Evaluating Vegetation Effects on Wave Attenuation and Dune Erosion during Hurricane
Abstract
:1. Introduction
2. Model Descriptions and CD Values Review
2.1. XBeach Surfbeat Model Descriptions
2.2. A Review of CD Determination
3. Model Validation by Comparing to Laboratory Experiments
3.1. Case 1: Laboratory Experiment for Wave-Induced Sand Dune Erosion
3.2. Case 2: Laboratory Experiment for Regular Wave Attenuation over Vegetation
4. XBeach Modeling of Vegetation Effects on Wave Attenuation and Dune Erosion in Mexico Beach, FL
4.1. Model Setup
4.2. Model Simulations under Wave Condition of Hurricane Michael
4.3. Sensitivity Analysis of Vegetation Effects under Regular Wave Condition
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Full Form |
---|---|
XBSB | XBeach surfbeat model |
LiDAR | Light Detection and Ranging |
Vegetation drag coefficient | |
Re | Reynolds number |
KC | Keulegan–Carpenter number |
LW | Low-water test |
HW | High-water test |
LWSB | Simulated results of Low-water test |
HWSB | Simulated results of High-water test |
SWL | Still water level |
BSS | Brier Skill Score |
SSR | Sum of square residuals |
Hs | Significant wave height |
RMSE | Root means square error |
References
- Leonardi, N.; Carnacina, I.; Donatelli, C.; Ganju, N.K.; Plater, A.J.; Schuerch, M.; Temmerman, S. Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology 2018, 301, 92–107. [Google Scholar] [CrossRef]
- Husemann, P.; Romão, F.; Lima, M.; Costas, S.; Coelho, C. Review of the Quantification of Aeolian Sediment Transport in Coastal Areas. J. Mar. Sci. Eng. 2024, 12, 755. [Google Scholar] [CrossRef]
- Saengsupavanich, C. Elevated water level from wind along the Gulf of Thailand. Thalass. Int. J. Mar. Sci. 2017, 33, 179–185. [Google Scholar] [CrossRef]
- Shaw, A.; Hashemi, M.R.; Spaulding, M.; Oakley, B.; Baxter, C. Effect of coastal erosion on storm surge: A case study in the southern coast of Rhode Island. J. Mar. Sci. Eng. 2016, 4, 85. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Tomasicchio, G.R. Wave–dune interaction and beach resilience in large-scale physical model tests. Coast. Eng. 2016, 116, 15–25. [Google Scholar] [CrossRef]
- Neumeier, U.; Ciavola, P. Flow resistance and associated sedimentary processes in a Spartina maritima salt-marsh. J. Coast. Res. 2004, 20, 435–447. [Google Scholar] [CrossRef]
- Nepf, H.M. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 2012, 44, 123–142. [Google Scholar] [CrossRef]
- Maximiliano-Cordova, C.; Silva, R.; Mendoza, E.; Chávez, V.; Martínez, M.L.; Feagin, R.A. Morphological Performance of Vegetated and Non-Vegetated Coastal Dunes with Rocky and Geotextile Tube Cores under Storm Conditions. J. Mar. Sci. Eng. 2023, 11, 2061. [Google Scholar] [CrossRef]
- Mendoza, E.; Odériz, I.; Martínez, M.L.; Silva, R. Measurements and modelling of small scale processes of vegetation preventing dune erosion. J. Coast. Res. 2017, 77, 19–27. [Google Scholar] [CrossRef]
- Türker, U.; Yagci, O.; Kabdasli, M.S. Impact of nearshore vegetation on coastal dune erosion: Assessment through laboratory experiments. Environ. Earth Sci. 2019, 78, 1–14. [Google Scholar] [CrossRef]
- Anderson, M.E.; Smith, J.M.; McKay, S.K. Wave Dissipation by Vegetation; TU Delft: Delft, The Netherlands, 2011. [Google Scholar]
- Unguendoli, S.; Biolchi, L.G.; Aguzzi, M.; Pillai, U.P.A.; Alessandri, J.; Valentini, A. A modeling application of integrated nature based solutions (NBS) for coastal erosion and flooding mitigation in the Emilia-Romagna coastline (Northeast Italy). Sci. Total Environ. 2023, 867, 161357. [Google Scholar] [CrossRef] [PubMed]
- Jacob, B.; Dolch, T.; Wurpts, A.; Staneva, J. Evaluation of seagrass as a nature-based solution for coastal protection in the German Wadden Sea. Ocean Dyn. 2023, 73, 699–727. [Google Scholar] [CrossRef]
- Coops, H.; Geilen, N.; Verheij, H.J.; Boeters, R.; van der Velde, G. Interactions between waves, bank erosion and emergent vegetation: An experimental study in a wave tank. Aquat. Bot. 1996, 53, 187–198. [Google Scholar] [CrossRef]
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Figlus, J.; Sigren, J.M.; Power, M.J.; Armitage, A.R. Physical model experiment investigating interactions between different dune vegetation and morphology changes under wave impact. In Proceedings of the Coastal Dynamics, Helsingør, Denmark, 12–16 June 2017; pp. 470–480. [Google Scholar]
- Ozeren, Y.; Wren, D.; Wu, W. Experimental investigation of wave attenuation through model and live vegetation. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 04014019. [Google Scholar] [CrossRef]
- Blackmar, P.J.; Cox, D.T.; Wu, W.-C. Laboratory observations and numerical simulations of wave height attenuation in heterogeneous vegetation. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 56–65. [Google Scholar] [CrossRef]
- John, B.M.; Shirlal, K.G.; Rao, S. Laboratory investigations of wave attenuation by simulated vegetation of varying densities. ISH J. Hydraul. Eng. 2019, 25, 203–213. [Google Scholar] [CrossRef]
- Koftis, T.; Prinos, P.; Stratigaki, V. Wave damping over artificial Posidonia oceanica meadow: A large-scale experimental study. Coast. Eng. 2013, 73, 71–83. [Google Scholar] [CrossRef]
- Chalmoukis, I.A.; Leftheriotis, G.A.; Dimas, A.A. Large-Eddy Simulation of Wave Attenuation and Breaking on a Beach with Coastal Vegetation Modelled as Porous Medium. J. Mar. Sci. Eng. 2023, 11, 519. [Google Scholar] [CrossRef]
- Holzenthal, E.R.; Hill, D.F.; Wengrove, M.E. Multi-Scale Influence of Flexible Submerged Aquatic Vegetation (SAV) on Estuarine Hydrodynamics. J. Mar. Sci. Eng. 2022, 10, 554. [Google Scholar] [CrossRef]
- Dietrich, J.; Westerink, J.; Kennedy, A.; Smith, J.; Jensen, R.; Zijlema, M.; Holthuijsen, L.; Dawson, C.; Luettich, R.; Powell, M. Hurricane Gustav (2008) waves and storm surge: Hindcast, synoptic analysis, and validation in Southern Louisiana. Mon. Weather Rev. 2011, 139, 2488–2522. [Google Scholar] [CrossRef]
- Bender, C.; Smith, J.M.; Kennedy, A.; Jensen, R. STWAVE simulation of Hurricane Ike: Model results and comparison to data. Coast. Eng. 2013, 73, 58–70. [Google Scholar] [CrossRef]
- Bryant, M.A.; Jensen, R.E. Application of the nearshore wave model STWAVE to the North Atlantic coast comprehensive study. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04017026. [Google Scholar] [CrossRef]
- Lapetina, A.; Sheng, Y.P. Three-dimensional modeling of storm surge and inundation including the effects of coastal vegetation. Estuaries Coasts 2014, 37, 1028–1040. [Google Scholar] [CrossRef]
- Medeiros, S.C. Hydraulic Bottom Friction and Aerodynamic Roughness Coefficients for Mangroves in Southwest Florida, USA. J. Mar. Sci. Eng. 2023, 11, 2053. [Google Scholar] [CrossRef]
- Baron-Hyppolite, C.; Lashley, C.H.; Garzon, J.; Miesse, T.; Ferreira, C.; Bricker, J.D. Comparison of implicit and explicit vegetation representations in SWAN hindcasting wave dissipation by coastal wetlands in Chesapeake Bay. Geosciences 2018, 9, 8. [Google Scholar] [CrossRef]
- Abdolali, A.; Hesser, T.J.; Anderson Bryant, M.; Roland, A.; Khalid, A.; Smith, J.; Ferreira, C.; Mehra, A.; Sikiric, M.D. Wave attenuation by vegetation: Model implementation and validation study. Front. Built Environ. 2022, 8, 891612. [Google Scholar] [CrossRef]
- Booij, N.; Holthuijsen, L.; Ris, R. The “SWAN” wave model for shallow water. In Coastal Engineering 1996; ASCE Library: Reston, VA, USA, 1996; pp. 668–676. [Google Scholar]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; Van Thiel de Vries, J.; Lescinski, J.; McCall, R. XBeach model description and manual. Unesco-IHE Inst. Water Educ. Deltares Delft Univ. Tecnhol. Rep. June 2010, 21, 2010. [Google Scholar]
- Musumeci, R.E.; Marino, M.; Cavallaro, L.; Foti, E. Does Coastal Wetland Restoration Work as a Climate Change Adaptation Strategy? The Case of the South-East of Sicily Coast. Coast. Eng. Proc. 2022, 37, 66. [Google Scholar] [CrossRef]
- Sigren, J.M.; Figlus, J.; Highfield, W.; Feagin, R.A.; Armitage, A.R. The effects of coastal dune volume and vegetation on storm-induced property damage: Analysis from Hurricane Ike. J. Coast. Res. 2018, 34, 164–173. [Google Scholar] [CrossRef]
- Anderson, M.E.; Smith, J. Wave attenuation by flexible, idealized salt marsh vegetation. Coast. Eng. 2014, 83, 82–92. [Google Scholar] [CrossRef]
- Garzon, J.L.; Maza, M.; Ferreira, C.; Lara, J.; Losada, I. Wave attenuation by Spartina saltmarshes in the Chesapeake Bay under storm surge conditions. J. Geophys. Res. Ocean. 2019, 124, 5220–5243. [Google Scholar] [CrossRef]
- Jin, H.; Do, K.; Kim, I.; Chang, S. Sensitivity analysis of event-specific calibration data and its application to modeling of subaerial storm erosion under complex bathymetry. J. Mar. Sci. Eng. 2022, 10, 1389. [Google Scholar] [CrossRef]
- Hwang, B.; Do, K.; Chang, S. Morphological Changes in Storm Hinnamnor and the Numerical Modeling of Overwash. J. Mar. Sci. Eng. 2024, 12, 196. [Google Scholar] [CrossRef]
- Costa, G.P.; Marino, M.; Cáceres, I.; Musumeci, R.E. Effectiveness of Dune Reconstruction and Beach Nourishment to Mitigate Coastal Erosion of the Ebro Delta (Spain). J. Mar. Sci. Eng. 2023, 11, 1908. [Google Scholar] [CrossRef]
- Sánchez-Artús, X.; Subbiah, B.; Gracia, V.; Espino, M.; Grifoll, M.; Espanya, A.; Sánchez-Arcilla, A. Evaluating barrier beach protection with numerical modelling. A practical case. Coast. Eng. 2024, 191, 104522. [Google Scholar] [CrossRef]
- Mendez, F.J.; Losada, I.J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Eng. 2004, 51, 103–118. [Google Scholar] [CrossRef]
- Suzuki, T.; Zijlema, M.; Burger, B.; Meijer, M.C.; Narayan, S. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 2012, 59, 64–71. [Google Scholar] [CrossRef]
- Henry, P.-Y.; Myrhaug, D.; Aberle, J. Drag forces on aquatic plants in nonlinear random waves plus current. Estuar. Coast. Shelf Sci. 2015, 165, 10–24. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, B.; Tan, C.; Cheng, X. A study on the drag coefficient in wave attenuation by vegetation. Hydrol. Earth Syst. Sci. 2021, 25, 4825–4834. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Z.; Liu, Y. Experimental investigation of wave attenuation and bulk drag coefficient in mangrove forest with complex root morphology. Appl. Ocean Res. 2022, 118, 102974. [Google Scholar] [CrossRef]
- Zhang, W.; Ge, Z.-M.; Li, S.-H.; Tan, L.-S.; Zhou, K.; Li, Y.-L.; Xie, L.-N.; Dai, Z.-J. The role of seasonal vegetation properties in determining the wave attenuation capacity of coastal marshes: Implications for building natural defenses. Ecol. Eng. 2022, 175, 106494. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, P.; Gong, Z.; Li, B.; Chen, X. Wave attenuation by Spartina alterniflora under macro-tidal and storm surge conditions. Wetlands 2020, 40, 2151–2162. [Google Scholar] [CrossRef]
- Ding, Y.; Rosati, J.D.; Johnson, B.D.; Chen, Q.J.; Zhu, L. Implementation of Flexible Vegetation into CSHORE for Modeling Wave Attenuation; ERDC-Library: Vicksburg, MS, USA, 2022. [Google Scholar] [CrossRef]
- Wang, H.; Yin, Z.; Luan, Y.; Wang, Y.; Liu, D. Hydrodynamic characteristics of idealized flexible vegetation under regular waves: Experimental investigations and analysis. J. Coast. Res. 2022, 38, 673–680. [Google Scholar] [CrossRef]
- Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 2011, 58, 992–1012. [Google Scholar] [CrossRef]
- Kothyari, U.C.; Hayashi, K.; Hashimoto, H. Drag coefficient of unsubmerged rigid vegetation stems in open channel flows. J. Hydraul. Res. 2009, 47, 691–699. [Google Scholar] [CrossRef]
- Liu, X.-g.; Zeng, Y.-h. Drag coefficient for rigid vegetation in subcritical open channel. Procedia Eng. 2016, 154, 1124–1131. [Google Scholar] [CrossRef]
- Hu, Z.; Suzuki, T.; Zitman, T.; Uittewaal, W.; Stive, M. Laboratory study on wave dissipation by vegetation in combined current–wave flow. Coast. Eng. 2014, 88, 131–142. [Google Scholar] [CrossRef]
- Van Rooijen, A.; McCall, R.; Van Thiel de Vries, J.; Van Dongeren, A.; Reniers, A.; Roelvink, J. Modeling the effect of wave-vegetation interaction on wave setup. J. Geophys. Res. Ocean. 2016, 121, 4341–4359. [Google Scholar] [CrossRef]
- Etminan, V.; Lowe, R.J.; Ghisalberti, M. A new model for predicting the drag exerted by vegetation canopies. Water Resour. Res. 2017, 53, 3179–3196. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Yin, Z.; Jiang, X.; Yang, G. Numerical simulation of wave propagation through rigid vegetation and a predictive model of drag coefficient using an artificial neural network. Ocean Eng. 2023, 281, 114792. [Google Scholar] [CrossRef]
- Ahmed, A.; Valyrakis, M.; Ghumman, A.R.; Farooq, R.; Pasha, G.A.; Janjua, S.; Raza, A. Experimental and Artificial Neural Network (ANN) modeling of instream vegetation hydrodynamic resistance. Hydrology 2023, 10, 73. [Google Scholar] [CrossRef]
- Houser, C.; Trimble, S.; Morales, B. Influence of blade flexibility on the drag coefficient of aquatic vegetation. Estuaries Coasts 2015, 38, 569–577. [Google Scholar] [CrossRef]
- Luhar, M.; Infantes, E.; Nepf, H. Seagrass blade motion under waves and its impact on wave decay. J. Geophys. Res. Ocean. 2017, 122, 3736–3752. [Google Scholar] [CrossRef]
- Augustin, L.N.; Irish, J.L.; Lynett, P. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Eng. 2009, 56, 332–340. [Google Scholar] [CrossRef]
- Riffe, K.C.; Henderson, S.M.; Mullarney, J.C. Wave dissipation by flexible vegetation. Geophys. Res. Lett. 2011, 38, L18607. [Google Scholar] [CrossRef]
- Kobayashi, N.; Raichle, A.W.; Asano, T. Wave attenuation by vegetation. J. Waterw. Port Coast. Ocean Eng. 1993, 119, 30–48. [Google Scholar] [CrossRef]
- Sánchez-González, J.F.; Sánchez-Rojas, V.; Memos, C.D. Wave attenuation due to Posidonia oceanica meadows. J. Hydraul. Res. 2011, 49, 503–514. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Gong, S.; Chen, J.; Wang, Y.; Li, M. Modeling wave attenuation by submerged flexible vegetation with XBeach phase-averaged model. Ocean Eng. 2022, 257, 111646. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Huang, W.; Liu, S.; Li, M. Numerical investigation of wave attenuation by coupled flexible vegetation dynamic model and XBeach wave model. Ocean Eng. 2021, 235, 109357. [Google Scholar] [CrossRef]
- Chen, H.; Ni, Y.; Li, Y.; Liu, F.; Ou, S.; Su, M.; Peng, Y.; Hu, Z.; Uijttewaal, W.; Suzuki, T. Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods. Adv. Water Resour. 2018, 122, 217–227. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Z.; Liu, Y. Predicting the bulk drag coefficient of flexible vegetation in wave flows based on a genetic programming algorithm. Ocean Eng. 2021, 223, 108694. [Google Scholar] [CrossRef]
- Tang, H.; Tian, Z.; Yan, J.; Yuan, S. Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation. Adv. Water Resour. 2014, 69, 134–145. [Google Scholar] [CrossRef]
- Liu, S.; Xu, S.; Yin, K. Optimization of the drag coefficient in wave attenuation by submerged rigid and flexible vegetation based on experimental and numerical studies. Ocean Eng. 2023, 285, 115382. [Google Scholar] [CrossRef]
- Wang, W.-J.; Huai, W.-X.; Thompson, S.; Peng, W.-Q.; Katul, G.G. Drag coefficient estimation using flume experiments in shallow non-uniform water flow within emergent vegetation during rainfall. Ecol. Indic. 2018, 92, 367–378. [Google Scholar] [CrossRef]
- D’Ippolito, A.; Lauria, A.; Alfonsi, G.; Calomino, F. Investigation of flow resistance exerted by rigid emergent vegetation in open channel. Acta Geophys. 2019, 67, 971–986. [Google Scholar] [CrossRef]
- Yang, T.-Y.; Chan, I.-C. Drag Force Modeling of Surface Wave Dissipation by a Vegetation Field. Water 2020, 12, 2513. [Google Scholar] [CrossRef]
- Sohrabi, S.; Afzalimehr, H.; Singh, V.P. Estimation of drag coefficient of emergent and submerged vegetation patches with various densities and arrangements in open channel flow. ISH J. Hydraul. Eng. 2023, 29, 297–307. [Google Scholar] [CrossRef]
- Van Rooijen, A.; Van Thiel de Vries, J.; McCall, R.; Van Dongeren, A.; Roelvink, J.; Reniers, A. Modeling of wave attenuation by vegetation with XBeach. In Proceedings of the E-Proceedings 36th IAHR World Congress, The Hague, The Netherland, 28 June–3 July 2015; pp. 1–7. [Google Scholar]
- Méndez, F.J.; Losada, I.J.; Losada, M.A. Hydrodynamics induced by wind waves in a vegetation field. J. Geophys. Res. Ocean. 1999, 104, 18383–18396. [Google Scholar] [CrossRef]
- Wu, W.-C.; Ma, G.; Cox, D.T. Modeling wave attenuation induced by the vertical density variations of vegetation. Coast. Eng. 2016, 112, 17–27. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Z.; Liu, Y. Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model. Adv. Water Resour. 2020, 146, 103755. [Google Scholar] [CrossRef]
- Kelty, K.; Tomiczek, T.; Cox, D.T.; Lomonaco, P.; Mitchell, W. Prototype-scale physical model of wave attenuation through a mangrove forest of moderate cross-shore thickness: Lidar-based characterization and Reynolds scaling for engineering with nature. Front. Mar. Sci. 2022, 8, 780946. [Google Scholar] [CrossRef]
- van Veelen, T.J.; Karunarathna, H.; Reeve, D.E. Modelling wave attenuation by quasi-flexible coastal vegetation. Coast. Eng. 2021, 164, 103820. [Google Scholar] [CrossRef]
- Maza, M.; Lara, J.L.; Losada, I.J. A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations. Coast. Eng. 2013, 80, 16–34. [Google Scholar] [CrossRef]
- Losada, I.J.; Maza, M.; Lara, J.L. A new formulation for vegetation-induced damping under combined waves and currents. Coast. Eng. 2016, 107, 1–13. [Google Scholar] [CrossRef]
- Yin, K.; Lin, M.; Xu, S.; Hao, J.; Mao, L.; Li, M. Numerical investigation of submerged flexible vegetation dynamics and wave attenuation under combined waves and following currents. Ocean Eng. 2023, 278, 114437. [Google Scholar] [CrossRef]
- Reis, R.A.; Fortes, C.J.; Rodrigues, J.A.; Hu, Z.; Suzuki, T. Experimental study on drag coefficient of flexible vegetation under non-breaking waves. Ocean Eng. 2024, 296, 117002. [Google Scholar] [CrossRef]
- Berard, N.A.; Mulligan, R.P.; da Silva, A.M.F.; Dibajnia, M. Evaluation of XBeach performance for the erosion of a laboratory sand dune. Coast. Eng. 2017, 125, 70–80. [Google Scholar] [CrossRef]
- van Rijn, L.C.; Walstra, D.J.; Grasmeijer, B.; Sutherland, J.; Pan, S.; Sierra, J. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coast. Eng. 2003, 47, 295–327. [Google Scholar] [CrossRef]
- NOAA. Digital Coast: Data Access Viewer. Available online: https://coast.noaa.gov/dataviewer/#/lidar/search/-9507789.843104137,3495380.7300894624,-9506600.926338501,3496285.0420898707 (accessed on 10 January 2024).
- Ma, M.; Huang, W.; Jung, S.; Xu, S.; Vijayan, L. Modeling hurricane wave propagation and attenuation after overtopping sand dunes during storm surge. Ocean Eng. 2024, 292, 116590. [Google Scholar] [CrossRef]
- Sierra, J.P.; Gracia, V.; Castell, X.; García-León, M.; Mösso, C.; Lin-Ye, J. Potential of transplanted seagrass meadows on wave attenuation in a fetch-limited environment. J. Mar. Sci. Eng. 2023, 11, 1186. [Google Scholar] [CrossRef]
- Chen, W.; Staneva, J.; Jacob, B.; Sánchez-Artús, X.; Wurpts, A. What-if nature-based storm buffers on mitigating coastal erosion. Sci. Total Environ. 2024, 928, 172247. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Hu, Z.; Kumada, K.; Phan, L.K.; Zijlema, M. Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields. Coast. Eng. 2019, 149, 49–64. [Google Scholar] [CrossRef]
- Setyawan, W.B. Adaptation strategy to coastal erosion by rural communities: Lessons learned from Ujunggebang village, Indramayu, West Java, Indonesia. Marit. Technol. Res. 2022, 4, 252846. [Google Scholar] [CrossRef]
Reference | Vegetation | Wave | Method | Re or KC Range | Formula |
---|---|---|---|---|---|
Hu et al. (2014) [52] | Rigid | R | Directed measurement | (300, 4700) | |
ROOIJEN et al. (2015) [73] | Rigid | I | Calibration | / | / |
Mendez et al. (1999) [74] | Rigid | R | Calibration | (200, 15,500) | |
Chen et al. (2018) [65] | Rigid | R | Calibration | (4, 120) | |
Wu et al. (2016) [75] | Rigid | I | Calibration | / | / |
Wang et al. (2020) [76] | Rigid | S | Directed measurement | (532, 8048) | |
Kelty et al. (2022) [77] | Rigid | I | Calibration | (4900, 190,000) | |
Veelen et al. (2021) [78] | quasi-flexible | R | Calibration | (570,1500) | |
Kobayashi et al. (1993) [61] | flexible | / | Calibration | (2200, 18,000) | |
Maza et al. (2013) [79] | flexible | R | Calibration | (2000, 7000) | |
Anderson and Smith (2014) [34] | flexible | I | Calibration | (533, 2296) | |
Losada et al. (2016) [80] | flexible | R | Calibration | (4000, 160,000) | |
I | Calibration | (20,000, 60,000) | |||
Yin et al. (2022) [63] | flexible | R | Calibration | (0, 500) | |
Yin et al. (2023) [81] | flexible | R | Calibration | (28, 108) | |
Liu et al. (2023) [68] | flexible | R | Calibration | (75, 230) | |
Garzon et al. (2019) [35] | flexible | / | Calibration | (100, 6000) | |
Reis et al. (2024) [82] | flexible | R | Directed measurement | (22, 60) |
Parameter | Meaning | Value | Berard’s Study Value |
---|---|---|---|
wetslp | Critical wet slope for underwater avalanching | 0.15 | 0.3 |
responseangle | Angle of repose affecting dune steepness | 25 degree | 30 degree |
hswitch | Switch depth from wet to dry avalanche | 0.005 m | 0.005 m |
form | Sediment transport formulation | vanthiel_vanrijn | vanthiel_vanrijn or soulsby_vanrijn |
eps | Threshold water depth for cell inundation | 0.09 | 0.09 or 0.02 |
Case No. | Hs (m) | SWL (m) | T (s) | RMSE (m) | |
---|---|---|---|---|---|
1 | 0.08 | 0.35 | 1.4 | 0.8 | 0.0025 |
2 | 0.08 | 0.4 | 1.4 | 0.8 | 0.0013 |
3 | 0.12 | 0.5 | 1.6 | 1.47 | 0.0055 |
Case No. | Parameter | |||
---|---|---|---|---|
N (Units/m2) | bv (m) | ah (m) | ||
1 | / | / | / | / |
2 | 0.8 | 200 | 0.005 | 0.7 |
3 | 1.47 | 200 | 0.005 | 0.7 |
Case No. | Density N (Units/m2) |
---|---|
case 4 | No vegetation |
case 5 | 200 |
case 6 | 500 |
case 7 | 800 |
case 8 | 1200 |
Distance | Significant Wave Height (m) | ||||
---|---|---|---|---|---|
No veg | N = 200 (Units/m2) | N = 500 (Units/m2) | N = 800 (Units/m2) | N = 1200 (Units/m2) | |
x = 218 (m) | 1.74 | 1.72 | 1.72 | 1.72 | 1.72 |
x = 228 (m) | 1.66 | 0.90 | 0.40 | 0.28 | 0.30 |
Reduction (m) | 0.08 | 0.82 | 1.32 | 1.44 | 1.42 |
Rate (%) | 0 | 47.73 | 76.92 | 83.88 | 82.67 |
Rate (%) | 0 | 47.73 | 29.19 | 6.96 | −1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Huang, W.; Jung, S.; Oslon, C.; Yin, K.; Xu, S. Evaluating Vegetation Effects on Wave Attenuation and Dune Erosion during Hurricane. J. Mar. Sci. Eng. 2024, 12, 1326. https://doi.org/10.3390/jmse12081326
Ma M, Huang W, Jung S, Oslon C, Yin K, Xu S. Evaluating Vegetation Effects on Wave Attenuation and Dune Erosion during Hurricane. Journal of Marine Science and Engineering. 2024; 12(8):1326. https://doi.org/10.3390/jmse12081326
Chicago/Turabian StyleMa, Mengdi, Wenrui Huang, Sungmoon Jung, Christopher Oslon, Kai Yin, and Sudong Xu. 2024. "Evaluating Vegetation Effects on Wave Attenuation and Dune Erosion during Hurricane" Journal of Marine Science and Engineering 12, no. 8: 1326. https://doi.org/10.3390/jmse12081326