Critical Care Ultrasound in Shock: A Comprehensive Review of Ultrasound Protocol for Hemodynamic Assessment in the Intensive Care Unit
Abstract
:1. Introduction
2. Hemodynamic Profiles
3. Low Cardiac Index Shock
3.1. Obstructive Shock
3.1.1. Identifying Pulmonary Embolism
3.1.2. Identifying Pericardial Effusion
3.1.3. Identifying Pneumothorax
3.2. Cardiogenic Shock
3.2.1. Evaluating for Increased Filling Pressures and Hypervolemia
3.2.2. Assessing for Signs of Left Ventricular Dysfunction
3.2.3. Assessing for Signs of Right Ventricular Dysfunction
3.2.4. Assessing for Signs of Severe Valve Disease
3.3. Hypovolemic Shock
Identifying Low Intravascular Volume
4. High Cardiac Index Shock
4.1. Distributive Shock
4.1.1. Assessing for Dynamic Obstruction
4.1.2. Prediction of Fluid Responsiveness and Tolerance
4.1.3. Assessing for Ventriculo-Arterial Decoupling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakr, Y.; Vincent, J.-L.; Ruokonen, E.; Pizzamiglio, M.; Installe, E.; Reinhart, K.; Moreno, R. Sepsis and organ system failure are major determinants of post–intensive care unit mortality. J. Crit. Care 2008, 23, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, E1063–E1143. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, B.; Eck, R.J.; Keus, F.; van der Horst, I.C. Clinical examination for diagnosing circulatory shock. Curr. Opin. Crit. Care 2017, 23, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak, M.; Monnet, X.; Teboul, J.L. Less or more hemodynamic monitoring in critically ill patients. Curr. Opin. Crit. Care 2018, 24, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Thiele, R.H.; Bartels, K.; Gan, T.J. Cardiac output monitoring: A contemporary assessment and review. Crit. Care Med. 2015, 43, 177–185. [Google Scholar] [CrossRef]
- Laursen, C.B.; Sloth, E.; Lambrechtsen, J.; Lassen, A.T.; Madsen, P.H.; Henriksen, D.P.; Davidsen, J.R.; Rasmussen, F. Focused sonography of the heart, lungs, and deep veins identifies missed life-threatening conditions in admitted patients with acute respiratory symptoms. Chest 2013, 144, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Vignon, P. Continuous cardiac output assessment or serial echocardiography during septic shock resuscitation? Ann. Transl. Med. 2020, 8, 797. [Google Scholar] [CrossRef] [PubMed]
- Porter, T.R.; Shillcutt, S.K.; Adams, M.S.; Desjardins, G.; Glas, K.E.; Olson, J.J.; Troughton, R.W. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: A report from the american society of echocardiography. J. Am. Soc. Echocardiogr. 2015, 28, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Huntsman, L.L.; Stewart, D.K.; Barnes, S.R.; Franklin, S.B.; Colocousis, J.S.; Hessel, E.A. Noninvasive Doppler determination of cardiac output in man. Clinical validation. Circulation 1983, 67, 593–602. [Google Scholar] [CrossRef]
- Pinsky, M.R. Why measure cardiac output? Crit. Care 2003, 7, 114–116. [Google Scholar] [CrossRef]
- Pich, H.; Heller, A.R. Obstruktiver Schock. Anaesthesist 2015, 64, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Naeije, R.; Haddad, F.; Bogaard, H.J.; Bull, T.M.; Fletcher, N.; Lahm, T.; Magder, S.; Orde, S.; Schmidt, G.; et al. Diagnostic workup, etiologies and management of acute right ventricle failure. Intensive Care Med. 2018, 44, 774–790. [Google Scholar] [CrossRef] [PubMed]
- Barthélémy, R.; Roy, X.; Javanainen, T.; Mebazaa, A.; Chousterman, B.G. Comparison of echocardiographic indices of right ventricular systolic function and ejection fraction obtained with continuous thermodilution in critically ill patients. Crit. Care 2019, 23, 312. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.L.; Holley, A.; Tapson, V.; Moores, L.; Oribe, M.; Barrón, M.; Otero, R.; Nauffal, D.; Valle, R.; Monreal, M.; et al. Prognostic significance of tricuspid annular displacement in normotensive patients with acute symptomatic pulmonary embolism. J. Thromb. Haemost. 2014, 12, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Aloia, E.; Cameli, M.; D’Ascenzi, F.; Sciaccaluga, C.; Mondillo, S. TAPSE: An old but useful tool in different diseases. Int. J. Cardiol. 2016, 225, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kwon, O.; Lee, E.-J.; Sin, M.-J.; Lee, J.S.; Lee, S.; Kang, D.-H.; Song, J.-K.; Song, J.-M. Prognostic value of echocardiographic parameters for right ventricular function in patients with acute non-massive pulmonary embolism. Heart Vessel. 2019, 34, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Mercado, P.; Maizel, J.; Beyls, C.; Kontar, L.; Orde, S.; Huang, S.; McLean, A.; Tribouilloy, C.; Slama, M. Reassessment of the Accuracy of Cardiac Doppler Pulmonary Artery Pressure Measurements in Ventilated ICU Patients: A Simultaneous Doppler-Catheterization Study. Crit. Care Med. 2019, 47, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Grupo de Trabajo de la Sociedad Europea de Cardiología (ESC) para el diagnóstico y tratamiento de la tromboembolia pulmonar aguda. Guía ESC 2019 para el diagnóstico y tratamiento de la embolia pulmonar aguda. Rev. Esp. Cardiol. 2020, 73, 497.e1–497.e58. [Google Scholar] [CrossRef]
- Saito, Y.; Donohue, A.; Attai, S.; Vahdat, A.; Brar, R.; Handapangoda, I.; Chandraratna, P.A. The Syndrome of Cardiac Tamponade with “Small” Pericardial Effusion. Echocardiography 2008, 25, 321–327. [Google Scholar] [CrossRef]
- Peters, P.J.; Schuck, J. Echocardiographic Assessment of Pericardial Effusion: A Brief Review. J. Diagn. Med. Sonogr. 2016, 23, 189–197. [Google Scholar] [CrossRef]
- Alerhand, S.; Carter, J.M. What echocardiographic findings suggest a pericardial effusion is causing tamponade? Am. J. Emerg. Med. 2019, 37, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Himelman, R.B.; Kircher, B.; Rockey, D.C.; Schiller, N.B. Inferior vena cava plethora with blunted respiratory response: A sensitive echocardiography sign of cardiac tamponade. J. Am. Coll. Cardiol. 1988, 12, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, H.S.; Cogswell, T.L.; Bernath, G.A.; Wann, L.S.; Tipton, R.K.; Hoffmann, R.G.; Brooks, H.L.; Janzer, D.J.; Peterson, D.M. Alterations in intravascular volume affect the relation between right ventricular diastolic collapse and the hemodynamic severity of cardiac tamponade. J. Am. Coll. Cardiol. 1985, 6, 1057–1063. [Google Scholar] [CrossRef]
- Pérez-Casares, A.; Cesar, S.; Brunet-Garcia, L.; Sanchez-de-Toledo, J. Echocardiographic evaluation of pericardial effusion and cardiac tamponade. Front. Pediatr. 2017, 5, 79. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.-H.; Yang, J.-X.; Gan, J.-X.; Xu, S.-W.; You, X.-D.; Jiang, G.-Y. Rapid detection of pneumothorax by ultrasonography in patients with multiple trauma. Crit. Care 2006, 10, R112. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A. Emergency Department Diagnosis of Pneumothorax Using Goal-directed Ultrasound. Acad. Emerg. Med. 2009, 16, 1379–1380. [Google Scholar] [CrossRef]
- Lichtenstein, D.A.; Menu, Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill: Lung sliding. Chest 1995, 108, 1345–1348. [Google Scholar] [CrossRef]
- De Luca, C.; Valentino, M.; Rimondi, M.R.; Branchini, M.; Baleni, M.C.; Barozzi, L. Use of chest sonography in acute-care radiology. J. Ultrasound 2008, 11, 125–134. [Google Scholar] [CrossRef]
- Chichra, A.; Makaryus, M.; Chaudhri, P.; Narasimhan, M. Ultrasound for the Pulmonary Consultant. Clin. Med. Insights Circ. Respir. Pulm. Med. 2016, 10, CCRPM-S333829. [Google Scholar] [CrossRef]
- Lichtenstein, D.; Mezière, G.; Biderman, P.; Gepner, A. The “lung point”: An ultrasound sign specific to pneumothorax. Intensive Care Med. 2014, 26, 1434–1440. [Google Scholar] [CrossRef]
- De Backer, D. Detailing the cardiovascular profile in shock patients. Crit. Care 2017, 21, 35–41. [Google Scholar] [CrossRef]
- Ghane, M.R.; Ebrahimi, A.; Saeedi, M.; Akbari-Kamrani, M.; Rezaee, M.; Rasouli, H. Accuracy of early rapid ultrasound in shock (RUSH) examination performed by emergency physician for diagnosis of shock etiology in critically ill patients. J. Emerg. Trauma Shock 2015, 8, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.; Abdallah, T.; Abdelsalam, H.; Mokhtar, A.; Razek, A.A. Accuracy of echocardiography and ultrasound protocol to identify shock etiology in emergency department. BMC Emerg. Med. 2022, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Magder, S. Right Atrial Pressure in the Critically Ill: How to Measure, What Is the Value, What Are the Limitations? Chest 2017, 151, 908–916. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef] [PubMed]
- Ciozda, W.; Kedan, I.; Kehl, D.W.; Zimmer, R.; Khandwalla, R.; Kimchi, A. The efficacy of sonographic measurement of inferior vena cava diameter as an estimate of central venous pressure. Cardiovasc. Ultrasound 2016, 14, 33. [Google Scholar] [CrossRef]
- Sánchez, J.I.A.; Zúñiga, W.F.A.; García, M.I.M. Predictors to Intravenous Fluid Responsiveness. J. Intensive Care Med. 2018, 33, 227–240. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Evrard, B.; Repessé, X.; Maizel, J.; Jacob, C.; Goudelin, M.; Charron, C.; Prat, G.; Slama, M.; Geri, G.; et al. Limited value of end-expiratory inferior vena cava diameter to predict fluid responsiveness impact of intra-abdominal pressure. Intensive Care Med. 2018, 44, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Beaubien-Souligny, W.; Rola, P.; Haycock, K.; Bouchard, J.; Lamarche, Y.; Spiegel, R.; Denault, A.Y. Quantifying systemic congestion with Point-Of-Care ultrasound: Development of the venous excess ultrasound grading system. Ultrasound J. 2020, 12, 16. [Google Scholar] [CrossRef]
- Sanfilippo, F.; Scolletta, S.; Morelli, A.; Vieillard-Baron, A. Practical approach to diastolic dysfunction in light of the new guidelines and clinical applications in the operating room and in the intensive care. Ann. Intensive Care 2018, 8, 100. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Middleton, K.J.; Kopelen, H.A.; Zoghbi, W.A.; Quiñones, M.A. Doppler Tissue Imaging: A Noninvasive Technique for Evaluation of Left Ventricular Relaxation and Estimation of Filling Pressures. J. Am. Coll. Cardiol. 1997, 30, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Thayer, K.L.; Zweck, E.; Ayouty, M.; Garan, A.R.; Hernandez-Montfort, J.; Mahr, C.; Morine, K.J.; Newman, S.; Jorde, L.; Haywood, J.L.; et al. Invasive Hemodynamic Assessment and Classification of In-Hospital Mortality Risk Among Patients With Cardiogenic Shock. Circ. Heart Fail. 2020, 13, E007099. [Google Scholar] [CrossRef] [PubMed]
- Bagheri-Hariri, S.; Yekesadat, M.; Farahmand, S.; Arbab, M.; Sedaghat, M.; Shahlafar, N.; Takzare, A.; Seyedhossieni-Davarani, S.; Nejati, A. The impact of using RUSH protocol for diagnosing the type of unknown shock in the emergency department. Emerg. Radiol. 2015, 22, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Gaubert, M.; Resseguier, N.; Thuny, F.; Paganelli, F.; Cautela, J.; Pinto, J.; Ammar, C.; Laine, M.; Bonello, L. Doppler echocardiography for assessment of systemic vascular resistances in cardiogenic shock patients. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neill, W.; Ornato, J.P.; et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Weekes, A.J.; Oh, L.; Thacker, G.; Johnson, A.K.; Runyon, M.; Rose, G.; Johnson, T.; Templin, M.; Norton, H.J. Interobserver and Intraobserver Agreement on Qualitative Assessments of Right Ventricular Dysfunction With Echocardiography in Patients With Pulmonary Embolism. J. Ultrasound Med. 2016, 35, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Anavekar, N.S.; Gerson, D.; Skali, H.; Kwong, R.Y.; Kent Yucel, E.; Solomon, S.D. Two-Dimensional Assessment of Right Ventricular Function: An Echocardiographic–MRI Correlative Study. Echocardiography 2007, 24, 452–456. [Google Scholar] [CrossRef] [PubMed]
- López-Candales, A.; Dohi, K.; Rajagopalan, N.; Edelman, K.; Gulyasy, B.; Bazaz, R. Defining normal variables of right ventricular size and function in pulmonary hypertension: An echocardiographic study. Postgrad. Med. J. 2008, 84, 40–45. [Google Scholar] [CrossRef]
- Chotalia, M.B.; Ali, M.M.; Alderman, J.E.M.; Kalla, M.; Parekh, D.; Bangash, M.N.; Patel, J.M. Right Ventricular Dysfunction and Its Association With Mortality in Coronavirus Disease 2019 Acute Respiratory Distress Syndrome. Crit. Care Med. 2021, 49, 1757–1768. [Google Scholar] [CrossRef]
- Brown, S.B.; Raina, A.; Katz, D.; Szerlip, M.; Wiegers, S.E.; Forfia, P.R. Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest 2011, 140, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Gajanana, D.; Rammohan, H.S.; Alli, O.; Romero-Corral, A.; Purushottam, B.; Ponamgi, S.; Figueredo, V.M.; Pressman, G.S. Tricuspid Annular Plane Systolic Excursion and Its Association with Mortality in Critically Ill Patients. Echocardiography 2015, 32, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Martha, J.W.; Pranata, R.; Wibowo, A.; Lim, M.A. Tricuspid annular plane systolic excursion (TAPSE) measured by echocardiography and mortality in COVID-19: A systematic review and meta-analysis. Int. J. Infect. Dis. 2021, 105, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; White, S.; Nielsen, K.; Banchs, J.; Wang, J.; Botz, G.H.; Nates, J.L. Tricuspid annular plane systolic excursion is a predictor of mortality for septic shock. Intern. Med. J. 2021, 51, 1854–1861. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Prin, S.; Chergui, K.; Dubourg, O.; Jardin, F. Echo–Doppler Demonstration of Acute Cor Pulmonale at the Bedside in the Medical Intensive Care Unit. Am. J. Respir. Crit. Care Med. 2012, 166, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Vieillard-Baron, A.; Prigent, A.; Repessé, X.; Goudelin, M.; Prat, G.; Evrard, B.; Charron, C.; Vignon, P.; Geri, G. Right ventricular failure in septic shock: Characterization, incidence and impact on fluid responsiveness. Crit. Care 2020, 24, 630. [Google Scholar] [CrossRef] [PubMed]
- Brailovsky, Y.; Lakhter, V.; Weinberg, I.; Porcaro, K.; Haines, J.; Morris, S.; Masic, D.; Mancl, E.; Bashir, R.; Alkhouli, M.; et al. Right Ventricular Outflow Doppler Predicts Low Cardiac Index in Intermediate Risk Pulmonary Embolism. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619886062. [Google Scholar] [CrossRef] [PubMed]
- Hockstein, M.A.; Haycock, K.; Wiepking, M.; Lentz, S.; Dugar, S.; Siuba, M. Transthoracic Right Heart Echocardiography for the Intensivist. J. Intensive Care Med. 2021, 36, 1098–1109. [Google Scholar] [CrossRef]
- Yock, P.G.; Popp, R.L. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 1984, 70, 657–662. [Google Scholar] [CrossRef]
- Finkelhor, R.S.; Lewis, S.A.; Pillai, D. Limitations and Strengths of Doppler/Echo Pulmonary Artery Systolic Pressure–Right Heart Catheterization Correlations: A Systematic Literature Review. Echocardiography 2015, 32, 10–18. [Google Scholar] [CrossRef]
- Lindqvist, P.; Söderberg, S.; Gonzalez, M.C.; Tossavainen, E.; Henein, M.Y. Echocardiography based estimation of pulmonary vascular resistance in patients with pulmonary hypertension: A simultaneous Doppler echocardiography and cardiac catheterization study. Eur. J. Echocardiogr. 2011, 12, 961–966. [Google Scholar] [CrossRef]
- Chemla, D.; Castelain, V.; Humbert, M.; Hébert, J.-L.; Simonneau, G.; Lecarpentier, Y.; Hervé, P. New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 2004, 126, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- Hammadah, M.; Ponce, C.; Sorajja, P.; Cavalcante, J.L.; Garcia, S.; Gössl, M. Point-of-care ultrasound: Closing guideline gaps in screening for valvular heart disease. Clin. Cardiol. 2020, 43, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Peck, M.; Clark, T.; Conway, H.; Olusanya, S.; Fletcher, N.; Coleman, N.; Parulekar, P.; Aron, J.; Kirk-Bayley, J.; et al. FUSIC HD. Comprehensive haemodynamic assessment with ultrasound. J. Intensive Care Soc. 2021, 23, 325–333. [Google Scholar] [CrossRef]
- Williams, C.; Mateescu, A.; Rees, E.; Truman, K.; Elliott, C.; Bahlay, B.; Wallis, A.; Ionescu, A. Point-of-care echocardiographic screening for left-sided valve heart disease: High yield and affordable cost in an elderly cohort recruited in primary practice. Echo Res. Pract. 2019, 6, 71–79. [Google Scholar] [CrossRef]
- Caplan, M.; Durand, A.; Bortolotti, P.; Colling, D.; Goutay, J.; Duburcq, T.; Drumez, E.; Rouze, A.; Nseir, S.; Howsam, M.; et al. Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: A post hoc analysis of two prospective cohorts. Ann. Intensive Care 2020, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Seif, D.; Perera, P.; Mailhot, T.; Riley, D.; Mandavia, D. Bedside ultrasound in resuscitation and the rapid ultrasound in shock protocol. Crit. Care Res. Pract. 2012, 2012, 503254. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Garry, D. Assessing dynamic fluid-responsiveness using transthoracic echocardiography in intensive care. BJA Educ. 2018, 18, 218. [Google Scholar] [CrossRef]
- Boniface, K.S.; Calabrese, K.Y. Intensive care ultrasound: IV. Abdominal ultrasound in critical care. Ann. Am. Thorac. Soc. 2013, 10, 713–724. [Google Scholar] [CrossRef]
- Rozycki, G.S.; Ochsner, M.G.; Schmidt, J.A.; Frankel, H.L.; Davis, T.P.; Wang, D.; Champion, H.R. A prospective study of surgeon-performed ultrasound as the primary adjuvant modality for injured patient assessment. J. Trauma 1995, 39, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.R.; Martin, J.A.; Saul, T.; Lewiss, R.E. The thoracic spine sign in bedside ultrasound. Three cases report. Med. Ultrason. 2014, 16, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.C.Y. The Curtain Sign in Lung Ultrasound. J. Med. Ultrasound 2017, 25, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Rippey, J.C.R.; Royse, A.G. Ultrasound in trauma. Best. Pract. Res. Clin. Anaesthesiol. 2009, 23, 343–362. [Google Scholar] [CrossRef] [PubMed]
- Netherton, S.; Milenkovic, V.; Taylor, M.; Davis, P.J. Diagnostic accuracy of eFAST in the trauma patient: A systematic review and meta-analysis. Can. J. Emerg. Med. 2019, 21, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Ghasemi-rad, M. Evaluation of gastrointestinal injury in blunt abdominal trauma “FAST is not reliable”: The role of repeated ultrasonography. World J. Emerg. Surg. 2012, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Jagjit, S.D.; Rupp, J.; Ferre, R.M.; Jordan, M.K.; Bales, B. Systematic Sonography Looking for Occult Wounds: Accuracy of an abdominal ultrasound adjunct in penetrating trauma. Ultrasound J. 2020, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Grade, M.M.; Poffenberger, C.; Lobo, V. Isolated Renal Laceration on Point-of-care Ultrasound. Cureus 2018, 10, e2113. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.; Jarman, R.D.; Halford, N.W.; Richards, S.P. When FAST is a FAFF: Is FAST Scanning Useful in Non-Trauma Patients? Ultrasound 2008, 16, 165–168. [Google Scholar] [CrossRef]
- Williams, J.; Heiner, J.D.; Perreault, M.D.; McArthur, T.J. Aortic Dissection Diagnosed by Ultrasound. West. J. Emerg. Med. 2010, 11, 98. [Google Scholar]
- Landry, D.W.; Oliver, J.A. The pathogenesis of vasodilatory shock. N. Engl. J. Med. 2001, 345, 588–595. [Google Scholar] [CrossRef]
- Vignon, P.; Begot, E.; Mari, A.; Silva, S.; Chimot, L.; Delour, P.; Vargas, F.; Filloux, B.; Vandroux, D.; Jabot, J.; et al. Hemodynamic Assessment of Patients With Septic Shock Using Transpulmonary Thermodilution and Critical Care Echocardiography: A Comparative Study. Chest 2018, 153, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Pan, J.; Wang, Y.; Wang, H.; Xu, Z.; Zhuo, W. Left ventricular-arterial coupling as a predictor of stroke volume response to norepinephrine in septic shock—A prospective cohort study. BMC Anesthesiol. 2021, 21, 56. [Google Scholar] [CrossRef] [PubMed]
- Ghane, M.R.; Gharib, M.H.; Ebrahimi, A.; Samimi, K.; Rezaee, M.; Rasouli, H.R.; Kazemi, H.M. Accuracy of Rapid Ultrasound in Shock (RUSH) Exam for Diagnosis of Shock in Critically Ill Patients. Trauma Mon. 2015, 20, e20095. [Google Scholar] [CrossRef]
- Gonzalez-Hermosillo, J.A.; Palma-Carbajal, R.; Rojas-Velasco, G.; Cabrera-Jardines, R.; Gonzalez-Galvan, L.M.; Manzur-Sandoval, D.; Jiménez-Rodriguez, G.M.; Ortiz-Solis, W.A. Hemodynamic profiles related to circulatory shock in cardiac care units. Arch. Cardiol. México (Engl. Internet) 2020, 90, 48–55. [Google Scholar] [CrossRef]
- Chauvet, J.-L.; El-Dash, S.; Delastre, O.; Bouffandeau, B.; Jusserand, D.; Michot, J.-B.; Bauer, F.; Maizel, J.; Slama, M. Early dynamic left intraventricular obstruction is associated with hypovolemia and high mortality in septic shock patients. Crit. Care 2015, 19, 262. [Google Scholar] [CrossRef]
- Evan, J.S.; Huang, S.J.; McLean, A.S.; Nalos, M. Left ventricular outflow tract obstruction-be prepared! Anaesth. Intensive Care 2017, 45, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Debella, Y.T.; Moss, J.E.; Paniagua, O.; Diaz-Gomez, J.L. A 59-Year-Old Man in Refractory Shock. Chest 2018, 154, e93–e96. [Google Scholar] [CrossRef]
- Turvey, L.; Augustine, D.X.; Robinson, S.; Oxborough, D.; Stout, M.; Smith, N.; Harkness, A.; Williams, L.; Steeds, R.P.; Bradlow, W. Transthoracic echocardiography of hypertrophic cardiomyopathy in adults: A practical guideline from the British Society of Echocardiography. Echo Res. Pract. 2021, 8, G61–G86. [Google Scholar] [CrossRef]
- Caselli, S.; Martino, A.; Genuini, I.; Santini, D.; Carbone, I.; Agati, L.; Fedele, F. Pathophysiology of Dynamic Left Ventricular Outflow Tract Obstruction in a Critically Ill Patient. Echocardiography 2010, 27, E122–E124. [Google Scholar] [CrossRef]
- Al-Nasser, F.; Duncan, A.; Sharma, R.; O’sullivan, C.; Coats, A.J.; Anker, S.D.; Henein, M.Y. Beta-blocker therapy for dynamic left-ventricular outflow tract obstruction. Int. J. Cardiol. 2002, 86, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Cecconi, M.; De Backer, D. The fluid challenge. Crit. Care 2020, 24, 703. [Google Scholar] [CrossRef] [PubMed]
- Roger, C.; AzuRea Group; Zieleskiewicz, L.; Demattei, C.; Lakhal, K.; Piton, G.; Louart, B.; Constantin, J.-M.; Chabanne, R.; Faure, J.-S.; et al. Time course of fluid responsiveness in sepsis: The fluid challenge revisiting (FCREV) study. Crit. Care 2019, 23, 179. [Google Scholar] [CrossRef] [PubMed]
- Messina, A.; Palandri, C.; De Rosa, S.; Danzi, V.; Bonaldi, E.; Montagnini, C.; Baino, S.; Villa, F.; Sala, F.; Zito, P.; et al. Pharmacodynamic analysis of a fluid challenge with 4 ml kg−1 over 10 or 20 min: A multicenter cross-over randomized clinical trial. J. Clin. Monit. Comput. 2021, 36, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Musu, M.; Guddelmoni, L.; Murgia, F.; Mura, S.; Bonu, F.; Mura, P.; Finco, G. Prediction of fluid responsiveness in ventilated critically ill patients. J. Emerg. Crit. Care Med. 2020, 4, 26. [Google Scholar] [CrossRef]
- Feissel, M.; Michard, F.; Mangin, I.; Ruyer, O.; Faller, J.P.; Teboul, J.L. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 2001, 119, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Charron, C.; Fessenmeyer, C.; Cosson, C.; Mazoit, J.-X.; Hebert, J.-L.; Benhamou, D.; Edouard, A.R. The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth. Analg. 2006, 102, 1511–1517. [Google Scholar] [CrossRef]
- Barbier, C.; Loubières, Y.; Schmit, C.; Hayon, J.; Ricôme, J.-L.; Jardin, F.; Vieillard-Baron, A. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004, 30, 1740–1746. [Google Scholar] [CrossRef]
- Monnet, X.; Marik, P.; Teboul, J.L. Passive leg raising for predicting fluid responsiveness: A systematic review and meta-analysis. Intensive Care Med. 2016, 42, 1935–1947. [Google Scholar] [CrossRef]
- Jozwiak, M.; Depret, F.; Teboul, J.-L.; Alphonsine, J.-E.; Lai, C.; Richard, C.; Monnet, X. Predicting Fluid Responsiveness in Critically Ill Patients by Using Combined End-Expiratory and End-Inspiratory Occlusions With Echocardiography. Crit. Care Med. 2017, 45, E1131–E1138. [Google Scholar] [CrossRef]
- Dubo, S.; Valenzuela, E.D.; Aquevedo, A.; Jibaja, M.; Berrutti, D.; Labra, C.; Lagos, R.; García, M.F.; Ramírez, V.; Tobar, M.; et al. Early rise in central venous pressure during a spontaneous breathing trial: A promising test to identify patients at high risk of weaning failure? PLoS ONE 2019, 14, e0225181. [Google Scholar] [CrossRef] [PubMed]
- Mahjoub, Y.; Benoit-Fallet, H.; Airapetian, N.; Lorne, E.; Levrard, M.; Seydi, A.-A.; Amennouche, N.; Slama, M.; Dupont, H. Improvement of left ventricular relaxation as assessed by tissue Doppler imaging in fluid-responsive critically ill septic patients. Intensive Care Med. 2012, 38, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Pellicori, P.; Platz, E.; Dauw, J.; ter Maaten, J.M.; Martens, P.; Pivetta, E.; Cleland, J.G.; McMurray, J.J.; Mullens, W.; Solomon, S.D.; et al. Ultrasound imaging of congestion in heart failure: Examinations beyond the heart. Eur. J. Heart Fail. 2021, 23, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Popescu, B.A.; Beladan, C.C.; Nagueh, S.F.; Smiseth, O.A. How to assess left ventricular filling pressures by echocardiography in clinical practice. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Ilieșiu, A.M.; Hodorogea, A.S.; Balahura, A.M.; Bădilă, E. Non-Invasive Assessment of Congestion by Cardiovascular and Pulmonary Ultrasound and Biomarkers in Heart Failure. Diagnostics 2022, 12, 962. [Google Scholar] [CrossRef] [PubMed]
- Anile, A.; Russo, J.; Castiglione, G.; Volpicelli, G. A simplified lung ultrasound approach to detect increased extravascular lung water in critically ill patients. Crit. Ultrasound J. 2017, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Rola, P.; Miralles-Aguiar, F.; Argaiz, E.; Beaubien-Souligny, W.; Haycock, K.; Karimov, T.; Dinh, V.A.; Spiegel, R. Clinical applications of the venous excess ultrasound (VExUS) score: Conceptual review and case series. Ultrasound J. 2021, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Y.; Pan, J.; Wang, Y.; Wang, H.; Xu, Z.; Chen, B.; Hu, C. Optimizing left ventricular-arterial coupling during the initial resuscitation in septic shock—A pilot prospective randomized study. BMC Anesthesiol. 2022, 22, 31. [Google Scholar] [CrossRef]
- Chantler, P.D.; Lakatta, E.G.; Najjar, S.S. Arterial-ventricular coupling: Mechanistic insights into cardiovascular performance at rest and during exercise. J. Appl. Physiol. 2008, 105, 1342–1351. [Google Scholar] [CrossRef]
- Sunagawa, K.; Sagawa, K.; Maughan, W.L. Ventricular interaction with the loading system. Ann. Biomed. Eng. 1984, 12, 163–189. [Google Scholar] [CrossRef]
- Saeed, S.; Holm, H.; Nilsson, P.M. Ventricular-arterial coupling: Definition, pathophysiology and therapeutic targets in cardiovascular disease. Expert Rev. Cardiovasc. Ther. 2021, 19, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Guarracino, F.; Baldassarri, R.; Pinsky, M.R. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care 2013, 17, 213. [Google Scholar] [CrossRef] [PubMed]
- De Tombe, P.P.; Jones, S.; Burkhoff, D.; Hunter, W.C.; Kass, D.A. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am. J. Physiol. Circ. Physiol. 1993, 264, H1817–H1824. [Google Scholar] [CrossRef] [PubMed]
- Guarracino, F.; Ferro, B.; Morelli, A.; Bertini, P.; Baldassarri, R.; Pinsky, M.R. Ventriculoarterial decoupling in human septic shock. Crit. Care 2014, 18, R80. [Google Scholar] [CrossRef] [PubMed]
- Andrei, S.; Nguyen, M.; Longrois, D.; Popescu, B.A.; Bouhemad, B.; Guinot, P.-G. Ventriculo-Arterial Coupling Is Associated With Oxygen Consumption and Tissue Perfusion in Acute Circulatory Failure. Front. Cardiovasc. Med. 2022, 9, 842554. [Google Scholar] [CrossRef] [PubMed]
- Antonini-Canterin, F.; Poli, S.; Vriz, O.; Pavan, D.; Bello, V.; Nicolosi, G. The Ventricular-Arterial Coupling: From Basic Pathophysiology to Clinical Application in the Echocardiography Laboratory. J. Cardiovasc. Echogr. 2013, 23, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Fetics, B.; Nevo, E.; Rochitte, C.E.; Chiou, K.-R.; Ding, P.-A.; Kawaguchi, M.; Kass, D.A. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 2001, 38, 2028–2034. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, M.R.; Guarracino, F. How to assess ventriculoarterial coupling in sepsis. Curr. Opin. Crit. Care 2020, 26, 313–318. [Google Scholar] [CrossRef]
- Li, S.; Wan, X.; Laudanski, K.; He, P.; Yang, L. Left-Sided Ventricular-arterial Coupling and Volume Responsiveness in Septic Shock Patients. Shock 2019, 52, 577–582. [Google Scholar] [CrossRef]
Shock Subtype | CI | SVR | CVP | PAOP |
---|---|---|---|---|
Cardiogenic | Low | High | High | High |
Hypovolemic | Low | High | Low | Low |
Obstructive | Low | High | High | High |
Distributive | High | Low | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, C.; Diaz-Caicedo, D.; Almanza Hernández, D.F.; Moreno-Araque, L.; Yepes, A.F.; Carrizosa Gonzalez, J.A. Critical Care Ultrasound in Shock: A Comprehensive Review of Ultrasound Protocol for Hemodynamic Assessment in the Intensive Care Unit. J. Clin. Med. 2024, 13, 5344. https://doi.org/10.3390/jcm13185344
Pérez C, Diaz-Caicedo D, Almanza Hernández DF, Moreno-Araque L, Yepes AF, Carrizosa Gonzalez JA. Critical Care Ultrasound in Shock: A Comprehensive Review of Ultrasound Protocol for Hemodynamic Assessment in the Intensive Care Unit. Journal of Clinical Medicine. 2024; 13(18):5344. https://doi.org/10.3390/jcm13185344
Chicago/Turabian StylePérez, Camilo, Diana Diaz-Caicedo, David Fernando Almanza Hernández, Lorena Moreno-Araque, Andrés Felipe Yepes, and Jorge Armando Carrizosa Gonzalez. 2024. "Critical Care Ultrasound in Shock: A Comprehensive Review of Ultrasound Protocol for Hemodynamic Assessment in the Intensive Care Unit" Journal of Clinical Medicine 13, no. 18: 5344. https://doi.org/10.3390/jcm13185344