Effect of Anisotropy of Reduced Graphene Oxide on Thermal and Electrical Properties in Silicon Carbide Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloor, D.; Cahn, R.W. The Encyclopedia of Advanced Materials; Silicon Carbide; Elsevier Science Ltd.: Cambridge, UK, 1994. [Google Scholar]
- Fan, S.; Zhang, L.; Cheng, L.; Zhang, J.; Yang, S.; Liu, H. Wear mechanism of the C/SiC brake materials. Tribol. Int. 2011, 44, 25–28. [Google Scholar] [CrossRef]
- Medvedovski, E. Ballistic performance of armour ceramics: Influence of design and structure. Part 2. Ceram. Int. 2010, 36, 2117–2127. [Google Scholar] [CrossRef]
- Riedel, R. Handbook of Ceramic Hard Materials; VILEY-VCH Verlag GmbH: Weinheim, Germany, 2000. [Google Scholar]
- Zinkle, S.J. Advanced materials for fusion technology. Fusion Eng. Des. 2005, 74, 31–40. [Google Scholar] [CrossRef]
- Oguntuyi, S.D.; Nyembwe, K.; Shongwe, M.B.; Johnson, O.T.; Adewumi, J.R.; Malatji, N.; Olubambi, P.A. Improvement on the fabrication of SiC materials: Processing, reinforcing phase, fabricating routed, A review. Int. J. Lightweight Mater. Manuf. 2023, 6, 225–237. [Google Scholar] [CrossRef]
- Slack, G.A. Thermal conductivity of pure and impure silicon: Silicon carbide, and diamond. J. Appl. Phys. 1964, 35, 3460–3466. [Google Scholar] [CrossRef]
- Stobierski, L. Ceramika Węglikowa; PTC: Kraków, Poland, 2006. [Google Scholar]
- Zhang, J.; Jiang, D.; Lin, Q.; Chen, Z.; Huang, Z. Gelcasting and pressureless sintering of silicon carbide ceramics using Al2O3–Y2O3 as the sintering additives. J. Eur. Ceram. Soc. 2013, 33, 1695–1699. [Google Scholar] [CrossRef]
- Grande, T.; Sommerset, H.; Hagen, E.; Wiik, K.; Einarsrud, M.A. Effect of weight loss on liquid-phase-sintered silicon carbide. J. Am. Ceram. Soc. 1997, 80, 1047–1052. [Google Scholar] [CrossRef]
- Baud, S.; Thevenot, F.; Chatillon, C. High temperature sintering of SiC with oxide additives: IV. Powder beds and the influence of vaporization on the behaviour of SiC compacts. J. Eur. Ceram. Soc. 2003, 23, 29–36. [Google Scholar] [CrossRef]
- van Rijswijk, W.; Shanefield, D.J. Effects of Carbon as a Sintering Aid in Silicon Carbide. J. Am. Ceram. Soc. 1990, 73, 148–149. [Google Scholar] [CrossRef]
- Petrus, M.; Wozniak, J.; Jastrzębska, A.; Kostecki, M.; Cygan, T.; Olszyna, A. The effect of the morphology of carbon used as a sintering aid on the sinterability of silicon carbide. Ceram. Int. 2018, 44, 7020–7025. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Chen, S.; Moore, A.L.; Cai, W.; Suk, J.W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C.W.; Kang, J.; Shi, L.; et al. Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano 2010, 5, 321. [Google Scholar] [CrossRef]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569. [Google Scholar] [CrossRef]
- Hill, E.W.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J. 2011, 11, 3161–3170. [Google Scholar] [CrossRef]
- Chakrabarty, N.; Chakraborty, A.K.; Kumar, H. Nickel hydroxide nanohexagon based high performance electrode for supercapacitor: A systematic investigation on the influence of six different carbon nanostructures. J. Phys. Chem. C 2019, 123, 29104–29115. [Google Scholar] [CrossRef]
- Wu, J.; Becerril, H.A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263–302. [Google Scholar] [CrossRef]
- Ramjan, A.; Asaduzzaman, M.; Mostafizur, R.; Osman, A.; Saifullah, M.; Masud, R.; Biplov, K. Performance enhancement of lithium-ion battery using modified LiMn2O4 cathode followed by ultrasonic-assisted electrochemically-synthesized graphene. RINENG 2023, 20, 101578. [Google Scholar] [CrossRef]
- Bhattacharjee, U.; Bhowmik, S.; Ghosh, S.; Vangapally, N.; Martha, S.K. Boron-doped graphene anode coupled with microporous activated carbon cathode for lithium-ion ultracapacitors. Chem. Eng. J. 2022, 430, 132835. [Google Scholar] [CrossRef]
- Petrus, M.; Wozniak, J.; Cygan, T.; Kostecki, M.; Cygan, S.; Jaworska, L.; Teklińska, D.; Olszyna, A. Comprehensive study on graphene-based reinforcements in Al2O3–ZrO2 and Al2O3–Ti(C,N) systems and their effect on mechanical and tribological properties. Ceram. Int. 2019, 45, 21742–21750. [Google Scholar] [CrossRef]
- Wozniak, J.; Cygan, T.; Petrus, M.; Cygan, S.; Kostecki, M.; Jaworska, L.; Olszyna, A. Tribological performance of alumina matrix composites reinforced with nickel-coated Graphene. Ceram. Int. 2018, 44, 9728–9732. [Google Scholar] [CrossRef]
- Miranzo, P.; García, E.; Ramírez, C.; González-Julián, J.; Belmonte, M.; Osendi, M.I. Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 2012, 32, 1847–1854. [Google Scholar] [CrossRef]
- Rutkowski, P.; Stobierski, L.; Górny, G. Thermal stability and conductivity of hot-pressed Si3 N4–graphene composites. J. Therm. Anal. Calorim. 2014, 116, 321–328. [Google Scholar] [CrossRef]
- Kostecki, M.; Wozniak, J.; Cygan, T.; Petrus, M.; Cygan, S.; Olszyna, A. Tribological properties of aluminium alloy composites reinforced with multi-layer graphene-the influence of spark plasma texturing process. Materials 2017, 10, 928. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.C.; Huang, J.H.; Li, C.P.; Chang-Jian, C.W.; Lee, K.C.; Hsiao, Y.S.; Huang, J.H. Graphene-based thermoplastic composites and their application for LED thermal management. Carbon 2016, 102, 66–73. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, X.; Shi, Z.; Zhao, C.; Li, Y.; Wang, J.; Qiao, G. Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites. Mater. Sci. Eng. A 2015, 639, 29–36. [Google Scholar] [CrossRef]
- Renteria, J.D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A.I.; Nika, D.L.; Balandin, A.A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 2015, 25, 4664–4672. [Google Scholar] [CrossRef]
- Hanzel, O.; Sedlák, R.; Sedláček, J.; Bizovská, V.; Bystrický, R.; Girman, V.; Kovalčíková, A.; Dusza, J.; Šajgalík, P. Anisotropy of functional properties of SiC composites with GNPs, GO and in-situ formed graphene. J. Eur. Ceram. Soc. 2017, 37, 3731–3739. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.K.; Kumar, A.; Das, B. Influence of Reduced Graphene Oxide Flakes Addition on the Electromagnetic Wave Absorption Performance of Silicon Carbide-Based Wave Absorber. JOM 2024, 76, 486–495. [Google Scholar] [CrossRef]
- Li, A.; Wang, S.; Chen, Z.; Liu, H.; Wang, H. The synergistic effect SiC/R-GO composite on mechanical and tribological properties of thermosetting polyamide. J. Compos. Mater. 2022, 56, 267–278. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Chen, Y.; Gao, J.; Ma, T. Mechanical properties and microstructure of reaction sintering SiC ceramics reinforced with graphene-based fillers. Appl. Phys. A Mater. Sci. Process. 2019, 125, 680. [Google Scholar] [CrossRef]
- Huang, Y.H.; Jiang, D.L.; Chen, Z.M.; Liu, X.J.; Zhang, X.F.; Liao, Z.K.; Huang, Z.R. Fabrication and property of rGO/SiC composite. Inorg. Mater. 2018, 33, 1147–1153. [Google Scholar] [CrossRef]
- Carl, B. Powder Metallurgy Handbook; Ny Research Press: New York, NY, USA, 2015. [Google Scholar]
- Petrus, M.; Wozniak, J.; Cygan, T.; Adamczyk-Cieslak, B.; Kostecki, M.; Olszyna, A. Sintering behaviour of silicon carbide matrix composites reinforced with multilayer Graphene. Ceram. Int. 2017, 43, 5007–5013. [Google Scholar] [CrossRef]
- Ragaru, C.; Lancin, M.; Marhic, C. α ->β Phase Transformation in SiC: Link between Polytypism, Dihedral Angle and Nucleation Mechanism of α Twins. J. Eur. Ceram. Soc. 1999, 19, 2701–2709. [Google Scholar] [CrossRef]
- Zhou, Y.; Hirao, K.; Toriyama, M.; Tanaka, H. Very rapid densification of nanometer silicon carbide powder by pulse electric current sintering. J. Am. Ceram. Soc. 2000, 83, 654–656. [Google Scholar] [CrossRef]
- Khan, A.; Jadhav, A.; Khobragade, J.M.; Kadam, A.V. Extraction of excessively reduced graphene oxide from discarded dry cell batteries by anodic exfoliation method. J. Mater. Sci. Mater. Electron. 2023, 34, 62. [Google Scholar] [CrossRef]
- Mikhaylov, P.A.; Vinogradov, M.I.; Levin, I.S.; Shandryuk, G.A.; Lubenchenko, A.V.; Kulichikhin, V.G. Synthesis and characterization of polyethylene terephthalate-reduced graphene oxide composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 693, 12036. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Fan, Y.; Jiang, W.; Kawasaki, A. Highly Conductive Few-Layer Graphene/Al2O3 Nanocomposites with Tunable Charge Carrier Type. Adv. Funct. Mater. 2012, 22, 3882–3889. [Google Scholar] [CrossRef]
- Lucchese, M.M.; Stavale, F.; Ferreira, E.H.M.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Li, X.; Xu, L.; Cao, X.; Wang, Y.; Wang, Z.; Meng, C.; Zhu, W.; Ouyang, X. Enhancing Toughness in Boron Carbide with Reduced Graphene Oxide. J. Am. Ceram. Soc. 2016, 99, 257–264. [Google Scholar] [CrossRef]
- Liu, D.M.; Lin, B.W. Thermal conductivity in hot-pressed silicon carbide. Ceram. Int. 1996, 22, 407–414. [Google Scholar] [CrossRef]
- Volz, E.; Roosen, A.; Hartung, W.; Winnacker, A. Electrical and thermal conductivity of liquid phase sintered SiC. J. Eur. Ceram. Soc. 2001, 21, 2089–2093. [Google Scholar] [CrossRef]
- Cho, T.Y.; Malik, R.; Kim, Y.W.; Kim, K.J. Electrical and mechanical properties of pressureless sintered SiC-Ti2CN composites. J. Eur. Ceram. Soc. 2018, 38, 3064–3072. [Google Scholar] [CrossRef]
- Liang, H.; Yao, X.; Deng, H.; Zhang, H.; Liu, X.; Huang, Z. High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives. J. Eur. Ceram. Soc. 2015, 35, 399–403. [Google Scholar] [CrossRef]
Powder | APS 1 | Manufacturer |
---|---|---|
Silicon carbide | 0.42 µm | Alfa Aesar (Ward Hill, MA, USA) |
rGO | <40 µm | Łukasiewicz Research Network (Warsaw, Poland) |
Boron | 0.39 µm | International Enzymes Limited (Fareham, UK) |
Carbon | <100 nm | Sigma-Aldrich (Burlington, VT, USA) |
Composites | ||||||||
---|---|---|---|---|---|---|---|---|
Boron [wt.%] | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
rGO [wt.%] | 0.25 | 0.5 | 0.75 | 1 | 1.5 | 2 | 2.5 | 3 |
Reference sample | ||||||||
Boron [wt.%] | 0.3 | |||||||
Carbon black [wt.%] | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broniszewski, K.; Woźniak, J.; Cygan, T.; Kostecki, M.; Moszczyńska, D.; Chmielewski, M.; Dydek, K.; Olszyna, A. Effect of Anisotropy of Reduced Graphene Oxide on Thermal and Electrical Properties in Silicon Carbide Matrix Composites. Nanomaterials 2024, 14, 555. https://doi.org/10.3390/nano14060555
Broniszewski K, Woźniak J, Cygan T, Kostecki M, Moszczyńska D, Chmielewski M, Dydek K, Olszyna A. Effect of Anisotropy of Reduced Graphene Oxide on Thermal and Electrical Properties in Silicon Carbide Matrix Composites. Nanomaterials. 2024; 14(6):555. https://doi.org/10.3390/nano14060555
Chicago/Turabian StyleBroniszewski, Kamil, Jarosław Woźniak, Tomasz Cygan, Marek Kostecki, Dorota Moszczyńska, Marcin Chmielewski, Kamil Dydek, and Andrzej Olszyna. 2024. "Effect of Anisotropy of Reduced Graphene Oxide on Thermal and Electrical Properties in Silicon Carbide Matrix Composites" Nanomaterials 14, no. 6: 555. https://doi.org/10.3390/nano14060555