A Review of High-Gain Free-Electron Laser Theory
Abstract
:1. Basic Concepts
1.1. FEL Spontaneous Emission
- (i)
- The intensity is proportional to the electrons’ current, i.e., the radiation is incoherent ( where is the number of electrons).
- (ii)
- The emitted radiation is confined in a narrow cone along the direction of electrons motion (that will be identify with the z-axis) within an angle of order of .
- (iii)
- It is a narrow-band radiation, with on-axis spectral distributionThe radiation line-width, from Equation (3), isThe above result can be easily understood in the (average) longitudinal electron rest frame: here each electron “sees” an -periods undulator magnetic field as an -periods counter-propagating pseudo-radiation field (known as “Weizsacker–Williams Approximation” [6,7]), with Lorentz contracted wavelength . Hence, it oscillates times, emitting a sinusoidal wave train of length at a wavelength . In other terms, it acts as a “relativistic mirror” where the radiation is back-reflected. From this picture, we obtain the same result of Equations (3)–(7). In fact, by Lorentz-transforming the incident and reflecting wavelengths and back to the laboratory frame, we obtain the relation (5). Moreover, it is well-known that the Fourier transform of a plane-wave truncated after oscillations is a sinc-function with line-width .
1.2. FEL Stimulated Emission
- (a)
- the electron gives energy to the field and decelerates, i.e., stimulated emission which provides “gain”,
- (b)
- the electron takes energy from the field and accelerates, i.e., absorption.
1.3. High-Gain Regime and SASE
1.4. Quantum FEL
2. Classical Model of Equations
3. 3D FEL Model
3.1. 3D Hamiltonian
- the fast oscillating term can be neglected,
- the ultra-relativistic limit, is assumed,
- the small term is neglected.
3.2. Maxwell Evolution Equations
3.2.1. Vector Potential
3.2.2. Space Charge Effects
3.3. 1D FEL Model
3.4. Universal Scaling
3.5. Steady State Regime
Constants of Motion
3.6. Linear Analysis
- given a spread , the optimal gain occurs for the specific detuning shift;
- energy spread () lowers the growth rate, and shift the resonance to ;
- the width of the gain curve shrinks as .
3.7. Superradiant Regime
3.8. SASE Operation
- high gain instability;
- propagation effects, i.e., “slippage”;
- start-up from noise.
4. From 1D to 3D
4.1. Transverse Effects
- The matching between electron and radiation beam requires that the beam waist and the Rayleigh range of each other must be comparable:
- The electron beam should be contained in the laser beam and the electron beam should not diverge appreciably in a Rayleigh range
- different longitudinal momentum distribution, (see Equation (93))
- off-axis variation of the undulator parameter
- angular divergence of the beam
4.2. Full 3D Model
Optical Guiding
4.3. Quantum Regime of FEL
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freund, H.P.; Antonsen, T.M. Principles of Free-Electron Lasers; Springer: Berlin, Germany, 1992. [Google Scholar]
- Saldin, E.; Schneidmiller, E.; Yurkov, M.V. The Physics of Free Electron Lasers; Springer: Berlin, Germany, 1999. [Google Scholar]
- Schmüser, P.; Dohlus, M.; Rossbach, J.; Behrens, C. Free-electron lasers in the ultraviolet and X-ray regime. In Springer Tracts in Modern Physics; Springer: Berlin, Germany, 2014; Volume 258. [Google Scholar]
- Kim, K.J.; Huang, Z.; Lindberg, R. Synchrotron Radiation and Free-Electron Lasers; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ueda, K. X-Ray Free-Electron Laser. Appl. Sci. 2018, 8, 879. [Google Scholar] [CrossRef] [Green Version]
- Weizsäcker, C.V. Ausstrahlung bei Stößen sehr schneller Elektronen. Z. Phys. 1934, 88, 612–625. [Google Scholar] [CrossRef]
- Williams, E.J. Correlation of Certain Collision Problems with Radiation Theory; Levin & Munksgaard: Aboulevard, Denmark, 1935. [Google Scholar]
- Elias, L.; Fairbank, W.; Madey, J.M.J.; Schwettman, H.A.; Smith, T.I. Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field. Phys. Rev. Lett. 1976, 36, 717. [Google Scholar] [CrossRef] [Green Version]
- Deacon, D.A.; Elias, L.; Madey, J.M.; Ramian, G.; Schwettman, H.; Smith, T.I. First operation of a free-electron laser. Phys. Rev. Lett. 1977, 38, 892. [Google Scholar] [CrossRef]
- Madey, J.M. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 1971, 42, 1906–1913. [Google Scholar] [CrossRef]
- Colson, W.B. Free Electron Laser Theory; Technical Report; Berkeley Research Associates, Inc.: Richmond, CA, USA, 1986. [Google Scholar]
- Bonifacio, R.; Pellegrini, C.; Narducci, L.M. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 1984, 50, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, R.; Casagrande, F. Classical and quantum treatment of amplifier and superradiant free-electron laser dynamics. J. Opt. Soc. Am. B 1985, 2, 250–258. [Google Scholar] [CrossRef]
- Bonifacio, R.; McNeil, B.; Pierini, P. Superradiance in the high-gain free-electron laser. Phys. Rev. A 1989, 40, 4467. [Google Scholar] [CrossRef]
- Bonifacio, R.; Piovella, N.; McNeil, B. Superradiant evolution of radiation pulses in a free-electron laser. Phys. Rev. A 1991, 44, R3441. [Google Scholar] [CrossRef]
- Bonifacio, R.; Casagrande, F.; Cerchioni, G.; de Salvo Souza, L.; Pierini, P.; Piovella, N. Physics of the high-gain FEL and superradiance. Riv. Nuovo Cimento 1990, 13, 1–69. [Google Scholar] [CrossRef]
- Bonifacio, R.; Corsini, R.; De Salvo, L.; Pierini, P.; Piovella, N. New effects in the physics of high-gain free-electron lasers; a proposed experiment and possible applications. Riv. Nuovo Cimento 1992, 15, 1. [Google Scholar] [CrossRef]
- Dicke, R.H. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954, 93, 99–100. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Wang, X.; Murphy, J.; Rose, J.; Shen, Y.; Tsang, T.; Giannessi, L.; Musumeci, P.; Reiche, S. Experimental characterization of superradiance in a single-pass high-gain laser-seeded free-electron laser amplifier. Phys. Rev. Lett. 2007, 98, 034802. [Google Scholar] [CrossRef]
- Bonifacio, R.; De Salvo, L.; Pierini, P.; Piovella, N.; Pellegrini, C. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise. Phys. Rev. Lett. 1994, 73, 70. [Google Scholar] [CrossRef]
- Yu, L.H. Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 1991, 44, 5178. [Google Scholar] [CrossRef]
- Allaria, E.; Appio, R.; Badano, L.; Barletta, W.; Bassanese, S.; Biedron, S.; Borga, A.; Busetto, E.; Castronovo, D.; Cinquegrana, P.; et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 2012, 6, 699–704. [Google Scholar] [CrossRef]
- Bonifacio, R.; Piovella, N.; Robb, G.; Schiavi, A. Quantum regime of free electron lasers starting from noise. Phys. Rev. Spec. Top. Accel. Beams 2006, 9, 090701. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, R.; Piovella, N.; Cola, M.; Volpe, L.; Schiavi, A.; Robb, G. The quantum free-electron laser. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 593, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wang, D.; Gu, Q.; Yin, L.; Gu, M.; Leng, Y.; Liu, B. Status of the SXFEL Facility. Appl. Sci. 2017, 7, 607. [Google Scholar] [CrossRef] [Green Version]
- Kling, P.; Giese, E.; Endrich, R.; Preiss, P.; Sauerbrey, R.; Schleich, W.P. What defines the quantum regime of the free-electron laser? New J. Phys. 2015, 17, 123019. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Bonifacio, R.; Casagrande, F.; Pellegrini, C. Hamiltonian model of a free electron laser. Opt. Commun. 1987, 61, 55–60. [Google Scholar] [CrossRef]
- Tran, T.M.; Wurtele, J.S. Free-electron laser simulation techniques. Phys. Rep. 1990, 195, 1–21. [Google Scholar] [CrossRef]
- Volpe, L. 3D Quantum Theory of Free Electron Lasers. Ph.D. Thesis, Università degli Studi di Milano, Milan, Italy, 2007. [Google Scholar]
- Moore, G.T.; Scully, M.O. Coherent dynamics of a free-electron laser with arbitrary magnet geometry. I. General formalism. Phys. Rev. A 1980, 21, 2000. [Google Scholar] [CrossRef]
- Murphy, J.; Pellegrini, C.; Bonifacio, R. Collective instability of a free electron laser including space charge and harmonics. Opt. Commun. 1985, 53, 197–202. [Google Scholar] [CrossRef]
- Bonifacio, R.; Maroli, C.; Piovella, N. Slippage and superradiance in the high-gain FEL: Linear theory. Opt. Commun. 1988, 68, 369–374. [Google Scholar] [CrossRef]
- Bonifacio, R.; Souza, L.D.S.; Pierini, P.; Piovella, N. The superradiant regime of a FEL: Analytical and numerical results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1990, 296, 358–367. [Google Scholar] [CrossRef]
- Giannessi, L.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Couprie, M.; Del Franco, M.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Labat, M.; et al. Superradiant cascade in a seeded free-electron laser. Phys. Rev. Lett. 2013, 110, 044801. [Google Scholar] [CrossRef] [Green Version]
- Piovella, N. A hyperbolic secant solution for the superradiance in free electron lasers. Opt. Commun. 1991, 83, 92–96. [Google Scholar] [CrossRef]
- Orzechowski, T.; Anderson, B.; Fawley, W.; Prosnitz, D.; Scharlemann, E.; Yarema, S.; Hopkins, D.; Paul, A.; Sessler, A.; Wurtele, J. Microwave radiation from a high-gain free-electron laser amplifier. Phys. Rev. Lett. 1985, 54, 889. [Google Scholar] [CrossRef]
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.J.; et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 2010, 4, 641–647. [Google Scholar] [CrossRef]
- Altarelli, M.; Brinkmann, R.; Chergui, M. The European X-ray Free-Electron Laser; Technical Design Report; DESY XFEL Project Group, European XFEL Project Team, Deutsches Elektronen-Synchrotron: Hamburg, Germany, 2007. [Google Scholar]
- Ishikawa, T.; Aoyagi, H.; Asaka, T.; Asano, Y.; Azumi, N.; Bizen, T.; Ego, H.; Fukami, K.; Fukui, T.; Furukawa, Y.; et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 2012, 6, 540–544. [Google Scholar] [CrossRef]
- Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V. Statistical and coherence properties of radiation from X-ray free-electron lasers. New J. Phys. 2010, 12, 035010. [Google Scholar] [CrossRef]
- Pellegrini, C. Progress toward a soft X-ray FEL. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1988, 272, 364–367. [Google Scholar] [CrossRef]
- Moore, G.T. The high-gain regime of the free electron laser. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1985, 239, 19–28. [Google Scholar] [CrossRef]
- Scharlemann, E.; Sessler, A.M.; Wurtele, J. Optical guiding in a free electron laser. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1985, 239, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, R.; Piovella, N.; Cola, M.; Volpe, L. Experimental requirements for X-ray compact free electron lasers with a laser wiggler. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 577, 745–750. [Google Scholar] [CrossRef]
- Gea-Banacloche, J.; Moore, G.; Schlicher, R.; Scully, M.; Walther, H. Soft X-ray free-electron laser with a laser undulator. IEEE J. Quantum Electron. 1987, 23, 1558–1570. [Google Scholar] [CrossRef]
- Dobiasch, P.; Meystre, P.; Scully, M. Optical wiggler free-electron X-ray laser in the 5 Å region. IEEE J. Quantum Electron. 1983, 19, 1812–1820. [Google Scholar] [CrossRef]
- Steiniger, K.; Bussmann, M.; Pausch, R.; Cowan, T.; Irman, A.; Jochmann, A.; Sauerbrey, R.; Schramm, U.; Debus, A. Optical free-electron lasers with traveling-wave Thomson-scattering. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 234011. [Google Scholar] [CrossRef]
- Reiche, S. GENESIS 1.3: A fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1999, 429, 243–248. [Google Scholar] [CrossRef]
- Fawley, W.M. A User Manual for GINGER and Its Post-Processor XPLOTGIN; Technical Report; Lawrence Berkeley National Lab (LBNL): Berkeley, CA, USA, 2002.
- Saldin, E.; Schneidmiller, E.; Yurkov, M. FAST: A three-dimensional time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1999, 429, 233–237. [Google Scholar] [CrossRef]
- Campbell, L.; McNeil, B. Puffin: A three dimensional, unaveraged free electron laser simulation code. Phys. Plasmas 2012, 19, 093119. [Google Scholar] [CrossRef] [Green Version]
- Piovella, N.; Cola, M.; Volpe, L.; Schiavi, A.; Bonifacio, R. Three-dimensional Wigner-function description of the quantum free-electron laser. Phys. Rev. Lett. 2008, 100, 044801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debus, A.; Steiniger, K.; Kling, P.; Carmesin, C.M.; Sauerbrey, R. Realizing quantum free-electron lasers: A critical analysis of experimental challenges and theoretical limits. Phys. Scr. 2019, 94, 074001. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piovella, N.; Volpe, L. A Review of High-Gain Free-Electron Laser Theory. Atoms 2021, 9, 28. https://doi.org/10.3390/atoms9020028
Piovella N, Volpe L. A Review of High-Gain Free-Electron Laser Theory. Atoms. 2021; 9(2):28. https://doi.org/10.3390/atoms9020028
Chicago/Turabian StylePiovella, Nicola, and Luca Volpe. 2021. "A Review of High-Gain Free-Electron Laser Theory" Atoms 9, no. 2: 28. https://doi.org/10.3390/atoms9020028