Investigating Menstruation and Adverse Pregnancy Outcomes: Oxymoron or New Frontier? A Narrative Review
Abstract
:1. Introduction
2. The Endometrial Environment
2.1. Endometrial Composition Changes over the Menstrual Cycle
2.2. Endometrial Composition Changes during Pregnancy Establishment
3. The Origins of Adverse Pregnancy Outcomes
3.1. Parturition and Pregnancy Outcomes: Is Decidualisation the Determining Factor?
3.2. Evidence for the Endometrial Contribution to Adverse Pregnancy Outcomes
3.2.1. Preeclampsia
3.2.2. Foetal Growth Restriction
3.2.3. Spontaneous Preterm Birth
- Activation of the maternal or foetal hypothalamic-pituitary-adrenal (HPA) axis;
- Decidual-chorioamniotic or systemic inflammation;
- Decidual haemorrhage (abruption);
- Pathological distention of the uterus [84].
3.2.4. Perinatal Death
4. Is Menstrual Assessment the New Frontier in Understanding the Endometrial Contribution to Adverse Pregnancy Outcomes?
4.1. The Potential for Investigating Menstrual Characteristics Associated with Adverse Pregnancy Outcomes
4.2. The Potential for Analysing Menstrual Fluid Regarding Adverse Pregnancy Outcomes
4.3. Limitations and Opportunities for Assessing the Associations between Menstruation and Pregnancy Outcomes
4.4. Elucidating the Endometrial Environment via Menstrual Assessment: What’s Next?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- UNICEF; WHO; World Bank Group; United Nations. A Neglected Tragedy: The Global Burden of Stillbirths; The United Nations Inter-Agency Group for Child Mortality Estimation: New York, NY, USA, 2020; Available online: https://www.unicef.org/reports/neglected-tragedy-global-burden-of-stillbirths-2020 (accessed on 8 April 2024).
- UNICEF. Neonatal Deaths. 2024. Available online: https://data.unicef.org/topic/child-survival/neonatal-mortality/ (accessed on 8 April 2024).
- Flenady, V.; Ellwood, D. Making real progress with stillbirth prevention. Aust. N. Z. J. Obstet. Gynaecol. 2020, 60, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare (AIHW). Australia’s Mothers and Babies. 2023. Available online: https://www.aihw.gov.au/reports/mothers-babies/stillbirths-and-neonatal-deaths (accessed on 8 April 2024).
- Tindal, K.; Bimal, G.; Flenady, V.; Gordon, A.; Farrell, T.; Davies-Tuck, M. Causes of perinatal deaths in Australia: Slow progress in the preterm period. Aust. N. Z. J. Obstet. Gynaecol. 2022, 62, 511–517. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Su, R.-W.; Fazleabas, A.T. Implantation and Establishment of Pregnancy in Human and Nonhuman Primates. In Regulation of Implantation and Establishment of Pregnancy in Mammals: Tribute to 45 Year Anniversary of Roger V. Short’s “Maternal Recognition of Pregnancy”; Geisert, R.D., Bazer, F.W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 189–213. [Google Scholar]
- Cha, J.; Sun, X.; Dey, S.K. Mechanisms of implantation: Strategies for successful pregnancy. Nat. Med. 2012, 18, 1754–1767. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.-W.; Norwitz, G.A.; Pavlicev, M.; Tilburgs, T.; Simón, C.; Norwitz, E.R. Endometrial Decidualization: The Primary Driver of Pregnancy Health. Int. J. Mol. Sci. 2020, 21, 4092. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E.; Charnock-Jones, D.S. Human early placental development: Potential roles of the endometrial glands. Placenta 2007, 28 (Suppl. A), S64–S69. [Google Scholar] [CrossRef]
- Garrido-Gomez, T.; Dominguez, F.; Quiñonero, A.; Diaz-Gimeno, P.; Kapidzic, M.; Gormley, M.; Ona, K.; Padilla-Iserte, P.; McMaster, M.; Genbacev, O.; et al. Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proc. Natl. Acad. Sci. USA 2017, 114, E8468–E8477. [Google Scholar] [CrossRef] [PubMed]
- Lucas, E.S.; Dyer, N.P.; Murakami, K.; Lee, Y.H.; Chan, Y.-W.; Grimaldi, G.; Muter, J.; Brighton, P.J.; Moore, J.D.; Patel, G.; et al. Loss of Endometrial Plasticity in Recurrent Pregnancy Loss. Stem Cells 2016, 34, 346–356. [Google Scholar] [CrossRef]
- Romero, R.; Dey, S.K.; Fisher, S.J. Preterm labor: One syndrome, many causes. Science 2014, 345, 760–765. [Google Scholar] [CrossRef]
- Schatz, F.; Guzeloglu-Kayisli, O.; Arlier, S.; Kayisli, U.A.; Lockwood, C.J. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum. Reprod. Update 2016, 22, 497–515. [Google Scholar] [CrossRef]
- Bonnesen, B.; Oddgeirsdóttir, H.L.; Naver, K.V.; Jørgensen, F.S.; Nilas, L. Women with minor menstrual irregularities have increased risk of preeclampsia and low birthweight in spontaneous pregnancies. Acta Obstet. Gynecol. Scand. 2016, 95, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, L.; Shen, L.; Liu, B.; Zheng, X.; Zhang, L.; Li, Y.; Xia, W.; Lu, B.; Zhang, B.; et al. Age at menarche and prevalence of preterm birth: Results from the Healthy Baby Cohort study. Sci. Rep. 2017, 7, 12594. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, K.A.; Filby, C.E.; Davies-Tuck, M.L.; Suke, S.G.; Evans, J.; Gargett, C.E. Menstrual fluid endometrial stem/progenitor cell and supernatant protein content: Cyclical variation and indicative range. Hum. Reprod. 2021, 36, 2215–2229. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Schwab, K.E.; Filby, C.E.; Tan, C.S.C.; Tsaltas, J.; Weston, G.C.; Gargett, C.E. Endometrial stem/progenitor cells in menstrual blood and peritoneal fluid of women with and without endometriosis. Reprod. Biomed. Online 2021, 43, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Filby, C.E.; Wyatt, K.A.; Mortlock, S.; Cousins, F.L.; McKinnon, B.; Tyson, K.E.; Montgomery, G.W.; Gargett, C.E. Comparison of Organoids from Menstrual Fluid and Hormone-Treated Endometrium: Novel Tools for Gynecological Research. J. Pers. Med. 2021, 11, 1314. [Google Scholar] [CrossRef] [PubMed]
- Norwitz, E.R. Defective implantation and placentation: Laying the blueprint for pregnancy complications. Reprod. Biomed. Online 2007, 14, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Lv, S.; Yang, J.; Li, H.; Li, W.; Zhang, C. Decidualization and Related Pregnancy Complications. Matern. Fetal Med. 2022, 4, 24–35. [Google Scholar] [CrossRef]
- Cousins, F.L.; Filby, C.E.; Gargett, C.E. Endometrial Stem/Progenitor Cells-Their Role in Endometrial Repair and Regeneration. Front. Reprod. Health 2021, 3, 811537. [Google Scholar] [CrossRef] [PubMed]
- Salamonsen, L.A.; Hutchison, J.C.; Gargett, C.E. Cyclical endometrial repair and regeneration. Development 2021, 148, 199577. [Google Scholar] [CrossRef]
- Desouza, L.; Diehl, G.; Yang, E.C.C.; Guo, J.; Rodrigues, M.J.; Romaschin, A.D.; Colgan, T.J.; Siu, K.W.M. Proteomic analysis of the proliferative and secretory phases of the human endometrium: Protein identification and differential protein expression. Proteomics 2005, 5, 270–281. [Google Scholar] [CrossRef]
- Hood, B.L.; Liu, B.; Alkhas, A.; Shoji, Y.; Challa, R.; Wang, G.; Ferguson, S.; Oliver, J.; Mitchell, D.; Bateman, N.W.; et al. Proteomics of the Human Endometrial Glandular Epithelium and Stroma from the Proliferative and Secretory Phases of the Menstrual Cycle1. Biol. Reprod. 2015, 92, 106. [Google Scholar] [CrossRef] [PubMed]
- Flynn, L.; Byrne, B.; Carton, J.; O’Farrelly, C.; Kelehan, P.; O’Herlihy, C. Menstrual Cycle Dependent Fluctuations in NK and T-Lymphocyte Subsets from Non-Pregnant Human Endometrium. Am. J. Reprod. Immunol. 2000, 43, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zheng, Q.; Jin, L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front. Immunol. 2019, 10, 2317. [Google Scholar] [CrossRef] [PubMed]
- Radović Janošević, D.; Trandafilović, M.; Krtinić, D.; Čolović, H.; Stevanović, J.M.; Dinić, S.P.-T. Endometrial immunocompetent cells in proliferative and secretory phase of normal menstrual cycle. Folia Morphol. 2020, 79, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Hanna, J.; Goldman-Wohl, D.; Hamani, Y.; Avraham, I.; Greenfield, C.; Natanson-Yaron, S.; Prus, D.; Cohen-Daniel, L.; Arnon, T.I.; Manaster, I.; et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 2006, 12, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Denker, H.-W. Cell Biology of Endometrial Receptivity and of Trophoblast-Endometrial Interactions. In Endocrinology of Embryo-Endometrium Interactions; Glasser, S.R., Mulholland, J., Psychoyos, A., Eds.; Springer: Boston, MA, USA, 1994; pp. 17–32. [Google Scholar]
- Enders, A.C. Trophoblast-Uterine Interactions in the First Days of Implantation: Models for the Study of Implantation Events in the Human. Semin. Reprod. Med. 2000, 18, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Gómez, T.; Castillo-Marco, N.; Cordero, T.; Simón, C. Decidualization resistance in the origin of preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S886–S894. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Watson, A.L.; Hempstock, J.; Skepper, J.N.; Jauniaux, E. Uterine Glands Provide Histiotrophic Nutrition for the Human Fetus during the First Trimester of Pregnancy. J. Clin. Endocrinol. Metab. 2002, 87, 2954–2959. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Tsuzuki, T.; Murata, H. Decidualization of the human endometrium. Reprod. Med. Biol. 2018, 17, 220–227. [Google Scholar] [CrossRef]
- Dunn, C.L.; Kelly, R.W.; Critchley, H.O.D. Decidualization of the human endometrial stromal cell: An enigmatic transformation. Reprod. Biomed. Online 2003, 7, 151–161. [Google Scholar] [CrossRef]
- Diessler, M.E.; Hernández, R.; Castro, G.G.; Barbeito, C.G. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front. Cell Dev. Biol. 2023, 11, 1134874. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.; Kin, K.; Muglia, L.; Pavličev, M. Evolution of mammalian pregnancy and the origin of the decidual stromal cell. Int. J. Dev. Biol. 2014, 58, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Pavlicev, M.; Norwitz, E.R. Human Parturition: Nothing More Than a Delayed Menstruation. Reprod. Sci. 2018, 25, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Emera, D.; Romero, R.; Wagner, G. The evolution of menstruation: A new model for genetic assimilation. Bioessays 2012, 34, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Salker, M.; Teklenburg, G.; Molokhia, M.; Lavery, S.; Trew, G.; Aojanepong, T.; Mardon, H.J.; Lokugamage, A.U.; Rai, R.; Landles, C.; et al. Natural selection of human embryos: Impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS ONE 2010, 5, e10287. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, T.M.; Makwana, K.; Taylor, D.M.; Molè, M.A.; Fishwick, K.J.; Tryfonos, M.; Odendaal, J.; Hawkes, A.; Zernicka-Goetz, M.; Hartshorne, G.M.; et al. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. elife 2021, 10, 69603. [Google Scholar] [CrossRef]
- Domnina, A.P.; Novikova, P.V.; Fridlyanskaya, I.I.; Shilina, M.A.; Zenin, V.V.; Nikolsky, N.N. Induction of decidual differentiation in endometrial mesenchymal stem cells. Cell Tissue Biol. 2016, 10, 95–99. [Google Scholar] [CrossRef]
- Teklenburg, G.; Salker, M.; Heijnen, C.; Macklon, N.S.; Brosens, J.J. The molecular basis of recurrent pregnancy loss: Impaired natural embryo selection. Mol. Hum. Reprod. 2010, 16, 886–895. [Google Scholar] [CrossRef]
- Dunk, C.; Kwan, M.; Hazan, A.; Walker, S.; Wright, J.K.; Harris, L.K.; Jones, R.L.; Keating, S.; Kingdom, J.C.P.; Whittle, W.; et al. Failure of Decidualization and Maternal Immune Tolerance Underlies Uterovascular Resistance in Intra Uterine Growth Restriction. Front. Endocrinol. 2019, 10, 160. [Google Scholar] [CrossRef]
- Hosseini, S.; Shokri, F.; Pour, S.A.; Khoshnoodi, J.; Jeddi-Tehrani, M.; Zarnani, A.-H. Diminished Frequency of Menstrual and Peripheral Blood NKT-Like Cells in Patients With Unexplained Recurrent Spontaneous Abortion and Infertile Women. Reprod. Sci. 2019, 26, 97–108. [Google Scholar] [CrossRef]
- Teklenburg, G.; Salker, M.; Molokhia, M.; Lavery, S.; Trew, G.; Aojanepong, T.; Mardon, H.J.; Lokugamage, A.U.; Rai, R.; Landles, C.; et al. Natural selection of human embryos: Decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS ONE 2010, 5, e10258. [Google Scholar] [CrossRef] [PubMed]
- Gellersen, B.; Brosens, J.J. Cyclic Decidualization of the Human Endometrium in Reproductive Health and Failure. Endocr. Rev. 2014, 35, 851–905. [Google Scholar] [CrossRef] [PubMed]
- Rabaglino, M.B.; Uiterweer, E.D.P.; Jeyabalan, A.; Hogge, W.A.; Conrad, K.P. Bioinformatics Approach Reveals Evidence for Impaired Endometrial Maturation Before and During Early Pregnancy in Women Who Developed Preeclampsia. Hypertension 2015, 65, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Blanks, A.M.; Brosens, J.J. Progesterone action in the myometrium and decidua in preterm birth. Facts Views Vis. Obgyn. 2012, 4, 33–43. [Google Scholar] [PubMed]
- Aung, M.T.; Yu, Y.; Ferguson, K.K.; Cantonwine, D.E.; Zeng, L.; McElrath, T.F.; Pennathur, S.; Mukherjee, B.; Meeker, J.D. Prediction and associations of preterm birth and its subtypes with eicosanoid enzymatic pathways and inflammatory markers. Sci. Rep. 2019, 9, 17049. [Google Scholar] [CrossRef] [PubMed]
- Black, K.H. June, Inflammatory Markers and Preeclampsia: A systematic Review. Nurs. Res. 2018, 67, 242–251. [Google Scholar] [CrossRef]
- Szentpéteri, I.; Rab, A.; Kornya, L.; Kovács, P.; Joó, J.G. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction. J. Matern. Fetal Neonatal Med. 2013, 26, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Al-Azemi, M.; Raghupathy, R.; Azizieh, F. Pro-inflammatory and anti-inflammatory cytokine profiles in fetal growth restriction. Clin. Exp. Obstet. Gynecol. 2017, 44, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Sundrani, D.P.; Chavan-Gautam, P.M.; Pisal, H.R.; Mehendale, S.S.; Joshi, S.R. Matrix Metalloproteinase-1 and -9 in Human Placenta during Spontaneous Vaginal Delivery and Caesarean Sectioning in Preterm Pregnancy. PLoS ONE 2012, 7, e29855. [Google Scholar] [CrossRef]
- Vannuccini, S.; Bocchi, C.; Severi, F.M.; Challis, J.R.; Petraglia, F. Endocrinology of human parturition. Ann. Endocrinol. 2016, 77, 105–113. [Google Scholar] [CrossRef]
- Fuentes, A.; Spaziani, E.P.; O’Brien, W.F. The expression of cyclooxygenase-2 (COX-2) in amnion and decidua following spontaneous labor. Prostaglandins 1996, 52, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Lu, C.; Xu, C.; Tao, Y.; Cong, B.; Ni, X. Differential Regulation of Prostaglandin Production Mediated by Corticotropin-Releasing Hormone Receptor Type 1 and Type 2 in Cultured Human Placental Trophoblasts. Endocrinology 2008, 149, 2866–2876. [Google Scholar] [CrossRef] [PubMed]
- Kota, S.K.; Gayatri, K.; Jammula, S.; Kota, S.K.; Krishna, S.V.; Meher, L.K.; Modi, K.D. Endocrinology of parturition. Indian J. Endocrinol. Metab. 2013, 17, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Vincent, Z.L.; Mitchell, M.D.; Ponnampalam, A.P. Regulation of TIMP-1 in Human Placenta and Fetal Membranes by lipopolysaccharide and demethylating agent 5-aza-2’-deoxycytidine. Reprod. Biol. Endocrinol. 2015, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Norwitz, E.R.; Bonney, E.A.; Snegovskikh, V.V.; Williams, M.A.; Phillippe, M.; Park, J.S.; Abrahams, V.M. Molecular Regulation of Parturition: The Role of the Decidual Clock. Cold Spring Harb. Perspect. Med. 2015, 5, a023143. [Google Scholar] [CrossRef] [PubMed]
- Tosto, V.; Giardina, I.; Tsibizova, V.; Renzo, G.C.D. Preterm Birth, From the Biological Knowledges to the Prevention: An Overview. Matern. Fetal Med. 2020, 2, 162–171. [Google Scholar] [CrossRef]
- Lowe, S.A.; Bowyer, L.; Lust, K.; McMahon, L.P.; Morton, M.; North, R.A.; Paech, M.; Said, J.M. SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust. N. Z. J. Obstet. Gynaecol. 2015, 55, e1–e29. [Google Scholar] [CrossRef]
- Fox, R.; Kitt, J.; Leeson, P.; Aye, C.Y.L.; Lewandowski, A.J. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J. Clin. Med. 2019, 8, 1625. [Google Scholar] [CrossRef]
- Løset, M.; Mundal, S.B.; Johnson, M.P.; Fenstad, M.H.; Freed, K.A.; Lian, I.A.; Eide, I.P.; Bjørge, L.; Blangero, J.; Moses, E.K. A transcriptional profile of the decidua in preeclampsia. Am. J. Obstet. Gynecol. 2011, 204, 84.e1–84.e27. [Google Scholar] [CrossRef]
- Lockwood, C.J.; Yen, C.-F.; Basar, M.; Kayisli, U.A.; Martel, M.; Buhimschi, I.; Buhimschi, C.; Huang, S.J.; Krikun, G.; Schatz, F. Preeclampsia-Related Inflammatory Cytokines Regulate Interleukin-6 Expression in Human Decidual Cells. Am. J. Pathol. 2008, 172, 1571–1579. [Google Scholar] [CrossRef]
- Wallace, A.E.; Host, A.J.; Whitley, G.S.; Cartwright, J.E. Decidual natural killer cell interactions with trophoblasts are impaired in pregnancies at increased risk of preeclampsia. Am. J. Pathol. 2013, 183, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Salama, S.A.; Kamel, M.W.; Diaz-Arrastia, C.R.; Xu, X.; Veenstra, T.D.; Salih, S.; Botting, S.K.; Kumar, R. Effect of tumor necrosis factor-alpha on estrogen metabolism and endometrial cells: Potential physiological and pathological relevance. J. Clin. Endocrinol. Metab. 2009, 94, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Drummond, K.; Danesh, N.M.; Arseneault, S.; Rodrigues, J.; Tulandi, T.; Raina, J.; Suarthana, E. Association between Endometriosis and Risk of Preeclampsia in Women Who Conceived Spontaneously: A Systematic Review and Meta-analysis. J. Minim. Invasive Gynecol. 2023, 30, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Cheung, V.C.; Peng, C.Y.; Marinić, M.; Sakabe, N.J.; Aneas, I.; Lynch, V.J.; Ober, C.; Nobrega, M.A.; Kessler, J.A. Pluripotent stem cell-derived endometrial stromal fibroblasts in a cyclic, hormone-responsive, coculture model of human decidua. Cell Rep. 2021, 35, 109138. [Google Scholar] [CrossRef] [PubMed]
- Resnik, R. Intrauterine growth restriction. Obstet. Gynecol. 2002, 99, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Ghidini, A. Idiopathic fetal growth restriction: A pathophysiologic approach. Obstet. Gynecol. Surv. 1996, 51, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.N.; Cheng, Y.W.; McLaughlin, B.; Esakoff, T.F.; Caughey, A.B. Fundal height: A useful screening tool for fetal growth? J. Matern. Fetal Neonatal Med. 2011, 24, 708–712. [Google Scholar] [CrossRef]
- Selvaratnam, R.; Davey, M.A.; Anil, S.; McDonald, S.; Farrell, T.; Wallace, E. Does public reporting of the detection of fetal growth restriction improve clinical outcomes: A retrospective cohort study. BJOG 2020, 127, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Crispi, F.; Miranda, J.; Gratacós, E. Long-term cardiovascular consequences of fetal growth restriction: Biology, clinical implications, and opportunities for prevention of adult disease. Am. J. Obstet. Gynecol. 2018, 218, S869–S879. [Google Scholar] [CrossRef]
- Pels, A.; Beune, I.M.; Van Wassenaer-Leemhuis, A.G.; Limpens, J.; Ganzevoort, W. Early-onset fetal growth restriction: A systematic review on mortality and morbidity. Acta Obstet. Gynecol. Scand. 2020, 99, 153–166. [Google Scholar] [CrossRef]
- Tang, L.; He, G.; Liu, X.; Xu, W. Progress in the understanding of the etiology and predictability of fetal growth restriction. Reproduction 2017, 153, R227–R240. [Google Scholar] [CrossRef]
- Hendrix, N.; Berghella, V. Non-Placental Causes of Intrauterine Growth Restriction. Semin. Perinatol. 2008, 32, 161–165. [Google Scholar] [CrossRef]
- Raghupathy, R.; Al-Azemi, M.; Azizieh, F. Intrauterine growth restriction: Cytokine profiles of trophoblast antigen-stimulated maternal lymphocytes. Clin. Dev. Immunol. 2012, 2012, 734865. [Google Scholar] [CrossRef]
- Eide, I.P.; Rolfseng, T.; Isaksen, C.V.; Mecsei, R.; Roald, B.; Lydersen, S.; Salvesen, K.Å.; Harsem, N.K.; Austgulen, R. Serious foetal growth restriction is associated with reduced proportions of natural killer cells in decidua basalis. Virchows Arch. 2006, 448, 269–276. [Google Scholar] [CrossRef]
- Gravett, M.G.; Rubens, C.E.; Nunes, T.M. Global report on preterm birth and stillbirth (2 of 7): Discovery science. BMC Pregnancy Childbirth 2010, 10, S2. [Google Scholar] [CrossRef]
- Phillips, C.; Velji, Z.; Hanly, C.; Metcalfe, A. Risk of recurrent spontaneous preterm birth: A systematic review and meta-analysis. BMJ Open 2017, 7, e015402. [Google Scholar] [CrossRef]
- Connealy, B.D.; Carreno, C.A.; Kase, B.A.; Hart, L.A.; Blackwell, S.C.; Sibai, B.M. A history of prior preeclampsia as a risk factor for preterm birth. Am. J. Perinatol. 2014, 31, 483–488. [Google Scholar] [CrossRef]
- Vogel, J.P.; Chawanpaiboon, S.; Moller, A.-B.; Watananirun, K.; Bonet, M.; Lumbiganon, P. The global epidemiology of preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 52, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, C.J.; Kuczynski, E. Risk stratification and pathological mechanisms in preterm delivery. Paediatr. Perinat. Epidemiol. 2001, 15, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US). Committee on Understanding Premature Birth and Assuring Healthy Outcomes; Behrman, R.E., Butler, A.S., Eds.; Preterm Birth: Causes, Consequences, and Prevention; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Ferguson, K.K.; McElrath, T.F.; Chen, Y.H.; Mukherjee, B.; Meeker, J.D. Longitudinal profiling of inflammatory cytokines and C-reactive protein during uncomplicated and preterm pregnancy. Am. J. Reprod. Immunol. 2014, 72, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Skliutė, G.; Baušytė, R.; Borutinskaitė, V.; Valiulienė, G.; Kaupinis, A.; Valius, M.; Ramašauskaitė, D.; Navakauskienė, R. Menstrual Blood-Derived Endometrial Stem Cells’ Impact for the Treatment Perspective of Female Infertility. Int. J. Mol. Sci. 2021, 22, 6774. [Google Scholar] [CrossRef] [PubMed]
- Brosens, J.J.; Parker, M.G.; McIndoe, A.; Pijnenborg, R.; Brosens, I.A. A role for menstruation in preconditioning the uterus for successful pregnancy. Am. J. Obstet. Gynecol. 2009, 200, e1–e615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, H.; Wang, X.; Yang, Y.; Zhang, Y.; Tang, Z.; Wang, L. The adverse maternal and perinatal outcomes of adolescent pregnancy: A cross sectional study in Hebei, China. BMC Pregnancy Childbirth 2020, 20, 339. [Google Scholar] [CrossRef] [PubMed]
- Ganchimeg, T.; Ota, E.; Morisaki, N.; Laopaiboon, M.; Lumbiganon, P.; Zhang, J.; Yamdamsuren, B.; Temmerman, M.; Say, L.; Tunçalp, Ö.; et al. Network, Pregnancy and childbirth outcomes among adolescent mothers: A World Health Organization multicountry study. BJOG 2014, 121, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Amjad, S.; MacDonald, I.; Chambers, T.; Osornio-Vargas, A.; Chandra, S.; Voaklander, D.; Ospina, M.B. Social determinants of health and adverse maternal and birth outcomes in adolescent pregnancies: A systematic review and meta-analysis. Paediatr. Perinat. Epidemiol. 2019, 33, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Brosens, I.; Muter, J.; Gargett, C.E.; Puttemans, P.; Benagiano, G.; Brosens, J.J. The impact of uterine immaturity on obstetrical syndromes during adolescence. Am. J. Obstet. Gynecol. 2017, 217, 546–555. [Google Scholar] [CrossRef]
- Saccone, G.; Gragnano, E.; Ilardi, B.; Marrone, V.; Strina, I.; Venturella, R.; Berghella, V.; Zullo, F. Maternal and perinatal complications according to maternal age: A systematic review and meta-analysis. Int. J. Gynaecol. Obstet. 2022, 159, 43–55. [Google Scholar] [CrossRef]
- Woods, L.; Perez-Garcia, V.; Kieckbusch, J.; Wang, X.; DeMayo, F.; Colucci, F.; Hemberger, M. Decidualisation and placentation defects are a major cause of age-related reproductive decline. Nat. Commun. 2017, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, N.; Ohtsu, A.; Kawahara-Miki, R.; Kimura, K.; Matsuyama, S.; Iwata, H.; Kuwayama, T.; Shirasuna, K. Age-associated mRNA expression changes in bovine endometrial cells in vitro. Reprod. Biol. Endocrinol. 2017, 15, 63. [Google Scholar] [CrossRef]
- Hirata, Y.; Katsukura, Y.; Henmi, Y.; Ozawa, R.; Shimazaki, S.; Kurosawa, A.; Torii, Y.; Takahashi, H.; Iwata, H.; Kuwayama, T.; et al. Advanced maternal age induces fetal growth restriction through decreased placental inflammatory cytokine expression and immune cell accumulation in mice. J. Reprod. Dev. 2021, 67, 257–264. [Google Scholar] [CrossRef]
- Lean, S.C.; Heazell, A.E.P.; Dilworth, M.R.; Mills, T.A.; Jones, R.L. Placental Dysfunction Underlies Increased Risk of Fetal Growth Restriction and Stillbirth in Advanced Maternal Age Women. Sci. Rep. 2017, 7, 9677. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Shokri, F.; Tokhmechy, R.; Savadi-Shiraz, E.; Jeddi-Tehrani, M.; Rahbari, M.; Zarnani, A.-H. Menstrual blood contains immune cells with inflammatory and anti-inflammatory properties. J. Obstet. Gynaecol. Res. 2015, 41, 1803–1812. [Google Scholar] [CrossRef]
- Hosseini, S.; Zarnani, A.-H.; Asgarian-Omran, H.; Vahedian-Dargahi, Z.; Eshraghian, M.R.; Akbarzadeh-Pasha, Z.; Arefi, S.; Jeddi-Tehrani, M.; Shokri, F. Comparative analysis of NK cell subsets in menstrual and peripheral blood of patients with unexplained recurrent spontaneous abortion and fertile subjects. J. Reprod. Immunol. 2014, 103, 9–17. [Google Scholar] [CrossRef]
- Tindal, K.; Filby, C.E.; Gargett, C.E.; Cousins, F.; Palmer, K.R.; Vollenhoven, B.; Davies-Tuck, M. Endometrial Origins of Stillbirth (EOS), a case–control study of menstrual fluid to understand and prevent preterm stillbirth and associated adverse pregnancy outcomes: Study protocol. BMJ Open 2023, 13, e068919. [Google Scholar] [CrossRef] [PubMed]
- Joseph, F.A.; Hyett, J.A.; Schluter, P.J.; McLennan, A.; Gordon, A.; Chambers, G.M.; Hilder, L.; Choi, S.K.; Vries, B. New Australian birthweight centiles. Med. J. Aust. 2020, 213, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Cindrova-Davies, T.; Zhao, X.; Elder, K.; Jones, C.J.P.; Moffett, A.; Burton, G.J.; Turco, M.Y. Menstrual flow as a non-invasive source of endometrial organoids. Commun. Biol. 2021, 4, 651. [Google Scholar] [CrossRef]
- Critchley, H.O.D.; Babayev, E.; Bulun, S.E.; Clark, S.; Garcia-Grau, I.; Gregersen, P.K.; Kilcoyne, A.; Kim, J.-Y.J.; Lavender, M.; Marsh, E.E.; et al. Menstruation: Science and society. Am. J. Obstet. Gynecol. 2020, 223, 624–664. [Google Scholar] [CrossRef]
- Johnston-Robledo, I.; Chrisler, J.C. The Menstrual Mark: Menstruation as Social Stigma. In The Palgrave Handbook of Critical Menstruation Studies; Bobel, C., Ed.; Palgrave Macmillan: Singapore, 2020; pp. 181–199. [Google Scholar]
- Manley, H.; Sprinks, J.; Breedon, P. Menstrual Blood-Derived Mesenchymal Stem Cells: Women’s Attitudes, Willingness, and Barriers to Donation of Menstrual Blood. J. Womens Health 2019, 28, 1688–1697. [Google Scholar] [CrossRef]
- Bouzid, K.; Bourdon, M.; Bartkowski, R.; Verbanck, M.; Chapron, C.; Marcellin, L.; Batteux, F.; Santulli, P.; Doridot, L. Menstrual Blood Donation for Endometriosis Research: A Cross-Sectional Survey on Women’s Willingness and Potential Barriers. Reprod. Sci. 2024, 31, 1617–1625. [Google Scholar] [CrossRef]
- Itriyeva, K. The effects of obesity on the menstrual cycle. Curr. Probl. Pediatr. Adolesc. Health Care 2022, 52, 101241. [Google Scholar] [CrossRef]
- Aladashvili-Chikvaidze, N.; Kristesashvili, J.; Gegechkori, M. Types of reproductive disorders in underweight and overweight young females and correlations of respective hormonal changes with BMI. Iran J. Reprod. Med. 2015, 13, 135–140. [Google Scholar] [PubMed]
- DeLoughery, E.; Colwill, A.C.; Edelman, A.; Bannow, B.S. Red blood cell capacity of modern menstrual products: Considerations for assessing heavy menstrual bleeding. BMJ Sex. Reprod. Health 2023, 50, 201895. [Google Scholar] [CrossRef]
- Tindal, K.; Filby, C.E.; Cousins, F.L.; Ellery, S.J.; Vollenhoven, B.; Palmer, K.; Gordon, A.; Gargett, C.E.; Davies-Tuck, M. The composition of menstrual fluid, its applications, and recent advances to understand the endometrial environment: A narrative review. FS Rev. 2024, 5, 100075. [Google Scholar] [CrossRef]
- Nikoo, S.; Ebtekar, M.; Jeddi-Tehrani, M.; Shervin, A.; Bozorgmehr, M.; Vafaei, S.; Kazemnejad, S.; Zarnani, A.H. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. Mol. Hum. Reprod. 2014, 20, 905–918. [Google Scholar] [CrossRef]
- Da Silva, C.M.; Belo, A.V.; Andrade, S.P.; Campos, P.P.; Ferreira, M.C.F.; Da Silva-Filho, A.L.; Carneiro, M.M. Identification of local angiogenic and inflammatory markers in the menstrual blood of women with endometriosis. Biomed. Pharmacother. 2014, 68, 899–904. [Google Scholar] [CrossRef]
- Warren, L.A.; Shih, A.; Renteira, S.M.; Seckin, T.; Blau, B.; Simpfendorfer, K.; Lee, A.; Metz, C.N.; Gregersen, P.K. Analysis of menstrual effluent: Diagnostic potential for endometriosis. Mol. Med. 2018, 24, 1. [Google Scholar] [CrossRef]
- Madjid, T.H.; Ardiansyah, D.F.; Permadi, W.; Hernowo, B. Expression of Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Endometriosis Menstrual Blood. Diagnostics 2020, 10, 364. [Google Scholar] [CrossRef]
- Nayyar, A.; Saleem, M.I.; Yilmaz, M.; DeFranco, M.; Klein, G.; Elmaliki, K.M.; Kowalsky, E.; Chatterjee, P.K.; Xue, X.; Viswanathan, R.; et al. Menstrual Effluent Provides a Novel Diagnostic Window on the Pathogenesis of Endometriosis. Front. Reprod. Health 2020, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Shih, A.J.; Adelson, R.P.; Vashistha, H.; Khalili, H.; Nayyar, A.; Puran, R.; Herrera, R.; Chatterjee, P.K.; Lee, A.T.; Truskinovsky, A.M.; et al. Single-cell analysis of menstrual endometrial tissues defines phenotypes associated with endometriosis. BMC Med. 2022, 20, 315. [Google Scholar] [CrossRef]
- Sahraei, S.S.; Asl, F.D.; Kalhor, N.; Sheykhhasan, M.; Fazaeli, H.; Moud, S.S.; Sheikholeslami, A. A Comparative Study of Gene Expression in Menstrual Blood-Derived Stromal Cells between Endometriosis and Healthy Women. Biomed Res. Int. 2022, 2022, 7053521. [Google Scholar] [CrossRef]
- Ji, S.; Liu, Y.; Yan, L.; Zhang, Y.; Li, Y.; Zhu, Q.; Xia, W.; Ge, S.; Zhang, J. DIA-based analysis of the menstrual blood proteome identifies association between CXCL5 and IL1RN and endometriosis. J. Proteom. 2023, 289, 104995. [Google Scholar] [CrossRef]
- Hosseini, S.; Shokri, F.; Pour, S.A.; Jeddi-Tehrani, M.; Nikoo, S.; Yousefi, M.; Zarnani, A.-H. A shift in the balance of T17 and Treg cells in menstrual blood of women with unexplained recurrent spontaneous abortion. J. Reprod. Immunol. 2016, 116, 13–22. [Google Scholar] [CrossRef]
- Jukic, A.M.Z.; Weinberg, C.R.; Wilcox, A.J.; McConnaughey, D.R.; Hornsby, P.; Baird, D.D. Accuracy of Reporting of Menstrual Cycle Length. Am. J. Epidemiol. 2007, 167, 25–33. [Google Scholar] [CrossRef]
- Burden, C.; Bradley, S.; Storey, C.; Ellis, A.; Heazell, A.E.P.; Downe, S.; Cacciatore, J.; Siassakos, D. From grief, guilt pain and stigma to hope and pride—A systematic review and meta-analysis of mixed-method research of the psychosocial impact of stillbirth. BMC Pregnancy Childbirth 2016, 16, 9. [Google Scholar] [CrossRef]
- Pollock, D.D.; Pearson, D.E.; Cooper, D.M.; Ziaian, A.P.T.; Foord, C.; Warland, A.P.J. Breaking the silence: Determining Prevalence and Understanding Stillbirth Stigma. Midwifery 2021, 93, 102884. [Google Scholar] [CrossRef]
- Wojcieszek, A.M.; Shepherd, E.; Middleton, P.; Gardener, G.; Ellwood, D.A.; McClure, E.M.; Gold, K.J.; Khong, T.Y.; Silver, R.M.; Erwich, J.J.H.; et al. Interventions for investigating and identifying the causes of stillbirth. Cochrane Database Syst. Rev. 2018, 4, CD012504. [Google Scholar] [CrossRef]
- Munro, M.G.; Critchley, H.O.D.; Fraser, I.S. The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int. J. Gynecol. Obstet. 2018, 143, 393–408. [Google Scholar] [CrossRef]
- Walker, E.R.; McGrane, M.; Aplin, J.D.; Brison, D.R.; Ruane, P.T. A systematic review of transcriptomic studies of the human endometrium reveals inconsistently reported differentially expressed genes. Reprod. Fertil. 2023, 4, e220115. [Google Scholar] [CrossRef]
- Hennegan, J.; Winkler, I.T.; Bobel, C.; Keiser, D.; Hampton, J.; Larsson, G.; Chandra-Mouli, V.; Plesons, M.; Mahon, T. Menstrual health: A definition for policy, practice, and research. Sex. Reprod. Health Matters 2021, 29, 1911618. [Google Scholar] [CrossRef]
- Khoury, M.; Alcayaga-Miranda, F.; Illanes, S.E.; Figueroa, F.E. The Promising Potential of Menstrual Stem Cells for Antenatal Diagnosis and Cell Therapy. Front. Immunol. 2014, 5, 205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tindal, K.; Cousins, F.L.; Ellery, S.J.; Palmer, K.R.; Gordon, A.; Filby, C.E.; Gargett, C.E.; Vollenhoven, B.; Davies-Tuck, M.L. Investigating Menstruation and Adverse Pregnancy Outcomes: Oxymoron or New Frontier? A Narrative Review. J. Clin. Med. 2024, 13, 4430. https://doi.org/10.3390/jcm13154430
Tindal K, Cousins FL, Ellery SJ, Palmer KR, Gordon A, Filby CE, Gargett CE, Vollenhoven B, Davies-Tuck ML. Investigating Menstruation and Adverse Pregnancy Outcomes: Oxymoron or New Frontier? A Narrative Review. Journal of Clinical Medicine. 2024; 13(15):4430. https://doi.org/10.3390/jcm13154430
Chicago/Turabian StyleTindal, Kirstin, Fiona L. Cousins, Stacey J. Ellery, Kirsten R. Palmer, Adrienne Gordon, Caitlin E. Filby, Caroline E. Gargett, Beverley Vollenhoven, and Miranda L. Davies-Tuck. 2024. "Investigating Menstruation and Adverse Pregnancy Outcomes: Oxymoron or New Frontier? A Narrative Review" Journal of Clinical Medicine 13, no. 15: 4430. https://doi.org/10.3390/jcm13154430