 | 9.85 (0.37) | 12.67 (0.24) | 19.8 (1.54) |
5 | 8.42 (0.28) | 7.38 (0.19) | 53.3 (1.20) | |
10 | 7.97 (0.16) | 5.99 (0.16) | 62.1 (1.00) |
Adsorbent | Concentration [%] | pH | Absolute Emission [ppm] | Relative Adsorption [%] |
---|---|---|---|---|
Manure reference | 7.66 (0.32) | 430.30 (20.1) | 00.0 (4.67) | |
Chestnut tannin | 1 | 7.12 (0.20) | 180.30 (3.38) | 58.1 (0.79) |
5 | 6.92 (0.13) | 54.70 (7.89) | 87.3 (1.83) | |
10 | 6.61 (0.11) | 44.80 (5.87) | 89.6 (1.36) | |
Mimosa tannin | 1 | 7.54 (0.20) | 46.90 (6.05) | 89.1 (1.41) |
5 | 7.30 (0.21) | 11.50 (2.63) | 97.3 (0.61) | |
10 | 6.92 (0.15) | 7.30 (1.96) | 98.3 (0.46) | |
Tannin gel | 1 | 7.39 (0.20) | 50.10 (4.29) | 88.3 (0.99) |
5 | 6.72 (0.21) | 47.90 (4.37) | 88.9 (1.01) | |
10 | 6.27 (0.12) | 4.40 (0.6) | 99.0 (0.15) | |
Tannin-foam powder | 1 | 7.43 (0.25) | 191.00 (9.52) | 55.5 (2.21) |
5 | 6.86 (0.11) | 15.70 (3.21) | 96.3 (0.75) | |
10 | 6.17 (0.12) | 10.80 (2.85) | 97.5 (0.66) |
Parameter | Liquid Manure | Mimosa 10% | Mimosa 1% | Tannin Gel 10% | Tannin Gel 1% |
---|---|---|---|---|---|
A1 | 8.243 | 0.857 | 2.377 | 0.612 | 4.552 |
A2 | 468.000 | 7.457 | 56.514 | 4.593 | 52.093 |
x0 | 1120.041 | 265.630 | 867.117 | 269.066 | 698.098 |
p | 2.156 | 1.723 | 1.285 | 1.716 | 2.312 |
R² | 0.99996 | 0.94723 | 0.98583 | 0.91245 | 0.98183 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepperer, T.; Tondi, G.; Petutschnigg, A.; Young, T.M.; Steiner, K. Mitigation of Ammonia Emissions from Cattle Manure Slurry by Tannins and Tannin-Based Polymers. Biomolecules 2020, 10, 581. https://doi.org/10.3390/biom10040581
Sepperer T, Tondi G, Petutschnigg A, Young TM, Steiner K. Mitigation of Ammonia Emissions from Cattle Manure Slurry by Tannins and Tannin-Based Polymers. Biomolecules. 2020; 10(4):581. https://doi.org/10.3390/biom10040581
Chicago/Turabian StyleSepperer, Thomas, Gianluca Tondi, Alexander Petutschnigg, Timothy M. Young, and Konrad Steiner. 2020. "Mitigation of Ammonia Emissions from Cattle Manure Slurry by Tannins and Tannin-Based Polymers" Biomolecules 10, no. 4: 581. https://doi.org/10.3390/biom10040581