Distribution of Trachelospermum jasminoides Under the Influence of Different Environmental Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Distribution Data for T. jasminoides
2.2. Selection and Processing of Environmental Variables
2.3. Model Construction and Evaluation
2.4. Data Processing
3. Results
3.1. Model Accuracy Evaluation and Analysis of Key Environmental Factors
3.2. Potential Suitable Distribution Areas of T. jasminoides Under Current Climate Conditions
3.3. Future Climate Potential Suitable Distribution Areas of T. jasminoides
3.4. Migration Patterns of T. jasminoides Centroid Under Various Climate Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Song, H.; Tan, J.; Ma, R.; Kennelly, J.; Tan, Q. Anti-inflammatory constituents from Caulis trachelospermi. Planta Medica 2022, 88, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Tsiang, Y.; Li, P.T. (Eds.) Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1977; Volume 63, p. 216. ISBN 9787030481740. [Google Scholar]
- Choi, J.N.; Choi, Y.; Lee, J. Anti-inflammatory effects of β-sitosterol-β-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat. Prod. Res. 2012, 26, 2340–2343. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Yan, W.; Kong, B. The extract of Trachelospermum jasminoides (Lindl.) Lem. vines inhibits osteoclast differentiation through the NF-κB, MAPK and AKT signaling pathways. Biomed. Pharmacother. 2020, 129, 110341. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, J.; Ruan, B. Trachelogenin alleviates osteoarthritis by inhibiting osteoclastogenesis and enhancing chondrocyte survival. Chin. Med. 2024, 19, 37. [Google Scholar] [CrossRef]
- Zhao, Z.; He, X.; Zhao, Y. Phytochemistry, Pharmacology and Traditional Uses of Plants from the Genus Trachelospermum L. Molecules 2017, 22, 1406. [Google Scholar] [CrossRef]
- Cong, L.; Han, D. Ecological characteristics of high quality wild ornamental plants in South China. Isr. J. Ecol. Evol. 2020, 67, 98–105. [Google Scholar] [CrossRef]
- Abanto-Bazán, R.A.; Dávila-Pórcel, R.A.; Suárez-Vázquez, S.I. Characterization of particulate matter deposition on leaves of six native plant species in a green infrastructure system in the city of Monterrey, México. Int. J. Environ. Sci. Technol. 2024, 21, 3129–3140. [Google Scholar] [CrossRef]
- Gedik, G. Extraction of new natural cellulosic fiber from Trachelospermum jasminoides (star jasmine) and its characterization for textile and composite uses. Cellulose 2021, 28, 6899–6915. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; van der Heijden, G.; Mascaro, J. Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 2014, 95, 3008–3017. [Google Scholar] [CrossRef]
- Pasquini, S.C.; Wright, S.J.; Santiago, L.S. Lianas always outperform tree seedlings regardless of soil nutrients: Results from a long-term fertilization experiment. Ecology 2015, 96, 1866–1876. [Google Scholar] [CrossRef]
- Briscoe, N.J.; Morris, S.D.; Mathewson, P.D. Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology. Glob. Change Biol. 2023, 29, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.L. Climate Change 2007—Impacts, Adaptation and Vulnerability; Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4, ISBN 0521880106. [Google Scholar]
- Zhan, P.; Wang, F.; Xia, P.; Zhao, G.; Wei, M.; Wei, F.; Han, R. Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Ind. Crops Prod. 2022, 176, 114416. [Google Scholar] [CrossRef]
- Brummitt, N.A.; Bachman, S.P. Plants Under Pressure—A Global Assessment: The First Report of the IUCN Sampled Red List Index for Plants; KEW Royal Botanic Gardens: London, UK, 2010. [Google Scholar]
- Wang, Y.; Pineda-Munoz, S.; McGuire, J.L. Plants maintain climate fidelity in the face of dynamic climate change. Proc. Natl. Acad. Sci. USA 2023, 120, e2201946119. [Google Scholar] [CrossRef] [PubMed]
- Ash, J.D.; Givnish, T.J.; Waller, D.M. Tracking lags in historical plant species’ shifts in relation to regional climate change. Glob. Change Biol. 2017, 23, 1305–1315. [Google Scholar] [CrossRef]
- Urban, M.C.; Bocedi, G.; Hendry, A.P. Improving the forecast for biodiversity under climate change. Science 2016, 353, aad8466. [Google Scholar] [CrossRef]
- Heng, S.; Li, N.; Yang, Q. Effects of environment and human activities on rice planting suitability based on MaxEnt model. Int. J. Biometeorol. 2024, 68, 2413–2429. [Google Scholar] [CrossRef]
- Haase, C.G.; Yang, A.; McNyset, K.M. GARPTools: R software for data preparation and model evaluation of GARP models. Ecography 2021, 44, 1790–1796. [Google Scholar] [CrossRef]
- Wei, Y.; Xian, X.; Zhao, H. Projection of the Potential Global Geographic Distribution of the Solanum Fruit Fly Bactrocera latifrons (Hendel, 1912) (Diptera: Tephritidae) Based on CLIMEX Models. Horticulturae 2024, 10, 977. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Longares, L.A.; Cámara, R. bioclim: An R package for bioclimatic classifications via adaptive water balance. Ecol. Inform. 2022, 71, 101810. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Chala, D.; Kufa, C.A. Potential changes in the extent of suitable habitats for geladas (Theropithecus gelada) in the Anthropocene. BMC Ecol. Evol. 2023, 23, 65. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Li, Y.; Shao, W.; Huang, S. Prediction of Suitable Habitats for Sapindus delavayi Based on the MaxEnt Model. Forests 2022, 13, 1611. [Google Scholar] [CrossRef]
- Yang, G.; Liu, N.; Zhang, X. Prediction of the potential distribution of Chimonobambusa utilis (Poaceae, Bambusoideae) in China, based on the MaxEnt model. Biodivers. Data J. 2024, 12, e126620. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chen, X.; Yang, H. Predicting Suitable Habitat for China’s Endangered Plant: Cycas Segmentifida Using Maxent Under Climate Change. Pak. J. Bot. 2024, 56, 1881–1888. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Y.; Han, M. Using MaxEnt Model to Predict the Potential Distribution of Three Potentially Invasive Scarab Beetles in China. Insects 2023, 14, 239. [Google Scholar] [CrossRef]
- Feng, J.; Cao, Y.; Manda, T. Effects of Environment Change Scenarios on the Potential Geographical Distribution of Cunninghamia lanceolata (Lamb.) Hook. in China. Forests 2024, 15, 830. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Zhou, X. Prediction of the potentially suitable areas of Leonurus japonicus in China based on future climate change using the optimized MaxEnt model. Ecol. Evol. 2023, 13, e10597. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A. Data Descriptor: Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 2016, 3, 160067. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Z.; Chen, W. Major declines of woody plant species ranges under climate change in Yunnan, China. Divers. Distrib. 2014, 20, 405–415. [Google Scholar] [CrossRef]
- Lu, S.F.; Chen, Y.H.; Zhou, S.Y. Responses of Pinus species to climate change in southwestern China. J. For. Environ. 2020, 40, 466–477. [Google Scholar]
- Wan, G.-Z.; Wang, L.; Jin, L. Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model. Ind. Crops Prod. 2021, 170, 113783. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Li, R. AHP-GIS and MaxEnt for delineation of potential distribution of Arabica coffee plantation under future climate in Yunnan, China. Ecol. Indic. 2021, 132, 108339. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Zhang, F.; Liang, F.; Wu, K. The potential habitat of Angelica dahurica in China under climate change scenario predicted by Maxent model. Front. Plant Sci. 2024, 15, 1388099. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Shi, J. Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China. J. Geogr. Sci. 2010, 20, 163–176. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, W.; Du, Y. Effects of temperature, precipitation, and CO2 on plant phenology in China: A circular regression approach. Forests 2023, 14, 1844. [Google Scholar] [CrossRef]
- Jiang, R.F.; Liu, Y.H. Effects of soil matrix and moisture on the growth of Davidia involucrata seedlings. J. Northwest Univ. 2016, 31, 134–139. [Google Scholar]
- Wang, T.; Li, W.; Cui, H. Predicting the Potential Habitat Distribution of Relict Plant Davidia involucrata in China Based on the MaxEnt Model. Forests 2024, 15, 272. [Google Scholar] [CrossRef]
- Xu, W.; Svenning, J.; Chen, G. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26674–26681. [Google Scholar] [CrossRef]
- Kim, J.B.; Bae, D.H. The impacts of global warming on climate zone changes over Asia based on CMIP6 projections. Earth Space Sci. 2021, 8, e2021EA001701. [Google Scholar] [CrossRef]
- Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 1995, 10, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, K.; Yang, H. Characterizing basin-scale precipitation gradients in the Third Pole region and associated determinants. Hydrol. Earth Syst. Sci. Discuss. 2022, 2022, 4587–4601. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, L.; Zhang, J. Maxent modeling for predicting the potential geographical distribution of Castanopsis carlesii under various climate change scenarios in China. Forests 2023, 14, 1397. [Google Scholar] [CrossRef]
- Li, Y.; Yan, D.; Peng, H. Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmos. Res. 2021, 253, 105406. [Google Scholar] [CrossRef]
- Teng, J.; Li, H.; Lu, S.F.; Yin, X.J.; Li, G.; Chen, Z.; Wamg, Y. Responses of Cold-Temperate Coniferous Forest to Climate Change in Southwestern China. J. Northwest For. Univ. 2023, 38, 33–44. [Google Scholar]
- Luo, J.; Chen, Y.; Wu, Y. Suitability and Structural Optimization of Vegetation Restoration on the Loess Plateau: A MaxEnt Model-Based Study of Environmental and Anthropogenic Impacts. Forests 2024, 15, 1528. [Google Scholar] [CrossRef]
Abbreviation | Environmental Variables | Unit |
---|---|---|
Bio03 | Isothermality (BIO2/BIO7) (×100) | - |
Bio04 | Temperature seasonality (standard deviation × 100) | - |
Bio09 | Mean temperature of driest quarter | ℃ |
Bio10 | Mean temperature of warmest quarter | ℃ |
Bio15 | Precipitation seasonality (Coefficient of variation) | - |
Bio18 | Precipitation of warmest quarter | mm |
Bio19 | Precipitation of coldest quarter | mm |
Ref_depth | Reference depth | cm |
alt | Altitude (elevation above sea level) (m) | m |
USDA | United States Department of Agriculture | - |
PH | Soil potential of hydrogen | - |
OC | Organic Carbon | g/kg |
t-stand | Temperature standardized | - |
UV-B3 | Ultraviolet B radiation (280–315 nm) | W/m2 |
hf | Human footprint index | - |
Variable | Full Name of the Variable | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|---|
Bio19 | Precipitation of coldest quarter | 55.3 | 63.3 |
hf | Human footprint index | 10.5 | 3.3 |
Bio04 | Temperature seasonality (standard deviation × 100) | 9.8 | 4.6 |
Bio03 | Isothermality (bio2/bio7) (× 100) | 5.5 | 0.2 |
Bio18 | Precipitation of warmest quarter | 4.8 | 2.7 |
Bio10 | Mean temperature of warmest quarter | 3.6 | 0.6 |
UV-B3 | Ultraviolet B radiation (280–315 nm) | 3.1 | 0.3 |
Ref_depth | Reference depth | 2.9 | 0.4 |
Bio15 | Precipitation seasonality (Coefficient of variation) | 1.5 | 5.5 |
Bio09 | Mean temperature of driest quarter | 1.4 | 0 |
alt | Altitude (elevation above sea level) (m) | 1 | 18.9 |
OC | Organic Carbon | 0.2 | 0.1 |
USDA | United States Department of Agriculture | 0.2 | 0.1 |
PH | Soil potential of hydrogen | 0.2 | 0.1 |
t-stand | Temperature standardized | 0.2 | 0.1 |
Scenarios | Decade | Total Suitable Regions | Regions of Low Habitat Suitability | Regions of Medium Habitat Suitability | Regions of High Habitat Suitability | ||||
---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Area Change (%) | Area (104 km2) | Area Change (%) | Area (104 km2) | Area Change (%) | Area (104 km2) | Area Change (%) | ||
- | Current | 135.07 | - | 119.30 | - | 11.32 | - | 4.45 | - |
SSP1-2.6 | 2050s | 139.55 | 3.32% | 122.69 | 2.84% | 12.10 | 6.45% | 4.76 | 6.97% |
2090s | 148.61 | 9.57% | 130.73 | 9.58% | 13.27 | 17.23% | 4.61 | 3.60% | |
SSP2-4.5 | 2050s | 139.59 | 3.35% | 122.82 | 2.95% | 11.97 | 5.74% | 4.80 | 7.87% |
2090s | 134.58 | −0.36% | 118.47 | −0.70% | 11.88 | 4.95% | 4.23 | −4.94% | |
SSP5-8.5 | 2050s | 187.02 | 38.46% | 150.72 | 26.34% | 30.35 | 168.11% | 5.95 | 33.71% |
2090s | 135.62 | 0.41% | 118.19 | −0.93% | 12.40 | 9.54% | 5.03 | 13.03% |
Abbreviation | Climate Variables | Percent Contribution (%) | Permutation Importance (%) | Unit |
---|---|---|---|---|
Bio01 | Annual mean temperature | 1.3 | 0.1 | ℃ |
Bio02 | Mean diurnal temperature range | 1 | 1 | ℃ |
Bio03 | Isothermality | 2.4 | 0 | - |
Bio04 | Temperature seasonality (standard deviation × 100) | 2.2 | 0.8 | - |
Bio05 | Max temperature of warmest month | 1.4 | 0 | ℃ |
Bio06 | Min temperature of coldest month | 0.1 | 0.2 | ℃ |
Bio07 | Temperature annual range | 1.1 | 2.3 | ℃ |
Bio08 | Mean temperature of wettest quarter | 1.8 | 7.7 | ℃ |
Bio09 | Mean temperature of driest quarter | 3.6 | 0 | ℃ |
Bio10 | Mean temperature of warmest quarter | 4.7 | 0.4 | ℃ |
Bio11 | Mean temperature of coldest quarter | 1.4 | 0 | ℃ |
Bio12 | Annual precipitation | 0.4 | 1.5 | mm |
Bio13 | Precipitation of wettest month | 3.6 | 2.2 | mm |
Bio14 | Precipitation of driest month | 1.3 | 1 | mm |
Bio15 | Precipitation seasonality | 2 | 7.7 | - |
Bio16 | Precipitation of wettest quarter | 2.6 | 2.4 | mm |
Bio17 | Precipitation of driest quarter | 1.1 | 1.3 | mm |
Bio18 | Precipitation of warmest quarter | 14.1 | 0.6 | mm |
Bio19 | Precipitation of coldest quarter | 53.9 | 70.6 | mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhuo, Z.; He, Z.; Liu, Q.; Deng, X.; Xu, D. Distribution of Trachelospermum jasminoides Under the Influence of Different Environmental Factors. Agriculture 2025, 15, 285. https://doi.org/10.3390/agriculture15030285
Yu H, Zhuo Z, He Z, Liu Q, Deng X, Xu D. Distribution of Trachelospermum jasminoides Under the Influence of Different Environmental Factors. Agriculture. 2025; 15(3):285. https://doi.org/10.3390/agriculture15030285
Chicago/Turabian StyleYu, Huan, Zhihang Zhuo, Zhipeng He, Quanwei Liu, Xinqi Deng, and Danping Xu. 2025. "Distribution of Trachelospermum jasminoides Under the Influence of Different Environmental Factors" Agriculture 15, no. 3: 285. https://doi.org/10.3390/agriculture15030285
APA StyleYu, H., Zhuo, Z., He, Z., Liu, Q., Deng, X., & Xu, D. (2025). Distribution of Trachelospermum jasminoides Under the Influence of Different Environmental Factors. Agriculture, 15(3), 285. https://doi.org/10.3390/agriculture15030285