Enhanced Sensitivity Mach–Zehnder Interferometer-Based Tapered-in-Tapered Fiber-Optic Biosensor for the Immunoassay of C-Reactive Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensing Principle
2.2. Simulation Analysis
2.3. Preparation of the Sensor
2.4. Measurement System
2.5. Materials
3. Results and Discussion
3.1. Spectral Analysis
3.2. Sensor Performance
3.3. Sensor Surface Treatment and Immunofuntionalization for CRP Detection
3.4. CRP Detection Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bisoendial, R.J.; Boekholdt, S.M.; Vergeer, M.; Stroes, E.S.G.; Kastelein, J.J.P. C-Reactive Protein Is a Mediator of Cardiovascular Disease. Eur. Heart J. 2010, 31, 2087–2091. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Biosensors for Cardiac Biomarkers Detection: A Review. Sens. Actuators B Chem. 2012, 171–172, 62–76. [Google Scholar] [CrossRef]
- Nejati-Koshki, K.; Fathi, F.; Arabzadeh, A.; Mohammadzadeh, A. Biomarkers and Optical Based Biosensors in Cardiac Disease Detection: Early and Accurate Diagnosis. Anal. Methods 2023, 15, 5441–5458. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Szunerits, S.; Mishyn, V.; Grabowska, I.; Boukherroub, R. Electrochemical Cardiovascular Platforms: Current State of the Art and Beyond. Biosens. Bioelectron. 2019, 131, 287–298. [Google Scholar] [CrossRef]
- Tang, M.-Q.; Mao, X.-H.; Gong, Y.-X.-Y.; Qing, L.-S.; Xie, J. Research Progress of C-Reactive Protein Analysis. Chin. J. Anal. Chem. 2020, 48, 1121–1130. [Google Scholar] [CrossRef]
- Dong, T.; Zhu, W.; Yang, Z.; Matos Pires, N.M.; Lin, Q.; Jing, W.; Zhao, L.; Wei, X.; Jiang, Z. Advances in Heart Failure Monitoring: Biosensors Targeting Molecular Markers in Peripheral Bio-Fluids. Biosens. Bioelectron. 2024, 255, 116090. [Google Scholar] [CrossRef]
- Verma, M.S.; Tsaloglou, M.-N.; Sisley, T.; Christodouleas, D.; Chen, A.; Milette, J.; Whitesides, G.M. Sliding-Strip Microfluidic Device Enables ELISA on Paper. Biosens. Bioelectron. 2018, 99, 77–84. [Google Scholar] [CrossRef]
- Dominici, R.; Luraschi, P.; Franzini, C. Measurement of C-reactive Protein: Two High Sensitivity Methods Compared. Clin. Lab. Anal. 2004, 18, 280–284. [Google Scholar] [CrossRef]
- Oh, S.W.; Moon, J.D.; Park, S.Y.; Jang, H.J.; Kim, J.H.; Nahm, K.B.; Choi, E.Y. Evaluation of Fluorescence Hs-CRP Immunoassay for Point-of-Care Testing. Clin. Chim. Acta 2005, 356, 172–177. [Google Scholar] [CrossRef]
- Pohanka, M. Diagnoses Based on C-Reactive Protein Point-of-Care Tests. Biosensors 2022, 12, 344. [Google Scholar] [CrossRef] [PubMed]
- Burcu Bahadır, E.; Kemal Sezgintürk, M. Applications of Electrochemical Immunosensors for Early Clinical Diagnostics. Talanta 2015, 132, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.S.; Vidal, M.; Santos, N.F.; Costa, F.M.; Marques, C.; Pereira, S.O.; Leitão, C. Immunosensing Based on Optical Fiber Technology: Recent Advances. Biosensors 2021, 11, 305. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Xie, Q.; Liu, Y.; He, Y.; Zhong, N.; Zhang, Z.; Karimi-Maleh, H.; Peng, X.; Lichtfouse, E. Recent Advances in Optical Fiber Grating Sensors for Detection of Organic Substances. Chem. Eng. J. 2024, 492, 152260. [Google Scholar] [CrossRef]
- Wang, W.; Mai, Z.; Chen, Y.; Wang, J.; Li, L.; Su, Q.; Li, X.; Hong, X. A Label-Free Fiber Optic SPR Biosensor for Specific Detection of C-Reactive Protein. Sci. Rep. 2017, 7, 16904. [Google Scholar] [CrossRef]
- Matías, I.R.; Imas, J.J.; Zamarreño, C.R. Biosensing Based on Lossy Mode Resonances. TrAC Trends Anal. Chem. 2024, 170, 117479. [Google Scholar] [CrossRef]
- Jha, R.; Gorai, P.; Shrivastav, A.; Pathak, A. Label-Free Biochemical Sensing Using Processed Optical Fiber Interferometry: A Review. ACS Omega 2024, 9, 3037–3069. [Google Scholar] [CrossRef]
- Esposito, F.; Sansone, L.; Srivastava, A.; Baldini, F.; Campopiano, S.; Chiavaioli, F.; Giordano, M.; Giannetti, A.; Iadicicco, A. Long Period Grating in Double Cladding Fiber Coated with Graphene Oxide as High-Performance Optical Platform for Biosensing. Biosens. Bioelectron. 2021, 172, 112747. [Google Scholar] [CrossRef]
- Cao, G.; Chang, P.; Zhang, A.; Liu, F.; Pan, H.; Wang, J.; Lin, S.; Yang, T. A Polydopamine Nanospheres Modified Fiber Optic SPR Biosensor for Specific Detection of C-Reactive Protein. Opt. Fiber Technol. 2023, 80, 103468. [Google Scholar] [CrossRef]
- Cierpiak, K.; Wityk, P.; Kosowska, M.; Sokołowski, P.; Talaśka, T.; Gierowski, J.; Markuszewski, M.J.; Szczerska, M. C-Reactive Protein (CRP) Evaluation in Human Urine Using Optical Sensor Supported by Machine Learning. Sci. Rep. 2024, 14, 18854. [Google Scholar] [CrossRef]
- Zhang, W.; Lang, X.; Liu, X.; Li, G.; Singh, R.; Zhang, B.; Kumar, S. Advances in Tapered Optical Fiber Sensor Structures: From Conventional to Novel and Emerging. Biosensors 2023, 13, 644. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Singh, R.; Marques, C.; Jha, R.; Zhang, B.; Kumar, S. Taper-in-Taper Fiber Structure-Based LSPR Sensor for Alanine Aminotransferase Detection. Opt. Express 2021, 29, 43793–43810. [Google Scholar] [CrossRef]
- Gong, Z.; Lei, Y.; Wang, Z.; Zhang, J.; Sun, Z.; Li, Y.; Huang, J.; Chan, C.; Ouyang, X. A Taper-in-Taper Structured Interferometric Optical Fiber Sensor for Cu2+ Ion Detection. Sensors 2022, 22, 2709. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Wang, Y.; Li, M.; Wang, Q.; Malathi, S.; Marques, C.; Singh, R.; Zhang, B. Plasmon-Based Tapered-in-Tapered Fiber Structure for p-Cresol Detection: From Human Healthcare to Aquaculture Application. IEEE Sens. J. 2022, 22, 18493–18500. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, W.; Lang, X.; Liu, X.; Singh, R.; Li, G.; Xie, Y.; Zhang, B.; Kumar, S. Development of Taper-in-Taper-Based Optical Fiber Sensors for Chemical and Biological Sensing. Photonics 2023, 10, 567. [Google Scholar] [CrossRef]
- Mahmud, R.A.; Arebu, H.A.; Khan, M.Z.M.; Qureshi, K.K. Recent Applications of Tapered Multicore Fiber in Optical Sensing: A Review. IEEE Sens. J. 2024, 24, 23376–23388. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, L.; Li, X.; Yi, D.; Zhang, J.; Yuan, H.; Ning, Z.; Hong, X.; Chen, Y. Tapered Fiber Bioprobe Based on U-Shaped Fiber Transmission for Immunoassay. Biosensors 2023, 13, 940. [Google Scholar] [CrossRef]
- Zhang, N.M.Y.; Li, K.; Zhang, N.; Zheng, Y.; Zhang, T.; Qi, M.; Shum, P.; Wei, L. Highly Sensitive Gas Refractometers Based on Optical Microfiber Modal Interferometers Operating at Dispersion Turning Point. Opt. Express 2018, 26, 29148–29158. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Gouveia, C.A.J.; Jorge, P.A.S.; Baldini, F. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors. Biosensors 2017, 7, 23. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Lin, Z.; Wang, Y.; Tong, R.; Cai, L. Plug-and-Play Fabry-Perot Interferometric Biosensor with Vernier Effect for Label-Free Detection of Bovine Serum Albumin. Sens. Actuators B Chem. 2024, 416, 135999. [Google Scholar] [CrossRef]
- Bekmurzayeva, A.; Ashikbayeva, Z.; Assylbekova, N.; Myrkhiyeva, Z.; Dauletova, A.; Ayupova, T.; Shaimerdenova, M.; Tosi, D. Ultra-Wide, Attomolar-Level Limit Detection of CD44 Biomarker with a Silanized Optical Fiber Biosensor. Biosens. Bioelectron. 2022, 208, 114217. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, X.; Wang, S.; Cao, Y.; Zhang, L.; Zhao, Y.; Dong, X.; Zheng, M.; Liu, H.; Lu, W.; et al. 3D Fiber-Probe Surface Plasmon Resonance Microsensor towards Small Volume Sensing. Sens. Actuators B Chem. 2023, 384, 133647. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent Progress and Growth in Biosensors Technology: A Critical Review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A.L. A Simple Aptamer-Based Colorimetric Assay for Rapid Detection of C-Reactive Protein Using Gold Nanoparticles. Talanta 2020, 214, 120868. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Yang, J.-Y.; Shu, T.-Y.; Lin, T.-Y.; Chen, Y.-Y.; Su, M.-Y.; Li, W.-J.; Liu, M.-Y. Detection of C-Reactive Protein Based on Magnetic Nanoparticles and Capillary Zone Electrophoresis with Laser-Induced Fluorescence Detection. J. Chromatogr. A 2013, 1315, 188–194. [Google Scholar] [CrossRef]
- Phuong, N.T.T.; Anh, D.T.; Thao, N.H.N.; Ta, H.K.T.; Tran, N.Q.M.; Bach, T.N.; Phan, B.T.; Tran, N.H.T. Application of Hybrid Au@Ag Nanostructures in Fiber Optic Biosensor for Rapid Detection of C-Reactive Protein. Opt. Mater. 2023, 143, 114184. [Google Scholar] [CrossRef]
Detection Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Actual value (RIU) | 1.3326 | 1.3349 | 1.3371 | 1.3392 | 1.3414 |
Measured value (RIU) | 1.33224 | 1.33513 | 1.33753 | 1.33956 | 1.3410 |
Relative error | 0.027% | 0.017% | 0.032% | 0.027% | 0.03% |
Sensor Type | Sensitivity | LOD | Detection Range | Response Time | Expense | Reference |
---|---|---|---|---|---|---|
Aptamer-based colorimetric assay | N.A. (Not applicable) | 1.2 μg/mL | 0.889–20.7 μg/mL | 5 min | moderate | [34] |
Fiber-optic SPR | 2427.68 nm/RIU | 0.22 μg/mL | 0–78.6 μg/mL | 15 min | expensive | [19] |
Magnetic nanoparticles and capillary zone electrophoresis | N.A. | 9.2 μg/mL | 10–150 μg/mL | 10 min | expensive | [35] |
Fiber-optic LSPR | N.A. | 0.024 ng/mL | 0–2.5 μg/mL | N.A. | expensive | [36] |
Tapered-in-tapered fiber | 3266.78 nm/RIU | 0.278 μg/mL | 0–100 μg/mL | 8.5 min | affordable | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Chen, X.; Li, X.; Zhang, J.; Wang, Y.; Li, D.; Hong, X.; Shao, Y.; Chen, Y. Enhanced Sensitivity Mach–Zehnder Interferometer-Based Tapered-in-Tapered Fiber-Optic Biosensor for the Immunoassay of C-Reactive Protein. Biosensors 2025, 15, 90. https://doi.org/10.3390/bios15020090
Xiao L, Chen X, Li X, Zhang J, Wang Y, Li D, Hong X, Shao Y, Chen Y. Enhanced Sensitivity Mach–Zehnder Interferometer-Based Tapered-in-Tapered Fiber-Optic Biosensor for the Immunoassay of C-Reactive Protein. Biosensors. 2025; 15(2):90. https://doi.org/10.3390/bios15020090
Chicago/Turabian StyleXiao, Lei, Xinghong Chen, Xuejin Li, Jinghan Zhang, Yan Wang, Dongqing Li, Xueming Hong, Yonghong Shao, and Yuzhi Chen. 2025. "Enhanced Sensitivity Mach–Zehnder Interferometer-Based Tapered-in-Tapered Fiber-Optic Biosensor for the Immunoassay of C-Reactive Protein" Biosensors 15, no. 2: 90. https://doi.org/10.3390/bios15020090
APA StyleXiao, L., Chen, X., Li, X., Zhang, J., Wang, Y., Li, D., Hong, X., Shao, Y., & Chen, Y. (2025). Enhanced Sensitivity Mach–Zehnder Interferometer-Based Tapered-in-Tapered Fiber-Optic Biosensor for the Immunoassay of C-Reactive Protein. Biosensors, 15(2), 90. https://doi.org/10.3390/bios15020090