Application of Metals and Their Compounds/Black Phosphorus-Based Nanomaterials in the Direction of Photocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Properties of BP Materials
2.1. Crystal Structure of BP
2.2. Bandgap Modulation of BP
2.3. Stability of the BP
2.4. Optical Properties of BP
3. Metals and Their Compounds/BP-Based Nanomaterials
3.1. Characterization of Metals and Their Compounds/BP-Based Nanomaterials
3.2. Preparation of Metals and Their Compounds/BP-Based Nanomaterials
4. Application of Metals and Their Compounds/BP-Based Nanomaterials in Photocatalytic Hydrogen Evolution
4.1. Photocatalytic Hydrogen Evolution Properties of Metal-BP Composites
4.2. Photocatalytic Hydrogen Evolution Performance of Metal Oxide and BP Composites
4.3. Photocatalytic Hydrogen Evolution Properties of Metal Sulfide and BP Composites
4.4. Photocatalytic Hydrogen Evolution Performance of BP-Based Ternary Heterojunction Materials
5. Conclusions
6. Prospects
- (1)
- During the synthesis of BP nanosheets, the following problems still exist: the size and thickness of the nanosheets are not controllable, they are easy to oxidize, the yield is low, and the production cost is high. It is expected that in the future, we can realize the large-scale production of two-dimensional BP nanosheets with accurately controllable thickness and size through a new preparation method or a combination of multiple preparation methods.
- (2)
- The preparation of black phosphorus-based materials can be optimized by means of in situ testing and DFT calculations; however, there are still fewer studies in this area, and DFT calculations can be further promoted to optimize the design of high-performance black phosphorus-based materials. In addition, the structural changes in photocatalytic materials and their microscopic kinetic processes in the catalytic reaction are deeply investigated, and the in-depth photocatalytic mechanism study provides ideas for designing a reasonable catalyst structure.
- (3)
- The photocatalytic active sites of nano-BP are still unclear, and the mechanism of photocatalytic hydrogen evolution needs to be further explored and elaborated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. CO2 Emissions in 2023. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 5 March 2024).
- Liu, Z.; Deng, Z.; Davis, S.J.; Ciais, P. Global carbon emissions in 2023. Nat. Rev. Earth Environ. 2024, 5, 253–254. [Google Scholar] [CrossRef]
- Chien, A.A. Driving the cloud to true zero carbon. Commun. ACM 2021, 64, 5. [Google Scholar] [CrossRef]
- Chen, W.D.; Han, M.Z.; Bi, J.Y.; Meng, Y. China can peak its energy-related CO2 emissions before 2030: Evidence from driving factors. J. Clean. Prod. 2023, 429, 139584. [Google Scholar] [CrossRef]
- Wang, G.J.; Lv, S.S.; Shen, Y.H.; Li, W.; Lin, L.H.; Li, Z.C. Advancements in heterojunction, cocatalyst, defect and morphology engineering of semiconductor oxide photocatalysts. J. Mater. 2024, 10, 335–338. [Google Scholar] [CrossRef]
- Thomas, S.A. Layered two-dimensional black phosphorous-based hybrid electrodes for rechargeable batteries. J. Energy Storage 2023, 73, 109068. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, H.D.; Li, H.N.; Guo, Z.N.; Tian, B.N.; Cui, Y.X.; Li, Z.F.; Li, G.H.; Zhang, H.; Wu, Y.C. Recent advances in black phosphorus/carbon hybrid composites: From improved stability to applications. J. Mater. Chem. 2020, 8, 4647–4676. [Google Scholar] [CrossRef]
- Pang, X.; Xue, S.X.; Zhou, T.; Yuan, H.D.; Liu, C.; Lei, W.Y. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications. Prog. Chem. 2022, 34, 630–642. [Google Scholar]
- Zhang, X.Y.; Li, Z.; Wang, Y.; Zhang, S.H.; Zang, X.H.; Wang, C.; Wang, Z. Preparation of black phosphorus nanosheets/zeolitic imidazolate framework nanocomposite for high-performance solid-phase microextraction of organophosphorus pesticides. J. Chromatogr. A 2023, 1708, 464339. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, M.; Ge, B.C.; Zhang, L.X.; Zhou, J.X.; Liu, S.F.; Jiao, T.F. Facile preparation of black phosphorus-based rGO-BP-Pd composite hydrogels with enhanced catalytic reduction of 4-nitrophenol performances for wastewater treatment. J. Mol. Liq. 2020, 310, 113083. [Google Scholar] [CrossRef]
- Li, H.; Liu, A.M.; Ren, X.F.; Yang, Y.N.; Gao, L.G.; Fan, M.Q.; Ma, T.L. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: A combined experimental and theoretical study. Nanoscale 2019, 11, 19862. [Google Scholar] [CrossRef]
- Li, C.; Cui, X.M.; Gao, X.; Liu, S.Z.; Sun, Q.; Lian, H.Q.; Zu, L.; Liu, Y.; Wang, X.D.; Cui, X.G. Electrochemically prepared black phosphorene micro-powder as flame retardant for epoxy resin. Compos. Interfaces 2021, 28, 693–705. [Google Scholar] [CrossRef]
- Nilges, T.; Kersting, M.; Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 2008, 181, 1707–1711. [Google Scholar] [CrossRef]
- Chaudhary, V.; Neugebauer, P.; Mounkachi, O.; Lahbabi, S.; Fatimy, A.E. Phosphorene-an emerging two-dimensional material: Recent advances in synthesis, functionalization, and applications. 2D Mater. 2022, 9, 032001. [Google Scholar] [CrossRef]
- Kou, L.Z.; Chen, C.F.; Smith, S.C. Phosphorene: Fabrication, Properties, and Applications. J. Phys. Chem. Lett. 2015, 6, 2794–2805. [Google Scholar] [CrossRef] [PubMed]
- Batmunkh, M.; Bat-Erdene, M.; Shapter, J.G. Phosphorene and Phosphorene-Based Materials—Prospects for Future Applications. Adv. Mater. 2016, 28, 8586–8617. [Google Scholar] [CrossRef]
- Jakobczyk, P.; Kaczmarzyk, I.; Bogdanowicz, R. Few-Layer Black Phosphorus/Chitosan Nanocomposite Electrodes via Controlled Electrodeposition for Enhanced Electrochemical Kinetic Performance. J. Phys. Chem. C 2024, 128, 7087–7095. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Zhang, G.; Zhang, Y.W. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene. Sci. Rep. 2014, 4, 6677. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C.S.; Berner, N.C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z.; et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563. [Google Scholar] [CrossRef]
- Zhao, W.C.; Xue, Z.M.; Wang, J.F.; Jiang, J.Y.; Zhao, X.H.; Mu, T.C. Large-Scale, Highly Efficient, and Green Liquid-Exfoliation of Black Phosphorus in Ionic Liquids. ACS Appl. Mater. Intertfaces 2015, 7, 27608–27612. [Google Scholar] [CrossRef]
- Shen, Z.K.; Yuan, Y.J.; Yu, Z.T.; Zou, Z.G. Progress on the Black Phosphorus Nanomaterials for Photocatalysis. Mater. China 2021, 40, 493–507. [Google Scholar]
- Wood, J.D.; Wells, S.A.; Jariwala, D.; Chen, K.S.; Cho, E.K.Y.; Sangwan, V.K.; Liu, X.L.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation. Nano Lett. 2014, 14, 6964–6970. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zemlyanov, D.Y.; Milligan, C.A.; Du, Y.C.; Yang, L.M.; Wu, Y.Q.; Ye, P.D. Surface chemistry of black phosphorus under a controlled oxidative environment. Nanotechnology 2016, 27, 434002. [Google Scholar] [CrossRef]
- Ziletti, A.; Carvalho, A.; Campbell, D.K.; Coker, D.F.; Neto, A.H.C. Oxygen Defects in Phosphorene. Phys. Rev. Lett. 2015, 114, 046801. [Google Scholar] [CrossRef]
- Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L’Heureux, A.L.; Tang, N.Y.W.; Lévesque, P.L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826–832. [Google Scholar] [CrossRef]
- Woomer, A.H.; Farnsworth, T.W.; Hu, J.; Wells, R.A.; Donley, C.L.; Warren, S.C. Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano 2015, 9, 8869–8884. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Zhang, G.W.; Fan, F.R.; Song, C.Y.; Wang, F.J.; Xing, Q.X.; Wang, C.; Wu, H.; Yan, H.G. Strain-tunable van der Waals interactions in few-layer black phosphorus. Nat. Commun. 2019, 10, 2447. [Google Scholar] [CrossRef]
- Kang, J.; Wells, S.A.; Wood, J.D.; Lee, J.H.; Liu, X.L.; Ryder, C.R.; Zhu, J.; Guest, J.R.; Husko, C.A.; Hersam, M.C. Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA 2016, 113, 11688–11693. [Google Scholar] [CrossRef] [PubMed]
- Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.H.; Asadi, M.; Tuschel, D.; Indacochea, J.E.; Klie, R.F.; Salehi-Khojin, A. High quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892. [Google Scholar] [CrossRef]
- Huang, W.C.; Zi, Y.; Wang, M.K.; Hu, L.P.; Wang, Y.Z.; Xie, Z.J.; Qiu, M.; Zhang, H. Advancements in photophysics research and applications of phosphorene semiconductors. J. Shenzhen Univ. Sci. Eng. 2024, 41, 323–347. [Google Scholar] [CrossRef]
- Choi, J.R.; Yong, K.W.; Choi, J.Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. Black Phosphorus and its Biomedical Applications. Theranostics 2018, 8, 1005–1026. [Google Scholar] [CrossRef]
- Lei, W.Y.; Liu, G.; Zhang, J.; Liu, M.H. Black phosphorus nanostructures: Recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 2017, 46, 3492–3509. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.L.; Shi, X.T.; Li, Q.T.; Hao, L.J.; Liu, L.; Liu, X.; Chen, Y.H.; Wang, Y.J. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Biomater. Sci. 2019, 7, 4046–4059. [Google Scholar] [CrossRef] [PubMed]
- He, X.L.; Wu, J.X.; Huang, X.L.; Chen, Y.; Zhang, L.; Sheng, X.X. Three-in-one polymer nanocomposite coating via constructing tannic acid functionalized MXene/BP hybrids with superior corrosion resistance, friction resistance, and flame-retardancy. Chem. Eng. Sci. 2024, 283, 119429. [Google Scholar] [CrossRef]
- Wang, J.W.; Qiu, S.L.; Chen, W.J.; Yang, W.H.; Song, L.; Hu, Y. Synthesis of Nitrogen-Rich Black Phosphorus via a Diazotization Strategy for Efficient Flame Retardancy and Mechanical Properties of Epoxy Resins. Macromol. Mater. Eng. 2022, 307, 2200143. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.H.; Song, S.Y.; Zhang, H.J. Tumor Diagnosis and Therapy Mediated by Metal Phosphorus-Based Nanomaterials. Adv. Mater. 2021, 33, 2103936. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.S.; Yang, G.X.; Bi, H.T.; Xu, J.T.; Dong, S.M.; Jia, T.; Wang, Z.; Zhao, R.X.; Sun, Q.Q.; Gai, S.L. An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanoparticles and CuS integrated black phosphorus. Chem. Eng. J. 2020, 382, 122822. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, G.; Gong, K.K.; Wang, J.; Ge, X.X.; Liu, X.Q.; Guo, S.J.; Wang, F. MnO2-Laden Black Phosphorus for MRI-Guided Synergistic PDT, PTT, and Chemotherapy. Matter 2019, 1, 496–512. [Google Scholar] [CrossRef]
- Gao, R.R.; Cheng, B.; Fan, J.J.; Yu, J.G.; Ho, W.K. ZnxCd1-xS quantum dot with enhanced photocatalytic H2-production performance. Chin. J. Catal. 2021, 42, 15–24. [Google Scholar] [CrossRef]
- Yang, F.; Ai, Y.; Li, X.; Wang, L.; Zhang, Z.; Ding, W.; Sun, W. Preparation of electrochemical horseradish peroxidase biosensor with black phosphorene-zinc oxide nanocomposite and their applications. RSC Adv. 2023, 13, 32028–32038. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Alade, I.O.; Alkanad, K.; Alnaggar, G.; Khan, A.; Khan, M.Y.; Onaizi, S.A. Fabrication of Z-scheme TiO2//BP/g-C3N4 nanocomposite via pulsed laser ablation in liquid for photocatalytic overall water splitting. Opt. Mater. 2022, 128, 112428. [Google Scholar] [CrossRef]
- Li, S.; Zhang, F.; Wang, J.; Wen, W.; Wang, S. Black phosphorus-Au nanocomposite-based fluorescence immunochromatographic sensor for high-sensitive detection of zearalenone in cereals. Nanophotonics 2020, 9, 2397–2406. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Yan, L.; Han, X.; Zhang, Z.; Zhang, X.; Sun, W. A Portable Wireless Intelligent Nanosensor for 6,7-Dihydroxycoumarin Analysis with A Black Phosphorene and Nano-Diamond Nanocomposite-Modified Electrode. Biosensors 2023, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Qiu, S.; Chu, F.; Liu, W.; Yang, W.; Hu, W.; Hu, Y. Passivation of black phosphorus by triazine-based silica coating: Hierarchical BP@SiO2-N@Co(OH)2 structure for enhanced fire safety and toughness of unsaturated polyester resins. Compos. Part A-Appl. Sci. Manuf. 2023, 164, 107279. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Shi, X. Facile synthesis of amorphous carbon-coated bismuth phosphate nanocomposite for lithium-ion battery anode with ultra-long cycle stability. J. Solid State Chem. 2022, 316, 123588. [Google Scholar] [CrossRef]
- Du, W.; Chen, W.; Wang, J.; Zhang, H.; Song, L.; Hu, Y.; Ma, X. A dual-nanozyme-loaded black phosphorus multifunctional therapeutic platform for combined photothermal/photodynamic/starvation cancer therapy. J. Mater. Chem. B 2023, 11, 5185–5194. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Saha, A.; Dutta, A.; Khatua, S. NIR-Driven Photocatalytic Hydrogen Production by Silane- and Tertiary Amine-Bound Plasmonic Gold Nanoprisms. ACS Appl. Mater. Interfaces 2022, 14, 38815–38823. [Google Scholar] [CrossRef]
- Savateev, O.; Shvalagin, V.; Tang, J. Increasing Profitability of Ethanol Photoreforming by Simultaneous Production of H2 and Acetal. Glob. Chall. 2024, 8, 2300078. [Google Scholar] [CrossRef]
- Zhu, H.; Trinh, M.T.; Wang, J.; Fu, Y.; Joshi, P.P.; Miyata, K.; Zhu, X.Y. Organic Cations Might Not Be Essential to the Remarkable Properties of Band Edge Carriers in Lead Halide Perovskites. Adv. Mater. 2017, 29, 1603072. [Google Scholar] [CrossRef]
- Lu, B.C.; Zheng, X.Y.; Li, Z.S. A promising photocatalyst for water-splitting reactions with a stable sandwiched P4O2/black phosphorus heterostructure and high solar-to-hydrogen efficiency. Nanoscale 2020, 12, 6617–6623. [Google Scholar] [CrossRef]
- Vishnoi, P.; Gupta, U.; Pandey, R.; Rao, C.N.R. Stable functionalized phosphorenes with photocatalytic HER activity. J. Mater. Chem. A 2019, 7, 6631–6637. [Google Scholar] [CrossRef]
- Ren, J.; Yu, Y.; Qu, Y.N.; Sun, D.F.; Chu, W.H.; Su, Q.M.; Huang, L.Y.; Xu, B.S. Bionic construction of a dual Z-scheme MoO3/ZnIn2S4/black phosphorus quantum dots heterojunction with expanded redox surfaces and photoelectron transfer ability for high-efficiency photocatalysis. Chem. Eng. J. 2023, 465, 142894. [Google Scholar] [CrossRef]
- Shi, R.; Liu, F.; Wang, Z.; Weng, Y.; Chen, Y. Black/red phosphorus quantum dots for photocatalytic water splitting: From a type I heterostructure to a Z-scheme system. Chem. Commun. 2019, 55, 12531–12534. [Google Scholar] [CrossRef]
- Ma, Z.; Li, P.; Ye, L.; Wang, L.; Xie, H.; Zhou, Y. Selectivity reversal of photocatalytic CO2 reduction by Pt loading. Catal. Sci. Technol. 2018, 8, 5129–5132. [Google Scholar] [CrossRef]
- Teixeira, G.F.; Silva Junior, E.; Vilela, R.; Zaghete, M.A.; Colmati, F. Perovskite Structure Associated with Precious Metals: Influence on Heterogenous Catalytic Process. Catalysts 2019, 9, 721. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Q.; Ning, H.; Yang, P.; Yan, J. Photocatalytic Performance of CuO/CuAl2O4 Composite Photocatalysts Modified by Precious Metals (Pt,Ag,Ru). Min. Metall. Eng. 2018, 38, 115–118,122. [Google Scholar]
- Tian, B.; Tian, B.; Smith, B.; Scott, M.C.; Lei, Q.; Hua, R.; Liu, Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 4345–4350. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Min, S.; Wang, F. Dye-sensitized black phosphorus nanosheets decorated with Pt cocatalyst for highly efficient photocatalytic hydrogen evolution under visible light. Int. J. Hydrogen Energy 2019, 44, 21873–21881. [Google Scholar] [CrossRef]
- Shen, Z.K.; Yuan, Y.J.; Pei, L.; Yu, Z.T.; Zou, Z. Black phosphorus photocatalysts for photocatalytic H2 generation: A review. Chem. Eng. J. 2020, 386, 123997. [Google Scholar] [CrossRef]
- Lim, S.K.; Kang, S.C.; Yoo, T.J.; Lee, S.K.; Hwang, H.J.; Lee, B.H. Operation Mechanism of a MoS2/BP Heterojunction FET. Nanomaterials 2018, 8, 797. [Google Scholar] [CrossRef]
- Wang, G.C.; Wu, L.M.; Yan, J.H.; Zhou, Z.; Ma, R.S.; Yang, H.F.; Li, J.J.; Gu, C.Z.; Bao, L.H.; Du, S.X.; et al. Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices. Chin. Phys. B 2018, 27, 077303. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.; Li, Y.; Chen, L.; Chen, Y.; Zhang, H.; Xie, Z. Enhancement of Broadband Reverse Saturable Absorption of Red/Black Phosphorus Heterojunction. Molecules 2024, 29, 1271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhou, L.; Chen, G.; Xia, S.; Qiu, M. Theoretical study on an oxygen-modified phosphorene autogenous Z-scheme heterojunction for hydrogen evolution. Chem. Commun. 2023, 59, 1517–1520. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.Y.; Ma, Z.B.; Yang, X.M. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Elbanna, O.; Zhu, M.; Fujitsuka, M.; Majima, T. Black Phosphorus Sensitized TiO2 Mesocrystal Photocatalyst for Hydrogen Evolution with Visible and Near-Infrared Light Irradiation. ACS Catal. 2019, 9, 3618–3626. [Google Scholar] [CrossRef]
- Dutta, V.; Chauhan, A.; Verma, R.; Gopalkrishnan, C.; Nguyen, V.H. Recent trends in Bi-based nanomaterials: Challenges, fabrication, enhancement techniques, and environmental applications. Beilstein J. Nanotechnol. 2022, 13, 1316–1336. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, Y.; Ouyang, S.; Yu, H.; Lu, G.; Ye, J.; Bi, Y. BiAg Alloy Nanospheres: A New Photocatalyst for H2 Evolution from Water Splitting. ACS Appl. Mater. Interfaces 2014, 6, 19488–19493. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Fang, W.; Meng, X.; Wang, L.; Bai, H.; Li, C. In-situ synthesis of metal Bi to improve the stability of oxygen vacancies and enhance the photocatalytic activity of Bi4O5Br2 in H2 evolution. J. Alloys Compd. 2022, 910, 164883. [Google Scholar] [CrossRef]
- Hu, J.D.; Chen, D.Y.; Mo, Z.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Xu, H.L.; Lu, J.M. Z-Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi2WO6 Nanosheets with Enhanced Photocatalytic Activities. Angew. Chem.-Int. Ed. 2019, 58, 2073–2077. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Z.; Fujitsuka, M.; Majima, T. Z-Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light. Angew. Chem.-Int. Ed. 2018, 57, 2160–2164. [Google Scholar] [CrossRef]
- Ran, J.; Zhu, B.; Qiao, S.Z. Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production. Angew. Chem.-Int. Ed. 2017, 56, 10373–10377. [Google Scholar] [CrossRef]
- Ran, J.; Wang, X.; Zhu, B.; Qiao, S.Z. Strongly interactive 0D/2D hetero-structure of a ZnxCd1−xS nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H2 production. Chem. Commun. 2017, 53, 9882–9885. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.J.; Wang, P.; Li, Z.J.; Wu, Y.Z.; Bai, W.F.; Su, Y.B.; Guan, J.; Wu, S.T.; Zhong, J.S.; Yu, Z.T.; et al. The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D-2D black phosphorus/MoS2 photocatalyst. Appl. Catal. B-Environ. 2019, 242, 1–8. [Google Scholar] [CrossRef]
- Zhu, M.; Zhai, C.; Fujitsuka, M.; Majima, T. Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black Phosphorus/WS2. Appl. Catal. B-Environ. 2018, 221, 645–651. [Google Scholar] [CrossRef]
- Reddy, D.A.; Kim, E.H.; Gopannagari, M.; Kim, Y.; Kumar, D.P.; Kim, T.K. Few layered black phosphorus/MoS2 nanohybrid: A promising co-catalyst for solar driven hydrogen evolution. Appl. Catal. B-Environ. 2019, 241, 491–498. [Google Scholar] [CrossRef]
- Mao, L.; Cai, X.; Yang, S.; Han, K.; Zhang, J. Black phosphorus-CdS-La2Ti2O7 ternary composite: Effective noble metal-free photocatalyst for full solar spectrum activated H2 production. Appl. Catal. B-Environ. 2019, 242, 441–448. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Zhang, L.; Cao, M.; Yang, F.; Dai, W.L. Facile construction of flower-like black phosphorus nanosheet@ZnIn2S4 composite with highly efficient catalytic performance in hydrogen production. Appl. Surf. Sci. 2020, 504, 144366. [Google Scholar] [CrossRef]
- Zhu, M.; Osakada, Y.; Kim, S.; Fujitsuka, M.; Majima, T. Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal. B-Environ. 2017, 217, 285–292. [Google Scholar] [CrossRef]
- Zhu, M.; Cai, X.; Fujitsuka, M.; Zhang, J.; Majima, T. Au/La2Ti2O7 Nanostructures Sensitized with Black Phosphorus for Plasmon-Enhanced Photocatalytic Hydrogen Production in Visible and Near-Infrared Light. Angew. Chem.-Int. Ed. 2017, 56, 2064–2068. [Google Scholar] [CrossRef]
Applications | Catalysts | Light Source | Scavenger | Performance | Reference |
---|---|---|---|---|---|
Hydrogen evolution | BP | >420 nm | Na2S/Na2SO3 | 66 μmol·h−1·g−1 | [78] |
BP/Pt | >420 nm | (pH = 6.8) | 450 μmol·h−1·g−1 | [57] | |
BP NSs/Pt | >450 nm | Triethanolamine | 89.1 mmol (6 h) | [58] | |
BPNS/Pt(3%)/TMC | 420/780 nm | Methanol/water | 1.9/0.41 μmol·h−1 | [65] | |
BP/MBWO | >420 nm | Triethanolamine | 21,042 μmol·g−1 (5 h) | [69] | |
BP/BiVO4 | >420 nm | / | 160 μmol·h−1·g−1 | [70] | |
BP/CdS | >420 nm | Ethanol | 11,192 μmol·h−1·g−1 | [71] | |
0D/2D ZCS/FLP | >420 nm | / | 9326 μmol·h−1·g−1 | [72] | |
BP/MoS2 | >420 nm | Na2S/Na2SO3 | 1286 μmol·h−1·g−1 | [73] | |
2D BP/WS2 | >780 nm | EDTA | 1.55 μmol (3 h) | [74] | |
CdS/BP-MoS2 | Full spectrum | Lactic aid | 183.24 mmol·h−1·g−1 | [75] | |
BP/CdS/LTO | >420 nm | Na2S/Na2SO3 | 0.96 mmol·h−1·g−1 | [76] | |
BP/Pt/ZnIn2S4 | >420 nm | Na2S/Na2SO3 | 1278 μmol·h−1·g−1 | [77] | |
BP/Pt/RGO | 420/780 nm | EDTA | 5.13/1.26 μmol (4 h) | [78] | |
BP/Au/LTO | 420/780 nm | Methanol | 0.74/0.30 mmol·h−1·g−1 | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Yao, B.; Yang, H.; Li, X.; Qiu, L.; Li, S. Application of Metals and Their Compounds/Black Phosphorus-Based Nanomaterials in the Direction of Photocatalytic Hydrogen Evolution. Coatings 2024, 14, 1141. https://doi.org/10.3390/coatings14091141
Zhang W, Yao B, Yang H, Li X, Qiu L, Li S. Application of Metals and Their Compounds/Black Phosphorus-Based Nanomaterials in the Direction of Photocatalytic Hydrogen Evolution. Coatings. 2024; 14(9):1141. https://doi.org/10.3390/coatings14091141
Chicago/Turabian StyleZhang, Weiwei, Bin Yao, Haotian Yang, Xueru Li, Lina Qiu, and Shaoping Li. 2024. "Application of Metals and Their Compounds/Black Phosphorus-Based Nanomaterials in the Direction of Photocatalytic Hydrogen Evolution" Coatings 14, no. 9: 1141. https://doi.org/10.3390/coatings14091141