Classification of Partial Discharge Sources in Ultra-High Frequency Using Signal Conditioning Circuit Phase-Resolved Partial Discharges and Machine Learning
Abstract
:1. Introduction
2. Experimental Setup
3. Signal Conditioning System
4. Computational Procedures
4.1. Threshold Filtering
4.2. PRPD Pattern Representation
4.3. Feature Extraction
- Minimum: the element that represents the smallest value in a dataset;
- Maximum: the element that represents the largest value in a dataset;
- Number of elements: the amount of data in the set to be evaluated;
- Mean: given by the arithmetic mean of the elements belonging to the dataset;
- First quartile: the value of the dataset that delimits the 25% lowest values;
- Second quartile: also called median, it is the value of the dataset that separates the 50% smallest from the 50% highest values;
- Third quartile: the value of the dataset that delimits the 25% largest values;
- Asymmetry: the statistical parameter that measures the degree of deviation of the symmetry of a dataset from the normal distribution;
- Kurtosis: a parameter that measures the degree of flattening of the distribution of a set in relation to the normal distribution.
4.4. Classification Using Machine Learning Algorithms
5. Results
5.1. Signal Conditioning System
5.2. Threshold Filtering Algorithm
5.3. Feature Extraction
5.4. Classification Using Machine Learning
6. Discussion and Conclusions
- Reduction in hardware requirements for the acquisition of radiometric signals from partial discharges;
- Filtering methodology based on universal threshold and feature extraction through statistical methods;
- Only seven statistical features extracted from the negative semicycle can classify different objects with internal discharges with accuracies greater than 76%;
- The best number of statistical features extracted from both semicycles can classify different objects with internal discharges with accuracies greater than 83%;
- The classification of partial discharge sources using the radiometric method and with radiometric signal conditioning based on an envelope detection circuit is feasible and competitive.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coenen, S.; Tenbohlen, S.; Markalous, S.M.; Strehl, T. Sensitivity of UHF PD Measurements in Power Transformers. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1553–1558. [Google Scholar] [CrossRef]
- Montanari, G.C.; Cavallini, A. Partial Discharge Diagnostics: From Apparatus Monitoring to Smart Grid Assessment. IEEE Electr. Insul. Mag. 2013, 29, 8–17. [Google Scholar] [CrossRef]
- IEC 60270-2000; High-Voltage Test Techniques—Partial Discharge Measurements. International Electrotechnical Commission: Geneve, Switzerland, 2000.
- Lu, Y.; Tan, X.; Hu, X. PD detection and localisation by acoustic measurements in an oil filled transformer. IEE Proc.—Sci. Meas. Technol. 2000, 147, 81–85. [Google Scholar] [CrossRef]
- Liu, H. Acoustic partial discharge localization methodology in power transformers employing the quantum genetic algorithm. Appl. Acoust. 2016, 102, 71–78. [Google Scholar] [CrossRef]
- Sun, C.; Ohodnicki, P.R.; Stewart, E.M. Chemical Sensing Strategies for Real-time Monitoring of Transformer Oil: A Review. IEEE Sens. J. 2017, 17, 5786–5806. [Google Scholar] [CrossRef]
- Urbaniec, I.; Frącz, P. Application of UV camera for PD detection on long rod HV insulator. Meas. Autom. Monit. 2015, 61, 64–67. [Google Scholar]
- Rohani, M.N.K.H.; Zaidi, A.A.H.; Sakanovic, A.; Wooi, C.L.; Rosmi, A.S.; Isa, M.; Ismail, B. Classification of Partial Discharge Detection Technique in High Voltage Power Component: A Review. Int. J. Integr. Eng. 2019, 11, 237–243. [Google Scholar] [CrossRef]
- Hampton, B.; Meats, R. Diagnostic measurements at UHF in gas insulated substations. IEE Proc. C Gener. Transm. Distrib. 1988, 135, 137–144. [Google Scholar] [CrossRef]
- Xavier, G.V.R. Aplicação de Antenas Monopolo Impressas Bio-Inspiradas com Superstratos Metamateriais na Detecção e Localização de Descargas Parciais. Ph.D. Thesis, Sistema de Bibliotecas da UFCG, Campina Grande, Brazil, 2021. (In Portuguese). [Google Scholar]
- Nobrega, L.A.M.M. Novo Método para Monitoramento e Localização de Fontes de Descargas Parciais em Transformadores de Potência Utilizando Medições e Simulações na faixa UHF. Ph.D. Thesis, Sistema de Bibliotecas da UFCG, Campina Grande, Brazil, 2019. (In Portuguese). [Google Scholar]
- Upton, D.W.; Mistry, K.K.; Mather, P.J.; Zaharis, Z.D.; Atkinson, R.C.; Tachtatzis, C.; Lazaridis, P.I. A review of techniques for RSS-based radiometric partial discharge localization. Sensors 2021, 21, 909. [Google Scholar] [CrossRef]
- Xavier, G.V.R.; Silva, H.S.; da Costa, E.G.; Serres, A.J.R.; Carvalho, N.B.; Oliveira, A.S.R. Detection, Classification and Location of Sources of Partial Discharges Using the Radiometric Method: Trends, Challenges and Open Issues. IEEE Access 2021, 9, 110787–110810. [Google Scholar] [CrossRef]
- Working Group A2.27. Recommendations for Condition Monitoring and Condition Assessment Facilities for Transformers; Cigre: Paris, France, 2008. [Google Scholar]
- Tenbohlen, S.; Beura, C.P.; Sikorski, W.; Sánchez, R.A.; de Castro, B.A.; Beltle, M.; Fehlmann, P.; Judd, M.; Werner, F.; Siegel, M. Frequency range of UHF PD measurements in power transformers. Energies 2023, 16, 1395. [Google Scholar] [CrossRef]
- de Souza Neto, J.M.; da Rocha Neto, J.S.; Macedo, E.C.; Glover, I.A.; Judd, M.D. An envelope detector as a trading cost technique for radiometric partial discharge detection. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Montevideo, Uruguay, 12–15 May 2014; pp. 1584–1589. [Google Scholar]
- Santos Júnior, A.C.; Carvalho, I.F.; Xavier, G.V.; Costa, E.G.; Nóbrega, L.A. Artificial intelligence applied to PRPD patterns classification using UHF printed monopole antenna and envelope detector. In Proceedings of the 23rd International Symposium on High Voltage Engineering—ISH, Glasgow, UK, 28 August–1 September 2023. [Google Scholar]
- Carvalho, I.F.; Santos, A.C.; Nobrega, L.A.; Costa, E.G.; Silva, A.D.; Lira, G.R.; Marotti, A.C.; Costa, A.I.; Souza, J.P. PRPD analysis in current transformers using UHF sensors and signal conditioning system. In Proceedings of the 23rd International Symposium on High Voltage Engineering—ISH, Glasgow, UK, 28 August–1 September 2023. [Google Scholar]
- Barbosa, V.R.; Lira, G.R.; Costa, E.G.; Galdino, G.M.; Oliveira, A.H.; Santos, A.C. Estimation of the Pollution Critical Level on the Surface of Glass Insulators Based on Leakage Current. IEEE Trans. Power Deliv. 2024, 39, 1222–1232. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chou, C.-J. Deep Learning and Long-Duration PRPD Analysis to Uncover Weak Partial Discharge Signals for Defect Identification. Appl. Sci. 2023, 13, 10570. [Google Scholar] [CrossRef]
- Do, T.-D.; Tuyet-Doan, V.-N.; Cho, Y.-S.; Sun, J.-H.; Kim, Y.-H. Convolutional-neural-network-based partial discharge diagnosis for power transformer using UHF sensor. IEEE Access 2020, 8, 207377–207388. [Google Scholar] [CrossRef]
- Pinpart, T.; Judd, M.D. Differentiating between partial discharge sources using envelope comparison of ultra-high-frequency signals. IET Sci. Meas. Technol. 2010, 4, 256–267. [Google Scholar] [CrossRef]
- Carvalho, I.F.; da Costa, E.G.; Nobrega, L.A.M.M.; Silva, A.D.d.C. Identification of Partial Discharge Sources by Feature Extraction from a Signal Conditioning System. Sensors 2024, 24, 2226. [Google Scholar] [CrossRef]
- Schurch, R.; Munoz, O.; Ardila-Rey, J.; Donoso, P.; Peesapati, V. Identification of Electrical Tree Aging State in Epoxy Resin Using Partial Discharge Waveforms Compared to Traditional Analysis. Polymers 2023, 17, 2461. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, J.; Li, J.; Yang, X.; Bie, Y.; Ranjan, P.; Zhang, C.; Schwarz, H. Partial Discharge Detection and Diagnosis of Transformer Bushing Based on UHF Method. IEEE Sens. J. 2021, 21, 16798–16806. [Google Scholar] [CrossRef]
- Xavier, G.V.R.; da Costa, E.G.; Serres, A.J.R.; Nobrega, L.A.M.M.; Oliveira, A.C.; Sousa, H.F.S. Design and Application of a Circular Printed Monopole Antenna in Partial Discharge Detection. IEEE Sens. J. 2019, 19, 3718–3725. [Google Scholar] [CrossRef]
- Macêdo, E.C.T. Metodologia Para a Classificação de Descargas Parciais Utilizando Redes Neurais Artificiais. Ph.D. Thesis, Sistema de Bibliotecas da UFCG, Campina Grande, Brazil, 2014. (In Portuguese). [Google Scholar]
- de Souza Neto, J.; De Macedo, E.; Batista, M.; Cavalcanti, T.; Guedes, E.C.; da Rocha Neto, J.; Glover, I.A. Early progress in the development of a radiometric PD location system. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 129–133. [Google Scholar]
- Wang, Y.; Li, Y.; Song, Y.; Rong, X. he influence of the activation function in a convolution neural network model of facial expression recognition. Appl. Sci. 2020, 10, 1897. [Google Scholar] [CrossRef]
- Scikit-Learn. Machine Learning in Python. Scikit-Learn Suport Vector Machine. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html (accessed on 1 June 2024).
- Scikit-Learn. Machine Learning in Python. Scikit-Learn: Decision Tree Classifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html (accessed on 29 May 2024).
Object | Partial Discharge Range (pC) |
---|---|
Bar | 1500–3000 |
Disc 1 | 180–300 |
Disc 2 | 700–1700 |
Oil | 200–450 |
PT | 1100–3000 |
Signal | Conditioning System | IEC |
---|---|---|
Bar | 250 | 250 |
Disc 1 | 186 | 219 |
Disc 2 | 233 | 242 |
Oil | 215 | 201 |
PT | 250 | 250 |
Absolute | 1134 | 1162 |
Percentage | 90.72% | 92.96% |
Conditioning System Dataset | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Features | Bar + | Bar − | Disc 1 + | Disc 1 − | Disc 2 + | Disc 2 − | Oil + | Oil − | PT + | PT − |
Min | 0.00 | 180.00 | 0.00 | 180.01 | 0.01 | 180.03 | 0.03 | 180.01 | 18.25 | 184.90 |
2nd quartile | 45.71 | 226.98 | 41.76 | 218.56 | 48.92 | 228.32 | 58.67 | 236.63 | 57.47 | 218.84 |
Median | 84.34 | 257.92 | 67.75 | 249.01 | 64.40 | 243.92 | 81.30 | 253.86 | 66.78 | 235.78 |
3rd quartile | 131.22 | 306.36 | 119.33 | 304.46 | 96.16 | 279.06 | 122.73 | 285.68 | 77.76 | 250.99 |
Max | 180.00 | 360.00 | 179.95 | 359.97 | 179.99 | 359.97 | 180.00 | 359.99 | 128.96 | 284.04 |
Mean | 87.74 | 265.41 | 80.75 | 261.02 | 75.34 | 255.81 | 87.88 | 261.70 | 68.31 | 235.21 |
Skewness | 0.10 | 0.23 | 0.41 | 0.37 | 0.79 | 0.77 | 0.16 | 0.44 | 0.46 | 0.00 |
Kurtosis | −1.14 | −1.04 | −0.99 | −1.10 | −0.07 | −0.17 | −0.77 | −0.33 | 0.43 | −0.84 |
No. of pulses | 6326 | 6899 | 5863 | 5631 | 4606 | 4554 | 6333 | 7246 | 1011 | 701 |
IEC Dataset | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Features | Bar + | Bar − | Disc 1 + | Disc 1 − | Disc 2 + | Disc 2 − | Oil + | Oil − | PT + | PT − |
Min | 0.54 | 180.58 | 0.27 | 180.67 | 0.27 | 181.48 | 0.45 | 181.75 | 10.93 | 192.34 |
2nd quartile | 47.19 | 227.58 | 44.30 | 221.92 | 51.20 | 230.08 | 69.52 | 244.91 | 57.15 | 223.51 |
Median | 55.58 | 235.56 | 53.42 | 232.52 | 60.08 | 238.77 | 75.76 | 252.76 | 66.28 | 239.48 |
3rd quartile | 64.88 | 243.81 | 62.53 | 242.60 | 69.50 | 248.59 | 84.94 | 262.35 | 76.95 | 252.91 |
Max | 179.51 | 359.91 | 179.96 | 359.91 | 179.60 | 359.91 | 179.15 | 359.64 | 129.04 | 284.34 |
Mean | 57.60 | 237.25 | 54.39 | 237.22 | 61.28 | 241.46 | 77.89 | 254.47 | 67.51 | 238.75 |
Skewness | 2.16 | 3.02 | 2.03 | 2.54 | 1.77 | 2.66 | 0.84 | 1.33 | 0.33 | −0.02 |
Kurtosis | 10.71 | 17.51 | 10.50 | 7.42 | 9.03 | 10.34 | 8.56 | 7.01 | 0.67 | −0.77 |
No. of pulses | 15,896 | 26,360 | 23,757 | 24,129 | 6167 | 5565 | 11,312 | 15,663 | 5060 | 5598 |
Order | Conditioning | IEC 60270 |
---|---|---|
1 | Max − | 3rd quantile − |
2 | 3rd quartile − | Mean − |
3 | Mean − | Median − |
4 | Median − | Max − |
5 | Min − | 2nd quartile − |
6 | 2nd quartile − | Min − |
7 | Number of pulses − | Number of pulses − |
8 | 3rd quartile + | 2nd quartile + |
9 | Mean + | Mean + |
10 | Median + | Min + |
11 | Max + | Median + |
12 | Min + | 3rd quartile + |
13 | 2nd quartile + | Number of pulses + |
14 | Number of pulses + | Kurtosis − |
15 | Kurtosis − | Max + |
16 | Skewness − | Skewness + |
17 | Skewness + | Skewness − |
18 | Kurtosis + | Kurtosis + |
Conditioning System | IEC | |||||
---|---|---|---|---|---|---|
N Features | MLP | SVM | DTC | MLP | SVM | DTC |
1 | 65.4 | 67.7 | 60.1 | 60.5 | 61.9 | 67.0 |
2 | 67.4 | 69.5 | 66.9 | 56.2 | 64.2 | 66.5 |
3 | 62.5 | 68.9 | 68.9 | 73.6 | 63.6 | 68.5 |
4 | 70.7 | 68.6 | 68.6 | 78.5 | 74.5 | 75.9 |
5 | 73.0 | 69.5 | 69.5 | 76.2 | 73.6 | 76.2 |
6 | 71.3 | 70.1 | 71.3 | 83.7 | 71.3 | 77.7 |
7 | 76.8 | 70.0 | 79.2 | 83.1 | 64.5 | 80.5 |
8 | 81.5 | 70.5 | 82.1 | 85.1 | 64.5 | 85.7 |
9 | 82.1 | 70.7 | 83.6 | 90.0 | 64.8 | 85.4 |
10 | 83.9 | 71.1 | 83.6 | 88.5 | 64.8 | 86.2 |
11 | 82.1 | 71.2 | 83.3 | 89.4 | 64.8 | 89.1 |
12 | 80.4 | 70.1 | 82.4 | 91.1 | 64.8 | 88.0 |
13 | 83.9 | 64.5 | 80.6 | 90.5 | 73.4 | 89.7 |
14 | 84.5 | 64.8 | 82.7 | 88.3 | 72.8 | 89.7 |
15 | 78.3 | 64.5 | 82.7 | 89.4 | 72.5 | 89.4 |
16 | 74.8 | 64.9 | 82.4 | 88.8 | 73.1 | 88.8 |
17 | 82.1 | 64.5 | 82.4 | 87.7 | 72.8 | 89.7 |
18 | 77.1 | 65.2 | 82.4 | 71.0 | 73.1 | 90.0 |
Best accuracy | 84.5% | 71.2% | 83.6% | 91.1% | 74.5% | 90.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Júnior, A.C.d.; Serres, A.J.R.; Xavier, G.V.R.; da Costa, E.G.; Serres, G.K.d.F.; Leite Neto, A.F.; Carvalho, I.F.; Nobrega, L.A.M.M.; Lazaridis, P. Classification of Partial Discharge Sources in Ultra-High Frequency Using Signal Conditioning Circuit Phase-Resolved Partial Discharges and Machine Learning. Electronics 2024, 13, 2399. https://doi.org/10.3390/electronics13122399
Santos Júnior ACd, Serres AJR, Xavier GVR, da Costa EG, Serres GKdF, Leite Neto AF, Carvalho IF, Nobrega LAMM, Lazaridis P. Classification of Partial Discharge Sources in Ultra-High Frequency Using Signal Conditioning Circuit Phase-Resolved Partial Discharges and Machine Learning. Electronics. 2024; 13(12):2399. https://doi.org/10.3390/electronics13122399
Chicago/Turabian StyleSantos Júnior, Almir Carlos dos, Alexandre Jean René Serres, George Victor Rocha Xavier, Edson Guedes da Costa, Georgina Karla de Freitas Serres, Antonio Francisco Leite Neto, Itaiara Félix Carvalho, Luiz Augusto Medeiros Martins Nobrega, and Pavlos Lazaridis. 2024. "Classification of Partial Discharge Sources in Ultra-High Frequency Using Signal Conditioning Circuit Phase-Resolved Partial Discharges and Machine Learning" Electronics 13, no. 12: 2399. https://doi.org/10.3390/electronics13122399
APA StyleSantos Júnior, A. C. d., Serres, A. J. R., Xavier, G. V. R., da Costa, E. G., Serres, G. K. d. F., Leite Neto, A. F., Carvalho, I. F., Nobrega, L. A. M. M., & Lazaridis, P. (2024). Classification of Partial Discharge Sources in Ultra-High Frequency Using Signal Conditioning Circuit Phase-Resolved Partial Discharges and Machine Learning. Electronics, 13(12), 2399. https://doi.org/10.3390/electronics13122399