Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy
Abstract
:1. Introduction: History of Biologics
2. Tumor Necrosis Factor-Alpha
3. TNF-α Blockers
3.1. Infliximab
3.2. Etanercept
3.3. Adalimumab
3.4. Golimumab
3.5. Certolizumab Pegol
4. Adverse Events after TNF-α Blocker Use
4.1. Infections
4.2. Demyelinating Disorders
4.3. Drug-Induced Lupus
4.4. Malignancy
4.5. Development of Anti-Drug Antibodies (ADA)
4.6. Other Adverse Events
5. Perspectives on Future Applications of TNF-α Blockers
5.1. TNF-α Blockers in COVID-19 Disease
5.2. Inflammation and Neuropsychiatric Disease
TNF-α Blockers in Neuropsychiatric Disease
5.3. Ongoing Trails Using TNF-α Blockers
6. The Search for Biomarkers
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Köhler, G.; Milstein, C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Ecker, D.M.; Jones, S.D.; Levine, H.L. The Therapeutic Monoclonal Antibody Market. MAbs 2015, 7, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.K.; Bagshawe, K.D.; Melton, R.G.; Sherwood, R.F. Human Immune Response to Monoclonal Antibody-Enzyme Conjugates in ADEPT Pilot Clinical Trial. Cell Biophys. 1992, 21, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Boulianne, G.L.; Hozumi, N.; Shulman, M.J. Production of Functional Chimaeric Mouse/Human Antibody. Nature 1984, 312, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Foster, R.H.; Wiseman, L.R. Abciximab. Drugs 1998, 56, 629–665. [Google Scholar] [CrossRef] [PubMed]
- James, J.S.; Dubs, G. FDA Approves New Kind of Lymphoma Treatment. Food and Drug Administration. AIDS Treat. News 1997, 2–3. [Google Scholar]
- Sharma, V.; Deore, V.D.; Deore, S.V.; Martin, I.G. The New Drug Lag: EU Lags in Review Times of Monoclonal Antibodies. Ther. Innov. Regul. Sci. 2020, 54, 770–774. [Google Scholar] [CrossRef]
- Salles, G.; Barrett, M.; Foà, R.; Maurer, J.; O’Brien, S.; Valente, N.; Wenger, M.; Maloney, D.G. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv. Ther. 2017, 34, 2232–2273. [Google Scholar] [CrossRef] [Green Version]
- Kornbluth, A. Infliximab Approved for Use in Crohnʼs Disease: A Report on the FDA GI Advisory Committee Conference. Inflamm. Bowel Dis. 1998, 4, 328–329. [Google Scholar] [CrossRef]
- Jones, P.T.; Dear, P.H.; Foote, J.; Neuberger, M.S.; Winter, G. Replacing the Complementarity-Determining Regions in a Human Antibody with Those from a Mouse. Nature 1986, 321, 522–525. [Google Scholar] [CrossRef]
- Hwang, W.Y.K.; Foote, J. Immunogenicity of Engineered Antibodies. Methods 2005, 36, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Kuramochi, T.; Igawa, T.; Tsunoda, H.; Hattori, K. Humanization and Simultaneous Optimization of Monoclonal Antibody. In Human Monoclonal Antibodies: Methods and Protocols; Humana: Totowa, NJ, USA, 2019; pp. 213–230. [Google Scholar]
- Monoclonal Antibody Approved for Renal Transplants. Am. J. Health Pharm. 1998, 55, 207. [CrossRef] [PubMed]
- Li, J.; Zhu, Z. Research and Development of next Generation of Antibody-Based Therapeutics. Acta Pharmacol. Sin. 2010, 31, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Feng, J.; Li, Y.; Guo, N.; Shen, B. Humanization of an Anti-Human TNF-α Antibody by Variable Region Resurfacing with the Aid of Molecular Modeling. Mol. Immunol. 2005, 42, 1445–1451. [Google Scholar] [CrossRef]
- Lonberg, N.; Taylor, L.D.; Harding, F.A.; Trounstine, M.; Higgins, K.M.; Schramm, S.R.; Kuo, C.-C.; Mashayekh, R.; Wymore, K.; McCabe, J.G.; et al. Antigen-Specific Human Antibodies from Mice Comprising Four Distinct Genetic Modifications. Nature 1994, 368, 856–859. [Google Scholar] [CrossRef]
- Chao, G.; Cochran, J.R.; Dane Wittrup, K. Fine Epitope Mapping of Anti-Epidermal Growth Factor Receptor Antibodies Through Random Mutagenesis and Yeast Surface Display. J. Mol. Biol. 2004, 342, 539–550. [Google Scholar] [CrossRef]
- Green, L.L.; Hardy, M.C.; Maynard-Currie, C.E.; Tsuda, H.; Louie, D.M.; Mendez, M.J.; Abderrahim, H.; Noguchi, M.; Smith, D.H.; Zeng, Y.; et al. Antigen–Specific Human Monoclonal Antibodies from Mice Engineered with Human Ig Heavy and Light Chain YACs. Nat. Genet. 1994, 7, 13–21. [Google Scholar] [CrossRef]
- Lonberg, N. Human Antibodies from Transgenic Animals. Nat. Biotechnol. 2005, 23, 1117–1125. [Google Scholar] [CrossRef]
- Giusti, R.M.; Shastri, K.A.; Cohen, M.H.; Keegan, P.; Pazdur, R. FDA Drug Approval Summary: Panitumumab (VectibixTM). Oncologist 2007, 12, 577–583. [Google Scholar] [CrossRef]
- Jafari, R.; Zolbanin, N.M.; Rafatpanah, H.; Majidi, J.; Kazemi, T. Fc-Fusion Proteins in Therapy: An Updated View. Curr. Med. Chem. 2017, 24, 1228–1237. [Google Scholar] [CrossRef]
- Zhao, S.; Mysler, E.; Moots, R.J. Etanercept for the Treatment of Rheumatoid Arthritis. Immunotherapy 2018, 10, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Goulet, D.R.; Atkins, W.M. Considerations for the Design of Antibody-Based Therapeutics. J. Pharm. Sci. 2020, 109, 74–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Songa, E.B.; Bendahman, N.; Hammers, R. Naturally Occurring Antibodies Devoid of Light Chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef]
- Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbabi-Ghahroudi, M. Camelid Single-Domain Antibodies: Promises and Challenges as Lifesaving Treatments. Int. J. Mol. Sci. 2022, 23, 5009. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C. Nanobody Approval Gives Domain Antibodies a Boost. Nat. Rev. Drug Discov. 2019, 18, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Jovčevska, I.; Muyldermans, S. The Therapeutic Potential of Nanobodies. BioDrugs 2020, 34, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Keam, S.J. Ozoralizumab: First Approval. Drugs 2023, 83, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Ishiwatari-Ogata, C.; Kyuuma, M.; Ogata, H.; Yamakawa, M.; Iwata, K.; Ochi, M.; Hori, M.; Miyata, N.; Fujii, Y. Ozoralizumab, a Humanized Anti-TNFα NANOBODY® Compound, Exhibits Efficacy Not Only at the Onset of Arthritis in a Human TNF Transgenic Mouse but Also During Secondary Failure of Administration of an Anti-TNFα IgG. Front. Immunol. 2022, 13, 853008. [Google Scholar] [CrossRef]
- Chen, A.Y.; Wolchok, J.D.; Bass, A.R. TNF in the Era of Immune Checkpoint Inhibitors: Friend or Foe? Nat. Rev. Rheumatol. 2021, 17, 213–223. [Google Scholar] [CrossRef]
- Pennica, D.; Nedwin, G.E.; Hayflick, J.S.; Seeburg, P.H.; Derynck, R.; Palladino, M.A.; Kohr, W.J.; Aggarwal, B.B.; Goeddel, D.V. Human Tumour Necrosis Factor: Precursor Structure, Expression and Homology to Lymphotoxin. Nature 1984, 312, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.-Y.; Ge, J.; Wu, Y.; Wen, J.; Tang, X.-H. The Role of ADAM17 in Inflammation-Related Atherosclerosis. J. Cardiovasc. Transl. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J. TNF-Mediated Inflammatory Disease. J. Pathol. 2008, 214, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.-L.; Wei, X.-S.; Zhang, M.; Niu, Y.-R.; Zhou, Q. The Significance of Tumor Necrosis Factor Receptor Type II in CD8+ Regulatory T Cells and CD8+ Effector T Cells. Front. Immunol. 2018, 9, 583. [Google Scholar] [CrossRef] [Green Version]
- Ticha, O.; Slanina, P.; Moos, L.; Stichova, J.; Vlkova, M.; Bekeredjian-Ding, I. TNFR2 Expression Is a Hallmark of Human Memory B Cells with Suppressive Function. Eur. J. Immunol. 2021, 51, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhao, Y.; Zhao, P.; Zhao, L.; Zakaria, J.; Wang, K. Signaling Pathway(s) of TNFR2 Required for the Immunoregulatory Effect of CD4+Foxp3+ Regulatory T Cells. Int. Immunopharmacol. 2022, 108, 108823. [Google Scholar] [CrossRef]
- Varfolomeev, E.; Vucic, D. Intracellular Regulation of TNF Activity in Health and Disease. Cytokine 2018, 101, 26–32. [Google Scholar] [CrossRef]
- Hsu, H.; Xiong, J.; Goeddel, D.V. The TNF Receptor 1-Associated Protein TRADD Signals Cell Death and NF-ΚB Activation. Cell 1995, 81, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.C.; Ye, H.; Hsia, C.; Segal, D.; Rich, R.L.; Liou, H.-C.; Myszka, D.G.; Wu, H. A Novel Mechanism of TRAF Signaling Revealed by Structural and Functional Analyses of the TRADD–TRAF2 Interaction. Cell 2000, 101, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Jackson-Bernitsas, D.G.; Ichikawa, H.; Takada, Y.; Myers, J.N.; Lin, X.L.; Darnay, B.G.; Chaturvedi, M.M.; Aggarwal, B.B. Evidence That TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK Pathway Mediates Constitutive NF-ΚB Activation and Proliferation in Human Head and Neck Squamous Cell Carcinoma. Oncogene 2007, 26, 1385–1397. [Google Scholar] [CrossRef] [Green Version]
- Bender, L.M.; Morgan, M.J.; Thomas, L.R.; Liu, Z.-G.; Thorburn, A. The Adaptor Protein TRADD Activates Distinct Mechanisms of Apoptosis from the Nucleus and the Cytoplasm. Cell Death Differ. 2005, 12, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Dondelinger, Y.; Aguileta, M.A.; Goossens, V.; Dubuisson, C.; Grootjans, S.; Dejardin, E.; Vandenabeele, P.; Bertrand, M.J.M. RIPK3 Contributes to TNFR1-Mediated RIPK1 Kinase-Dependent Apoptosis in Conditions of CIAP1/2 Depletion or TAK1 Kinase Inhibition. Cell Death Differ. 2013, 20, 1381–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choy, E.H.S.; Panayi, G.S. Cytokine Pathways and Joint Inflammation in Rheumatoid Arthritis. N. Engl. J. Med. 2001, 344, 907–916. [Google Scholar] [CrossRef]
- Adegbola, S.O.; Sahnan, K.; Warusavitarne, J.; Hart, A.; Tozer, P. Anti-TNF Therapy in Crohn’s Disease. Int. J. Mol. Sci. 2018, 19, 2244. [Google Scholar] [CrossRef] [Green Version]
- Sands, B.E.; Kaplan, G.G. The Role of TNFα in Ulcerative Colitis. J. Clin. Pharmacol. 2007, 47, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.D.; Wildenberg, M.E.; van den Brink, G.R. Mechanism of Action of Anti-TNF Therapy in Inflammatory Bowel Disease. J. Crohn’s Colitis 2016, 10, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Celis, R.; Cuervo, A.; Ramírez, J.; Cañete, J.D. Psoriatic Synovitis: Singularity and Potential Clinical Implications. Front. Med. 2019, 6, 14. [Google Scholar] [CrossRef]
- Burr, N.E.; Gracie, D.J.; Black, C.J.; Ford, A.C. Efficacy of Biological Therapies and Small Molecules in Moderate to Severe Ulcerative Colitis: Systematic Review and Network Meta-Analysis. Gut 2022, 71, 1976–1987. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Z.; Yang, S.; Chen, X.; Su, W.; Liang, D. Effectiveness and Safety of Anti-Tumor Necrosis Factor-Alpha Agents Treatment in Behcets’ Disease-Associated Uveitis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2020, 11, 941. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Y.; Zhang, L.; Liu, X.; Xue, B.; Liu, B.; Wang, Y.; Ji, Y. Efficacy and Safety of TNF-α Inhibitors for Active Ankylosing Spondylitis Patients: Multiple Treatment Comparisons in a Network Meta-Analysis. Sci. Rep. 2016, 6, 32768. [Google Scholar] [CrossRef] [Green Version]
- Fleischmann, R.; Tongbram, V.; van Vollenhoven, R.; Tang, D.H.; Chung, J.; Collier, D.; Urs, S.; Ndirangu, K.; Wells, G.; Pope, J. Systematic Review and Network Meta-Analysis of the Efficacy and Safety of Tumour Necrosis Factor Inhibitor–Methotrexate Combination Therapy versus Triple Therapy in Rheumatoid Arthritis. RMD Open 2017, 3, e000371. [Google Scholar] [CrossRef] [PubMed]
- Malaviya, A.; Mehra, N. A Fascinating Story of the Discovery & Development of Biologicals for Use in Clinical Medicine. Indian J. Med. Res. 2018, 148, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Zidi, I.; Mestiri, S.; Bartegi, A.; Amor, N. Ben TNF-α and Its Inhibitors in Cancer. Med. Oncol. 2010, 27, 185–198. [Google Scholar] [CrossRef] [PubMed]
- St. Clair, E.W.; van der Heijde, D.M.F.M.; Smolen, J.S.; Maini, R.N.; Bathon, J.M.; Emery, P.; Keystone, E.; Schiff, M.; Kalden, J.R.; Wang, B.; et al. Combination of Infliximab and Methotrexate Therapy for Early Rheumatoid Arthritis: A Randomized, Controlled Trial. Arthritis Rheum. 2004, 50, 3432–3443. [Google Scholar] [CrossRef]
- Targan, S.R.; Hanauer, S.B.; van Deventer, S.J.H.; Mayer, L.; Present, D.H.; Braakman, T.; DeWoody, K.L.; Schaible, T.F.; Rutgeerts, P.J. A Short-Term Study of Chimeric Monoclonal Antibody CA2 to Tumor Necrosis Factor α for Crohn’s Disease. N. Engl. J. Med. 1997, 337, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Bratcher, J.M.; Korelitz, B.I. Toxicity of Infliximab in the Course of Treatment of Crohn’s Disease. Expert Opin. Drug Saf. 2006, 5, 9–16. [Google Scholar] [CrossRef]
- Goffe, B.; Cather, J.C. Etanercept: An Overview. J. Am. Acad. Dermatol. 2003, 49, 105–111. [Google Scholar] [CrossRef]
- Moreland, L.W. Etanercept Therapy in Rheumatoid Arthritis. Ann. Intern. Med. 1999, 130, 478. [Google Scholar] [CrossRef]
- Horiuchi, T.; Mitoma, H.; Harashima, S.-i.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-: Structure, Function and Interaction with Anti-TNF Agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef] [Green Version]
- Koroleva, E.P.; Fu, Y.-X.; Tumanov, A.V. Lymphotoxin in Physiology of Lymphoid Tissues—Implication for Antiviral Defense. Cytokine 2018, 101, 39–47. [Google Scholar] [CrossRef]
- Goffe, B. Etanercept (Enbrel)—An Update. Skin Ther. Lett. 2004, 9, 1–4. [Google Scholar]
- Recombinant DNA Product for Rheumatoid Arthritis; FDA Consumer: Rockville, MD, USA, 2003; Volume 37, p. 5.
- Nelson, A.L.; Dhimolea, E.; Reichert, J.M. Development Trends for Human Monoclonal Antibody Therapeutics. Nat. Rev. Drug Discov. 2010, 9, 767–774. [Google Scholar] [CrossRef] [PubMed]
- den Broeder, A.; van de Putte, L.; Rau, R.; Schattenkirchner, M.; Van Riel, P.; Sander, O.; Binder, C.; Fenner, H.; Bankmann, Y.; Velagapudi, R.; et al. A Single Dose, Placebo Controlled Study of the Fully Human Anti-Tumor Necrosis Factor-Alpha Antibody Adalimumab (D2E7) in Patients with Rheumatoid Arthritis. J. Rheumatol. 2002, 29, 2288–2298. [Google Scholar] [PubMed]
- Wallis, R.S. Tumour Necrosis Factor Antagonists: Structure, Function, and Tuberculosis Risks. Lancet Infect. Dis. 2008, 8, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Vu, T.; Lee, H.; Hu, C.; Ling, J.; Yan, H.; Baker, D.; Beutler, A.; Pendley, C.; Wagner, C.; et al. Population Pharmacokinetics of Golimumab, an Anti-Tumor Necrosis Factor-α Human Monoclonal Antibody, in Patients With Psoriatic Arthritis. J. Clin. Pharmacol. 2009, 49, 1056–1070. [Google Scholar] [CrossRef]
- Shealy, D.J.; Cai, A.; Staquet, K.; Baker, A.; Lacy, E.R.; Johns, L.; Vafa, O.; Gunn, G.; Tam, S.; Sague, S.; et al. Characterization of Golimumab, a Human Monoclonal Antibody Specific for Human Tumor Necrosis Factor α. MAbs 2010, 2, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, V.; Plosker, G.L. Golimumab. BioDrugs 2009, 23, 125–135. [Google Scholar] [CrossRef]
- Smolen, J.S.; Kay, J.; Doyle, M.K.; Landewé, R.; Matteson, E.L.; Wollenhaupt, J.; Gaylis, N.; Murphy, F.T.; Neal, J.S.; Zhou, Y.; et al. Golimumab in Patients with Active Rheumatoid Arthritis after Treatment with Tumour Necrosis Factor α Inhibitors (GO-AFTER Study): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase III Trial. Lancet 2009, 374, 210–221. [Google Scholar] [CrossRef]
- Lang, L. FDA Approves Cimzia to Treat Crohn’s Disease. Gastroenterology 2008, 134, 1819. [Google Scholar] [CrossRef]
- Palframan, R.; Airey, M.; Moore, A.; Vugler, A.; Nesbitt, A. Use of Biofluorescence Imaging to Compare the Distribution of Certolizumab Pegol, Adalimumab, and Infliximab in the Inflamed Paws of Mice with Collagen-Induced Arthritis. J. Immunol. Methods 2009, 348, 36–41. [Google Scholar] [CrossRef]
- Nesbitt, A.; Fossati, G.; Bergin, M.; Stephens, P.; Stephens, S.; Foulkes, R.; Brown, D.; Robinson, M.; Bourne, T. Mechanism of Action of Certolizumab Pegol (CDP870): In Vitro Comparison with Other Anti-Tumor Necrosis Factor α Agents. Inflamm. Bowel Dis. 2007, 13, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Lis, K.; Kuzawińska, O.; Bałkowiec-Iskra, E. State of the Art Paper Tumor Necrosis Factor Inhibitors – State of Knowledge. Arch. Med. Sci. 2014, 6, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Verazza, S.; Davì, S.; Consolaro, A.; Bovis, F.; Insalaco, A.; Magni-Manzoni, S.; Nicolai, R.; Marafon, D.P.; De Benedetti, F.; Gerloni, V.; et al. Disease Status, Reasons for Discontinuation and Adverse Events in 1038 Italian Children with Juvenile Idiopathic Arthritis Treated with Etanercept. Pediatr. Rheumatol. 2016, 14, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastore, S.; Naviglio, S.; Canuto, A.; Lepore, L.; Martelossi, S.; Ventura, A.; Taddio, A. Serious Adverse Events Associated with Anti-Tumor Necrosis Factor Alpha Agents in Pediatric-Onset Inflammatory Bowel Disease and Juvenile Idiopathic Arthritis in A Real-Life Setting. Pediatr. Drugs 2018, 20, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Foeldvari, I.; Constantin, T.; Vojinović, J.; Horneff, G.; Chasnyk, V.; Dehoorne, J.; Panaviene, V.; Sušić, G.; Stanevicha, V.; Kobusinska, K.; et al. Etanercept Treatment for Extended Oligoarticular Juvenile Idiopathic Arthritis, Enthesitis-Related Arthritis, or Psoriatic Arthritis: 6-Year Efficacy and Safety Data from an Open-Label Trial. Arthritis Res. Ther. 2019, 21, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaltsonoudis, E.; Pelechas, E.; Voulgari, P.V.; Drosos, A.A. Neuroinflammatory Events after Anti-TNFα Therapy. Ann. Rheum. Dis. 2022, 81, e73. [Google Scholar] [CrossRef]
- Bonovas, S.; Minozzi, S.; Lytras, T.; González-Lorenzo, M.; Pecoraro, V.; Colombo, S.; Polloni, I.; Moja, L.; Cinquini, M.; Marino, V.; et al. Risk of Malignancies Using Anti-TNF Agents in Rheumatoid Arthritis, Psoriatic Arthritis, and Ankylosing Spondylitis: A Systematic Review and Meta-Analysis. Expert Opin. Drug Saf. 2016, 15, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Wu, X.; Zhou, J.; Meng, D.; Zhu, P. Risk of Adverse Events After Anti-TNF Treatment for Inflammatory Rheumatological Disease. A Meta-Analysis. Front. Pharmacol. 2021, 12, 746396. [Google Scholar] [CrossRef] [PubMed]
- Doran, M.F.; Crowson, C.S.; Pond, G.R.; O’Fallon, W.M.; Gabriel, S.E. Frequency of Infection in Patients with Rheumatoid Arthritis Compared with Controls: A Population-Based Study. Arthritis Rheum. 2002, 46, 2287–2293. [Google Scholar] [CrossRef]
- Becker, I.; Horneff, G. Risk of Serious Infection in Juvenile Idiopathic Arthritis Patients Associated With Tumor Necrosis Factor Inhibitors and Disease Activity in the German Biologics in Pediatric Rheumatology Registry. Arthritis Care Res. 2017, 69, 552–560. [Google Scholar] [CrossRef]
- Lee, W.-J.; Lee, T.A.; Suda, K.J.; Calip, G.S.; Briars, L.; Schumock, G.T. Risk of Serious Bacterial Infection Associated with Tumour Necrosis Factor-Alpha Inhibitors in Children with Juvenile Idiopathic Arthritis. Rheumatology 2018, 57, 273–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calzada-Hernández, J.; Anton-López, J.; Bou-Torrent, R.; Iglesias-Jiménez, E.; Ricart-Campos, S.; Martín de Carpi, J.; Torrente-Segarra, V.; Sánchez-Manubens, J.; Giménez-Roca, C.; Rozas-Quesada, L.; et al. Tuberculosis in Pediatric Patients Treated with Anti-TNFα Drugs: A Cohort Study. Pediatr. Rheumatol. 2015, 13, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannone, F.; Cantini, F.; Lapadula, G. Diagnosis of Latent Tuberculosis and Prevention of Reactivation in Rheumatic Patients Receiving Biologic Therapy: International Recommendations. J. Rheumatol. Suppl. 2014, 91, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Furst, D.E.; Bharat, A.; Curtis, J.R.; Kavanaugh, A.F.; Kremer, J.M.; Moreland, L.W.; O’Dell, J.; Winthrop, K.L.; Beukelman, T.; et al. 2012 Update of the 2008 American College of Rheumatology Recommendations for the Use of Disease-Modifying Antirheumatic Drugs and Biologic Agents in the Treatment of Rheumatoid Arthritis. Arthritis Care Res. 2012, 64, 625–639. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Bae, S.-C.; Song, G.G. Hepatitis B Virus Reactivation in HBsAg-Positive Patients with Rheumatic Diseases Undergoing Anti-Tumor Necrosis Factor Therapy or DMARDs. Int. J. Rheum. Dis. 2013, 16, 527–531. [Google Scholar] [CrossRef]
- Shah, R.; Ho, E.Y.; Kramer, J.R.; Richardson, P.; Sansgiry, S.; El-Serag, H.B.; Hou, J.K. Hepatitis B Virus Screening and Reactivation in a National VA Cohort of Patients with Inflammatory Bowel Disease Treated with Tumor Necrosis Factor Antagonists. Dig. Dis. Sci. 2018, 63, 1551–1557. [Google Scholar] [CrossRef]
- Heijstek, M.W.; Ott de Bruin, L.M.; Bijl, M.; Borrow, R.; van der Klis, F.; Koné-Paut, I.; Fasth, A.; Minden, K.; Ravelli, A.; Abinun, M.; et al. EULAR Recommendations for Vaccination in Paediatric Patients with Rheumatic Diseases. Ann. Rheum. Dis. 2011, 70, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Solomon, A.J.; Spain, R.I.; Kruer, M.C.; Bourdette, D. Inflammatory Neurological Disease in Patients Treated with Tumor Necrosis Factor Alpha Inhibitors. Mult. Scler. J. 2011, 17, 1472–1487. [Google Scholar] [CrossRef]
- Piusińska-Macoch, R. Neurological Complications during Treatment of the Tumor Necrosis Alpha Inhibitors. Pol. Merkur. Lekarski 2013, 34, 293–297. [Google Scholar]
- Avasarala, J.; Guduru, Z.; McLouth, C.J.; Wilburn, A.; Talbert, J.; Sutton, P.; Sokola, B.S. Use of Anti-TNF-α Therapy in Crohn’s Disease Is Associated with Increased Incidence of Multiple Sclerosis. Mult. Scler. Relat. Disord. 2021, 51, 102942. [Google Scholar] [CrossRef]
- Kunchok, A.; Aksamit, A.J.; Davis, J.M.; Kantarci, O.H.; Keegan, B.M.; Pittock, S.J.; Weinshenker, B.G.; McKeon, A. Association Between Tumor Necrosis Factor Inhibitor Exposure and Inflammatory Central Nervous System Events. JAMA Neurol. 2020, 77, 937. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.; Busmail, A.; Penumetcha, S.S.; Ahluwalia, S.; Irfan, R.; Khan, S.A.; Rohit Reddy, S.; Vasquez Lopez, M.E.; Mohammed, L. Tumor Necrosis Factor Alpha Blockade and Multiple Sclerosis: Exploring New Avenues. Cureus 2021. [Google Scholar] [CrossRef] [PubMed]
- Arnett, H.A.; Mason, J.; Marino, M.; Suzuki, K.; Matsushima, G.K.; Ting, J.P.-Y. TNFα Promotes Proliferation of Oligodendrocyte Progenitors and Remyelination. Nat. Neurosci. 2001, 4, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- van Oosten, B.W.; Barkhof, F.; Truyen, L.; Boringa, J.B.; Bertelsmann, F.W.; von Blomberg, B.M.E.; Woody, J.N.; Hartung, H.-P.; Polman, C.H. Increased MRI Activity and Immune Activation in Two Multiple Sclerosis Patients Treated with the Monoclonal Anti-Tumor Necrosis Factor Antibody CA2. Neurology 1996, 47, 1531–1534. [Google Scholar] [CrossRef]
- Kunzmann, S.; Warmuth-Metz, M.; Girschick, H.J. Cerebral Demyelination in Association with TNF-inhibition Therapy in a 5-year-old Girl with Aseptic Meningitis as the First Symptom of Still’s Disease. Scand. J. Rheumatol. 2005, 34, 76–78. [Google Scholar] [CrossRef]
- Costa, M.F.; Said, N.R.; Zimmermann, B. Drug-Induced Lupus Due to Anti-Tumor Necrosis Factor α Agents. Semin. Arthritis Rheum. 2008, 37, 381–387. [Google Scholar] [CrossRef]
- Solhjoo, M.; Goyal, A.; Chauhan, K. Drug-Induced Lupus Erythematosus; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Williams, E.L.; Gadola, S.; Edwards, C.J. Anti-TNF-Induced Lupus. Rheumatology 2009, 48, 716–720. [Google Scholar] [CrossRef] [Green Version]
- Via, C.S.; Shustov, A.; Rus, V.; Lang, T.; Nguyen, P.; Finkelman, F.D. In Vivo Neutralization of TNF-α Promotes Humoral Autoimmunity by Preventing the Induction of CTL. J. Immunol. 2001, 167, 6821–6826. [Google Scholar] [CrossRef] [Green Version]
- Saka, Y.; Taniguchi, Y.; Nagahara, Y.; Yamashita, R.; Karasawa, M.; Naruse, T.; Watanabe, Y. Rapidly Progressive Lupus Nephritis Associated with Golimumab in a Patient with Systemic Lupus Erythematosus and Rheumatoid Arthritis. Lupus 2017, 26, 447–448. [Google Scholar] [CrossRef] [Green Version]
- Bykerk, V.P.; Cush, J.; Winthrop, K.; Calabrese, L.; Lortholary, O.; de Longueville, M.; van Vollenhoven, R.; Mariette, X. Update on the Safety Profile of Certolizumab Pegol in Rheumatoid Arthritis: An Integrated Analysis from Clinical Trials. Ann. Rheum. Dis. 2015, 74, 96–103. [Google Scholar] [CrossRef]
- Shovman, O.; Tamar, S.; Amital, H.; Watad, A.; Shoenfeld, Y. Diverse Patterns of Anti-TNF-α-Induced Lupus: Case Series and Review of the Literature. Clin. Rheumatol. 2018, 37, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, L.; Mertz, P.; Gavand, P.-E.; Martin, T.; Chasset, F.; Tebacher-Alt, M.; Lambert, A.; Muller, C.; Sibilia, J.; Lebrun-Vignes, B.; et al. Drug-Induced Systemic Lupus: Revisiting the Ever-Changing Spectrum of the Disease Using the WHO Pharmacovigilance Database. Ann. Rheum. Dis. 2019, 78, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Wang, Y.; Tian, W.; Huang, Y.-H.; Jiang, M. The Incidence, Clinical Characteristics and Serological Characteristics of Anti-Tumor Necrosis Factor-Induced Lupus in Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Int. Immunopharmacol. 2022, 112, 109269. [Google Scholar] [CrossRef] [PubMed]
- Bongartz, T.; Sutton, A.J.; Sweeting, M.J.; Buchan, I.; Matteson, E.L.; Montori, V. Anti-TNF Antibody Therapy in Rheumatoid Arthritis and the Risk of Serious Infections and Malignancies. JAMA 2006, 295, 2275. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; Mease, P.; Dijkmans, B.A.C.; Gordon, K.; Lovell, D.; Panaccione, R.; Perez, J.; Pangan, A.L. Adalimumab Safety and Mortality Rates from Global Clinical Trials of Six Immune-Mediated Inflammatory Diseases. Ann. Rheum. Dis. 2009, 68, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Adalsteinsson, J.A.; Muzumdar, S.; Waldman, R.; Hu, C.; Wu, R.; Ratner, D.; Ungar, J.; Silverberg, J.I.; Olafsdottir, G.H.; Kristjansson, A.K.; et al. Anti–Tumor Necrosis Factor Therapy Is Associated with Increased in Situ Squamous Cell Carcinoma of the Skin: A Population-Based Case-Control Study. J. Am. Acad. Dermatol. 2021, 84, 1760–1762. [Google Scholar] [CrossRef]
- Calip, G.S.; Patel, P.R.; Adimadhyam, S.; Xing, S.; Wu, Z.; Sweiss, K.; Schumock, G.T.; Lee, T.A.; Chiu, B.C.-H. Tumor Necrosis Factor-Alpha Inhibitors and Risk of Non-Hodgkin Lymphoma in a Cohort of Adults with Rheumatologic Conditions. Int. J. Cancer 2018, 143, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.; D’Amico, F.; Bonovas, S.; Danese, S.; Peyrin-Biroulet, L. TNF Inhibitors and Risk of Malignancy in Patients with Inflammatory Bowel Diseases: A Systematic Review. J. Crohn’s Colitis 2021, 15, 840–859. [Google Scholar] [CrossRef]
- Choi, B.; Park, H.J.; Song, Y.-K.; Oh, Y.-J.; Kim, I.-W.; Oh, J.M. The Risk of Newly Diagnosed Cancer in Patients with Rheumatoid Arthritis by TNF Inhibitor Use: A Nationwide Cohort Study. Arthritis Res. Ther. 2022, 24, 191. [Google Scholar] [CrossRef]
- Mercer, L.K.; Lunt, M.; Low, A.L.S.; Dixon, W.G.; Watson, K.D.; Symmons, D.P.M.; Hyrich, K.L. Risk of Solid Cancer in Patients Exposed to Anti-Tumour Necrosis Factor Therapy: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 2015, 74, 1087–1093. [Google Scholar] [CrossRef]
- Franks, A.L.; Slansky, J.E. Multiple Associations between a Broad Spectrum of Autoimmune Diseases, Chronic Inflammatory Diseases and Cancer. Anticancer Res. 2012, 32, 1119–1136. [Google Scholar] [PubMed]
- Beukelman, T.; Xie, F.; Chen, L.; Horton, D.B.; Lewis, J.D.; Mamtani, R.; Mannion, M.M.; Saag, K.G.; Curtis, J.R. Risk of Malignancy Associated with Paediatric Use of Tumour Necrosis Factor Inhibitors. Ann. Rheum. Dis. 2018, 77, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Draghi, A.; Borch, T.H.; Radic, H.D.; Chamberlain, C.A.; Gokuldass, A.; Svane, I.M.; Donia, M. Differential Effects of Corticosteroids and Anti-TNF on Tumor-specific Immune Responses: Implications for the Management of IrAEs. Int. J. Cancer 2019, 145, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Wong, U.; Cross, R.K. Primary and Secondary Nonresponse to Infliximab: Mechanisms and Countermeasures. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Fine, S.; Papamichael, K.; Cheifetz, A.S. Etiology and Management of Lack or Loss of Response to Anti-Tumor Necrosis Factor Therapy in Patients With Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2019, 15, 656–665. [Google Scholar]
- Atiqi, S.; Hooijberg, F.; Loeff, F.C.; Rispens, T.; Wolbink, G.J. Immunogenicity of TNF-Inhibitors. Front. Immunol. 2020, 11, 312. [Google Scholar] [CrossRef]
- Jani, M.; Dixon, W.G.; Chinoy, H. Drug Safety and Immunogenicity of Tumour Necrosis Factor Inhibitors: The Story so Far. Rheumatology 2018, 57, 1896–1907. [Google Scholar] [CrossRef] [Green Version]
- Maneiro, J.R.; Salgado, E.; Gomez-Reino, J.J. Immunogenicity of Monoclonal Antibodies Against Tumor Necrosis Factor Used in Chronic Immune-Mediated Inflammatory Conditions. JAMA Intern. Med. 2013, 173, 1416. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.S.; Borazan, N.; Barroso, N.; Duan, L.; Taroumian, S.; Kretzmann, B.; Bardales, R.; Elashoff, D.; Vangala, S.; Furst, D.E. Comparative Immunogenicity of TNF Inhibitors: Impact on Clinical Efficacy and Tolerability in the Management of Autoimmune Diseases. A Systematic Review and Meta-Analysis. BioDrugs 2015, 29, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Bodio, C.; Grossi, C.; Pregnolato, F.; Favalli, E.G.; Biggioggero, M.; Marchesoni, A.; Murgo, A.; Filippini, M.; Migliorini, P.; Caporali, R.; et al. Personalized Medicine in Rheumatoid Arthritis: How Immunogenicity Impacts Use of TNF Inhibitors. Autoimmun. Rev. 2020, 19, 102509. [Google Scholar] [CrossRef] [PubMed]
- Vincent, F.B.; Morand, E.F.; Murphy, K.; Mackay, F.; Mariette, X.; Marcelli, C. Antidrug Antibodies (ADAb) to Tumour Necrosis Factor (TNF)-Specific Neutralising Agents in Chronic Inflammatory Diseases: A Real Issue, a Clinical Perspective. Ann. Rheum. Dis. 2013, 72, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Klareskog, L.; Gaubitz, M.; Rodríguez-Valverde, V.; Malaise, M.; Dougados, M.; Wajdula, J. Etanercept Study 301 Investigators Assessment of Long-Term Safety and Efficacy of Etanercept in a 5-Year Extension Study in Patients with Rheumatoid Arthritis. Clin. Exp. Rheumatol. 2011, 29, 238–247. [Google Scholar] [PubMed]
- Berkhout, L.C.; L’Ami, M.J.; Wolbink, G.J.; Rispens, T. Comment on ‘Sustained Discontinuation of Infliximab with a Raising-Dose Strategy after Obtaining Remission in Patients with Rheumatoid Arthritis: The RRRR Study, a Randomised Controlled Trial’ by Tanaka et Al. Ann. Rheum. Dis. 2021, 80, e172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colman, R.J.; Portocarrero-Castillo, A.; Chona, D.; Hellmann, J.; Minar, P.; Rosen, M.J. Favorable Outcomes and Anti-TNF Durability After Addition of an Immunomodulator for Anti-Drug Antibodies in Pediatric IBD Patients. Inflamm. Bowel Dis. 2021, 27, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Murad, M.H.; Fumery, M.; Sedano, R.; Jairath, V.; Panaccione, R.; Sandborn, W.J.; Ma, C. Comparative Efficacy and Safety of Biologic Therapies for Moderate-to-Severe Crohn’s Disease: A Systematic Review and Network Meta-Analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 1002–1014. [Google Scholar] [CrossRef]
- Fiorino, G.; Danese, S. Adalimumab and Azathioprine Combination Therapy for Crohn’s Disease: A Shining Diamond? J. Crohn’s Colitis 2016, 10, 1257–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Schouwenburg, P.A.; Krieckaert, C.L.; Rispens, T.; Aarden, L.; Wolbink, G.J.; Wouters, D. Long-Term Measurement of Anti-Adalimumab Using PH-Shift-Anti-Idiotype Antigen Binding Test Shows Predictive Value and Transient Antibody Formation. Ann. Rheum. Dis. 2013, 72, 1680–1686. [Google Scholar] [CrossRef] [Green Version]
- Steenholdt, C.; Al-khalaf, M.; Brynskov, J.; Bendtzen, K.; Thomsen, O.; Ainsworth, M.A. Clinical Implications of Variations in Anti-Infliximab Antibody Levels in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2012, 18, 2209–2217. [Google Scholar] [CrossRef]
- Cludts, I.; Spinelli, F.R.; Morello, F.; Hockley, J.; Valesini, G.; Wadhwa, M. Reprint of “Anti-Therapeutic Antibodies and Their Clinical Impact in Patients Treated with the TNF Antagonist Adalimumab”. Cytokine 2018, 101, 70–77. [Google Scholar] [CrossRef]
- Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-α, in Patients With Moderate-to-Severe Heart Failure. Circulation 2003, 107, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Mann, D.L.; McMurray, J.J.V.; Packer, M.; Swedberg, K.; Borer, J.S.; Colucci, W.S.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted Anticytokine Therapy in Patients With Chronic Heart Failure. Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, E.; Kelleher, T.B.; Lahiff, C. De Novo Anti-TNF-α-Induced Congestive Heart Failure in a Patient With Turner Syndrome and Crohn’s Disease. Inflamm. Bowel Dis. 2020, 26, e161–e162. [Google Scholar] [CrossRef] [PubMed]
- Smeele, H.T.W.; Röder, E.; Mulders, A.G.M.G.J.; Steegers, E.A.P.; Dolhain, R.J.E.M. Tumour Necrosis Factor Inhibitor Use during Pregnancy Is Associated with Increased Birth Weight of Rheumatoid Arthritis Patients’ Offspring. Ann. Rheum. Dis. 2022, 81, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Beltagy, A.; Aghamajidi, A.; Trespidi, L.; Ossola, W.; Meroni, P.L. Biologics During Pregnancy and Breastfeeding Among Women With Rheumatic Diseases: Safety Clinical Evidence on the Road. Front. Pharmacol. 2021, 12, 621247. [Google Scholar] [CrossRef] [PubMed]
- Julsgaard, M.; Christensen, L.A.; Gibson, P.R.; Gearry, R.B.; Fallingborg, J.; Hvas, C.L.; Bibby, B.M.; Uldbjerg, N.; Connell, W.R.; Rosella, O.; et al. Concentrations of Adalimumab and Infliximab in Mothers and Newborns, and Effects on Infection. Gastroenterology 2016, 151, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Levin, E.; Wu, J.J.; Koo, J.; Liao, W. An Update on Drug–Drug Interactions with Biologics for the Treatment of Moderate-to-Severe Psoriasis. J. Dermatolog. Treat. 2014, 25, 87–89. [Google Scholar] [CrossRef]
- Etanercept plus Standard Therapy for Wegener’s Granulomatosis. N. Engl. J. Med. 2005, 352, 351–361. [CrossRef]
- Bradley, B.T.; Maioli, H.; Johnston, R.; Chaudhry, I.; Fink, S.L.; Xu, H.; Najafian, B.; Deutsch, G.; Lacy, J.M.; Williams, T.; et al. Histopathology and Ultrastructural Findings of Fatal COVID-19 Infections in Washington State: A Case Series. Lancet 2020, 396, 320–332. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-NCoV Infection. Front. Med. 2020, 14, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Pacheco, M.; Silva, P.L.; Cruz, F.F.; Battaglini, D.; Robba, C.; Pelosi, P.; Morales, M.M.; Caruso Neves, C.; Rocco, P.R.M. Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Front. Physiol. 2021, 12, 593223. [Google Scholar] [CrossRef]
- Soy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment. Clin. Rheumatol. 2020, 39, 2085–2094. [Google Scholar] [CrossRef]
- Gianfrancesco, M.; Hyrich, K.L.; Al-Adely, S.; Carmona, L.; Danila, M.I.; Gossec, L.; Izadi, Z.; Jacobsohn, L.; Katz, P.; Lawson-Tovey, S.; et al. Characteristics Associated with Hospitalisation for COVID-19 in People with Rheumatic Disease: Data from the COVID-19 Global Rheumatology Alliance Physician-Reported Registry. Ann. Rheum. Dis. 2020, 79, 859–866. [Google Scholar] [CrossRef]
- Ungaro, R.C.; Brenner, E.J.; Agrawal, M.; Zhang, X.; Kappelman, M.D.; Colombel, J.-F.; Gearry, R.B.; Kaplan, G.G.; Kissous-Hunt, M.; Lewis, J.D.; et al. Impact of Medications on COVID-19 Outcomes in Inflammatory Bowel Disease: Analysis of More Than 6000 Patients From an International Registry. Gastroenterology 2022, 162, 316–319.e5. [Google Scholar] [CrossRef] [PubMed]
- SECURE-IBD. Surveillance Epidemiology of Coronavirus under Research Exclusion. 2022. Available online: https://covidibd.org/current-data/ (accessed on 2 January 2023).
- Sparks, J.A.; Wallace, Z.S.; Seet, A.M.; Gianfrancesco, M.A.; Izadi, Z.; Hyrich, K.L.; Strangfeld, A.; Gossec, L.; Carmona, L.; Mateus, E.F.; et al. Associations of Baseline Use of Biologic or Targeted Synthetic DMARDs with COVID-19 Severity in Rheumatoid Arthritis: Results from the COVID-19 Global Rheumatology Alliance Physician Registry. Ann. Rheum. Dis. 2021, 80, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Lau, L.H.; Chanchlani, N.; Kennedy, N.A.; Ng, S.C. Recent Advances in Clinical Practice: Management of Inflammatory Bowel Disease during the COVID-19 Pandemic. Gut 2022, 71, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Edelman-Klapper, H.; Zittan, E.; Bar-Gil Shitrit, A.; Rabinowitz, K.M.; Goren, I.; Avni-Biron, I.; Ollech, J.E.; Lichtenstein, L.; Banai-Eran, H.; Yanai, H.; et al. Lower Serologic Response to COVID-19 MRNA Vaccine in Patients With Inflammatory Bowel Diseases Treated With Anti-TNFα. Gastroenterology 2022, 162, 454–467. [Google Scholar] [CrossRef]
- Basile, M.S.; Ciurleo, R.; Bramanti, A.; Petralia, M.C.; Fagone, P.; Nicoletti, F.; Cavalli, E. Cognitive Decline in Rheumatoid Arthritis: Insight into the Molecular Pathogenetic Mechanisms. Int. J. Mol. Sci. 2021, 22, 1185. [Google Scholar] [CrossRef]
- Moyse, E.; Krantic, S.; Djellouli, N.; Roger, S.; Angoulvant, D.; Debacq, C.; Leroy, V.; Fougere, B.; Aidoud, A. Neuroinflammation: A Possible Link Between Chronic Vascular Disorders and Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 352. [Google Scholar] [CrossRef]
- Müller, N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophr. Bull. 2018, 44, 973–982. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.E.; Teixeira, A.L. Inflammation in Psychiatric Disorders: What Comes First? Ann. N. Y. Acad. Sci. 2019, 1437, 57–67. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Cunningham, C. Microglia and Neurodegeneration: The Role of Systemic Inflammation. Glia 2013, 61, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Galea, I. The Blood–Brain Barrier in Systemic Infection and Inflammation. Cell. Mol. Immunol. 2021, 18, 2489–2501. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Bao, J.; Bai, Q.; Wang, G. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020, 11, 1024. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Dimick, M.K.; Fiksenbaum, L.; Jeong, H.; Birmaher, B.; Kennedy, J.L.; Lanctôt, K.; Levitt, A.J.; Miller, G.E.; Schaffer, A.; et al. Inflammatory Markers, Brain-Derived Neurotrophic Factor, and the Symptomatic Course of Adolescent Bipolar Disorder: A Prospective Repeated-Measures Study. Brain. Behav. Immun. 2022, 100, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Enache, D.; Pariante, C.M.; Mondelli, V. Markers of Central Inflammation in Major Depressive Disorder: A Systematic Review and Meta-Analysis of Studies Examining Cerebrospinal Fluid, Positron Emission Tomography and Post-Mortem Brain Tissue. Brain. Behav. Immun. 2019, 81, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Hidese, S.; Hattori, K.; Sasayama, D.; Tsumagari, T.; Miyakawa, T.; Matsumura, R.; Yokota, Y.; Ishida, I.; Matsuo, J.; Yoshida, S.; et al. Cerebrospinal Fluid Inflammatory Cytokine Levels in Patients With Major Psychiatric Disorders: A Multiplex Immunoassay Study. Front. Pharmacol. 2021, 11, 594394. [Google Scholar] [CrossRef]
- Petralia, M.C.; Mazzon, E.; Fagone, P.; Basile, M.S.; Lenzo, V.; Quattropani, M.C.; Bendtzen, K.; Nicoletti, F. Pathogenic Contribution of the Macrophage Migration Inhibitory Factor Family to Major Depressive Disorder and Emerging Tailored Therapeutic Approaches. J. Affect. Disord. 2020, 263, 15–24. [Google Scholar] [CrossRef]
- Stosic-Grujicic, S.; Stojanovic, I.; Nicoletti, F. MIF in Autoimmunity and Novel Therapeutic Approaches. Autoimmun. Rev. 2009, 8, 244–249. [Google Scholar] [CrossRef]
- Das, R.; Emon, M.P.Z.; Shahriar, M.; Nahar, Z.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, S.N.; Islam, M.R. Higher Levels of Serum IL-1β and TNF-α Are Associated with an Increased Probability of Major Depressive Disorder. Psychiatry Res. 2021, 295, 113568. [Google Scholar] [CrossRef]
- Mooney, J.J.; Brady, R.O. Lithium + Colchicine. J. Clin. Psychopharmacol. 2018, 38, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Kenis, G.; Maes, M. Effects of Antidepressants on the Production of Cytokines. Int. J. Neuropsychopharmacol. 2002, 5, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, F.; Poletti, S.; Hoogenboezem, T.A.; Mazza, E.; Ambrée, O.; de Wit, H.; Wijkhuijs, A.J.M.; Locatelli, C.; Bollettini, I.; Colombo, C.; et al. Inflammatory Cytokines Influence Measures of White Matter Integrity in Bipolar Disorder. J. Affect. Disord. 2016, 202, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brymer, K.J.; Fenton, E.Y.; Kalynchuk, L.E.; Caruncho, H.J. Peripheral Etanercept Administration Normalizes Behavior, Hippocampal Neurogenesis, and Hippocampal Reelin and GABAA Receptor Expression in a Preclinical Model of Depression. Front. Pharmacol. 2018, 9, 121. [Google Scholar] [CrossRef]
- Alshammari, M.A.; Khan, M.R.; Majid Mahmood, H.; Alshehri, A.O.; Alasmari, F.F.; Alqahtani, F.M.; Alasmari, A.F.; Alsharari, S.D.; Alhossan, A.; Ahmad, S.F.; et al. Systemic TNF-α Blockade Attenuates Anxiety and Depressive-like Behaviors in Db/Db Mice through Downregulation of Inflammatory Signaling in Peripheral Immune Cells. Saudi Pharm. J. 2020, 28, 621–629. [Google Scholar] [CrossRef]
- Torres-Acosta, N.; O’Keefe, J.H.; O’Keefe, E.L.; Isaacson, R.; Small, G. Therapeutic Potential of TNF-α Inhibition for Alzheimer’s Disease Prevention. J. Alzheimer’s Dis. 2020, 78, 619–626. [Google Scholar] [CrossRef]
- Boufidou, F.; Nikolaou, C. Anti-Inflammatory Medication as Adjunctive Antidepressive Treatment. Psychiatriki 2016, 27, 106–117. [Google Scholar] [CrossRef]
- Mansur, R.B.; Subramaniapillai, M.; Lee, Y.; Pan, Z.; Carmona, N.E.; Shekotikhina, M.; Iacobucci, M.; Rodrigues, N.; Nasri, F.; Rashidian, H.; et al. Leptin Mediates Improvements in Cognitive Function Following Treatment with Infliximab in Adults with Bipolar Depression. Psychoneuroendocrinology 2020, 120, 104779. [Google Scholar] [CrossRef]
- Mansur, R.B.; Subramaniapillai, M.; Lee, Y.; Pan, Z.; Carmona, N.E.; Shekotikhina, M.; Iacobucci, M.; Rodrigues, N.; Nasri, F.; Rosenblat, J.D.; et al. Effects of Infliximab on Brain Neurochemistry of Adults with Bipolar Depression. J. Affect. Disord. 2021, 281, 61–66. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Subramaniapillai, M.; Lee, Y.; Pan, Z.; Carmona, N.E.; Shekotikhina, M.; Rosenblat, J.D.; Brietzke, E.; Soczynska, J.K.; Cosgrove, V.E.; et al. Efficacy of Adjunctive Infliximab vs Placebo in the Treatment of Adults with Bipolar I/II Depression. JAMA Psychiatry 2019, 76, 783. [Google Scholar] [CrossRef]
- Lee, Y.; Mansur, R.B.; Brietzke, E.; Carmona, N.E.; Subramaniapillai, M.; Pan, Z.; Shekotikhina, M.; Rosenblat, J.D.; Suppes, T.; Cosgrove, V.E.; et al. Efficacy of Adjunctive Infliximab vs. Placebo in the Treatment of Anhedonia in Bipolar I/II Depression. Brain. Behav. Immun. 2020, 88, 631–639. [Google Scholar] [CrossRef]
- Bavaresco, D.V.; Uggioni, M.L.R.; Ferraz, S.D.; Marques, R.M.M.; Simon, C.S.; Dagostin, V.S.; Grande, A.J.; da Rosa, M.I. Efficacy of Infliximab in Treatment-Resistant Depression: A Systematic Review and Meta-Analysis. Pharmacol. Biochem. Behav. 2020, 188, 172838. [Google Scholar] [CrossRef]
- MacPherson, K.P.; Sompol, P.; Kannarkat, G.T.; Chang, J.; Sniffen, L.; Wildner, M.E.; Norris, C.M.; Tansey, M.G. Peripheral Administration of the Soluble TNF Inhibitor XPro1595 Modifies Brain Immune Cell Profiles, Decreases Beta-Amyloid Plaque Load, and Rescues Impaired Long-Term Potentiation in 5xFAD Mice. Neurobiol. Dis. 2017, 102, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.-Q.; Shen, W.; Chen, J.; Wang, B.-R.; Zhong, L.-L.; Zhu, Y.-W.; Zhu, H.-Q.; Zhang, Q.-Q.; Zhang, Y.-D.; Xu, J. Anti-TNF-α Reduces Amyloid Plaques and Tau Phosphorylation and Induces CD11c-Positive Dendritic-like Cell in the APP/PS1 Transgenic Mouse Brains. Brain Res. 2011, 1368, 239–247. [Google Scholar] [CrossRef]
- Kim, D.H.; Choi, S.-M.; Jho, J.; Park, M.-S.; Kang, J.; Park, S.J.; Ryu, J.H.; Jo, J.; Kim, H.H.; Kim, B.C. Infliximab Ameliorates AD-Associated Object Recognition Memory Impairment. Behav. Brain Res. 2016, 311, 384–391. [Google Scholar] [CrossRef]
- Shi, J.-Q.; Wang, B.-R.; Jiang, W.-W.; Chen, J.; Zhu, Y.-W.; Zhong, L.-L.; Zhang, Y.-D.; Xu, J. Cognitive improvement with intrathecal administration of infliximab in a woman with alzheimer’s disease. J. Am. Geriatr. Soc. 2011, 59, 1142–1144. [Google Scholar] [CrossRef]
- Ou, W.; Ohno, Y.; Yang, J.; Chandrashekar, D.V.; Abdullah, T.; Sun, J.; Murphy, R.; Roules, C.; Jagadeesan, N.; Cribbs, D.H.; et al. Efficacy and Safety of a Brain-Penetrant Biologic TNF-α Inhibitor in Aged APP/PS1 Mice. Pharmaceutics 2022, 14, 2200. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.; Yang, J.; Simanauskaite, J.; Choi, M.; Castellanos, D.M.; Chang, R.; Sun, J.; Jagadeesan, N.; Parfitt, K.D.; Cribbs, D.H.; et al. Biologic TNF-α Inhibitors Reduce Microgliosis, Neuronal Loss, and Tau Phosphorylation in a Transgenic Mouse Model of Tauopathy. J. Neuroinflammation 2021, 18, 312. [Google Scholar] [CrossRef] [PubMed]
- Boado, R.J.; Lu, J.Z.; Hui, E.K.-W.; Lin, H.; Pardridge, W.M. Bi-Functional IgG-Lysosomal Enzyme Fusion Proteins for Brain Drug Delivery. Sci. Rep. 2019, 9, 18632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boado, R.J. IgG Fusion Proteins for Brain Delivery of Biologics via Blood–Brain Barrier Receptor-Mediated Transport. Pharmaceutics 2022, 14, 1476. [Google Scholar] [CrossRef] [PubMed]
- Miola, A.; Dal Porto, V.; Meda, N.; Perini, G.; Solmi, M.; Sambataro, F. Secondary Mania Induced by TNF-α Inhibitors: A Systematic Review. Psychiatry Clin. Neurosci. 2022, 76, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Bystrom, J.; Clanchy, F.I.; Taher, T.E.; Al-Bogami, M.M.; Muhammad, H.A.; Alzabin, S.; Mangat, P.; Jawad, A.S.; Williams, R.O.; Mageed, R.A. Response to Treatment with TNFα Inhibitors in Rheumatoid Arthritis Is Associated with High Levels of GM-CSF and GM-CSF+ T Lymphocytes. Clin. Rev. Allergy Immunol. 2017, 53, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.V.C.; Baillet, A.; Romand, X.; Trocmé, C.; Courtier, A.; Marotte, H.; Thomas, T.; Soubrier, M.; Miossec, P.; Tébib, J.; et al. Prealbumin, Platelet Factor 4 and S100A12 Combination at Baseline Predicts Good Response to TNF Alpha Inhibitors in Rheumatoid Arthritis. Jt. Bone Spine 2019, 86, 195–201. [Google Scholar] [CrossRef]
- Wijbrandts, C.A.; Dijkgraaf, M.G.W.; Kraan, M.C.; Vinkenoog, M.; Smeets, T.J.; Dinant, H.; Vos, K.; Lems, W.F.; Wolbink, G.J.; Sijpkens, D.; et al. The Clinical Response to Infliximab in Rheumatoid Arthritis Is in Part Dependent on Pretreatment Tumour Necrosis Factor Expression in the Synovium. Ann. Rheum. Dis. 2008, 67, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Gaujoux, R.; Starosvetsky, E.; Maimon, N.; Vallania, F.; Bar-Yoseph, H.; Pressman, S.; Weisshof, R.; Goren, I.; Rabinowitz, K.; Waterman, M.; et al. Cell-Centred Meta-Analysis Reveals Baseline Predictors of Anti-TNFα Non-Response in Biopsy and Blood of Patients with IBD. Gut 2019, 68, 604–614. [Google Scholar] [CrossRef]
- Kwak, M.S.; Cha, J.M.; Jeon, J.W.; Yoon, J.Y.; Park, S.B. Uncovering Novel Pre-Treatment Molecular Biomarkers for Anti-TNF Therapeutic Response in Patients with Crohn’s Disease. J. Funct. Biomater. 2022, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Magee, C.; Jethwa, H.; FitzGerald, O.M.; Jadon, D.R. Biomarkers Predictive of Treatment Response in Psoriasis and Psoriatic Arthritis: A Systematic Review. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X2110140. [Google Scholar] [CrossRef]
- Canet, L.M.; Cáliz, R.; Lupiañez, C.B.; Canhão, H.; Martinez, M.; Escudero, A.; Filipescu, I.; Segura-Catena, J.; Soto-Pino, M.J.; Ferrer, M.A.; et al. Genetic Variants within Immune-Modulating Genes Influence the Risk of Developing Rheumatoid Arthritis and Anti-TNF Drug Response. Pharm. Genom. 2015, 25, 432–443. [Google Scholar] [CrossRef]
- Sazonovs, A.; Kennedy, N.A.; Moutsianas, L.; Heap, G.A.; Rice, D.L.; Reppell, M.; Bewshea, C.M.; Chanchlani, N.; Walker, G.J.; Perry, M.H.; et al. HLA-DQA1*05 Carriage Associated With Development of Anti-Drug Antibodies to Infliximab and Adalimumab in Patients With Crohn’s Disease. Gastroenterology 2020, 158, 189–199. [Google Scholar] [CrossRef] [Green Version]
NCT Number | Interventions | Conditions | Phases |
---|---|---|---|
NCT03371095 | Infliximab | Behcet’s Disease and Vasculitis | Phase 3 |
NCT03180957 | Adalimumab | Dupuytren’s Disease | Phase 2 |
NCT02457585 | Infliximab | Takayasu’s Arteritis | Phase 2 |
NCT01730495 | Etanercept | Chronic Fatigue Syndrome and Myalgic Encephalomyelitis | Phase 2 |
NCT01423591 | Infliximab | Polymyalgia Rheumatica | Phase 3 |
NCT00753103 | Infliximab | Wegener’s Granulomatosis, Renal Limited Vasculitis and Microscopic Polyangiitis | Phase 2 |
NCT00726375 | Etanercept | Acute Graft vs. Host Disease | Phase 3 |
NCT00604864 | Infliximab | Endometriosis | Phase 2 |
NCT00368264 | Infliximab | Lupus Erythematosus Systemic and Lupus Nephritis | Phase 2/Phase 3 |
NCT00329823 | Etanercept | Hidradenitis Suppurativa | Phase 2 |
NCT00305539 | Adalimumab | Giant Cell Arteritis | Phase 3 |
NCT00228839 | Infliximab | Graft vs. Host Disease | Phase 1 |
NCT00203359 | Etanercept | Alzheimer’s Disease | Phase 1 |
NCT00203320 | Etanercept | Alzheimer’s Disease | Phase 1 |
NCT00135720 | Etanercept | Pemphigus Vulgaris | Phase 2 |
NCT00031551 | Etanercept | Stomatitis | Phase 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, G.M.; Mangano, K.; Petralia, M.C.; Nicoletti, F.; Fagone, P. Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy. J. Clin. Med. 2023, 12, 1630. https://doi.org/10.3390/jcm12041630
Leone GM, Mangano K, Petralia MC, Nicoletti F, Fagone P. Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy. Journal of Clinical Medicine. 2023; 12(4):1630. https://doi.org/10.3390/jcm12041630
Chicago/Turabian StyleLeone, Gian Marco, Katia Mangano, Maria Cristina Petralia, Ferdinando Nicoletti, and Paolo Fagone. 2023. "Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy" Journal of Clinical Medicine 12, no. 4: 1630. https://doi.org/10.3390/jcm12041630