Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management
Abstract
:1. Introduction
2. CDKN2A
2.1. Biology
2.2. Associated Malignancies and Syndromes
2.3. Clinical Features
2.4. Dermoscopic Characteristics
2.5. Screening and Surveillance of Associated Malignancies
3. MC1R
3.1. Biology
3.2. Associated Malignancies and Syndromes
3.3. Clinical Features
3.4. Dermoscopic Characteristics
3.5. Screening and Surveillance of Associated Malignancies
4. MITF
4.1. Biology
4.2. Associated Malignancies and Syndromes
4.3. Clinical Features
4.4. Dermoscopic Characteristics
4.5. Screening and Surveillance of Associated Malignancies
5. CDK4
5.1. Biology
5.2. Associated Malignancies and Syndromes
5.3. Clinical Features
5.4. Dermoscopic Characteristics
5.5. Screening and Surveillance of Associated Malignancies
6. POT1
6.1. Biology
6.2. Associated Malignancies and Syndromes
6.3. Clinical Features
6.4. Dermoscopic Characteristics
6.5. Screening and Surveillance of Associated Malignancies
7. TERT
7.1. Biology
7.2. Associated Malignancies and Syndromes
7.3. Clinical Features
7.4. Dermoscopic Characteristics
7.5. Screening and Surveillance of Associated Malignancies
8. ACD and TERF2IP
8.1. Biology
8.2. Associated Malignancies and Syndromes
8.3. Clinical Features
8.4. Dermoscopic Characteristics
8.5. Screening and Surveillance of Associated Malignancies
9. BAP1
9.1. Biology
9.2. Associated Malignancies and Syndromes
9.3. Clinical Features
9.4. Dermoscopic Features
9.5. Screening and Surveillance of Associated Malignancies
- An annual ophthalmological evaluation from 16 to 30 years of age and then every 6 months after the age of 30. An indirect ophthalmoscopy, a fundus photograph and an ocular US should also be performed during the visit;
- A dermatological evaluation with a total body skin examination every 6 months starting from the age of 18;
- Annual examination of the abdomen and chest from the age of 30, looking for abdominal masses, abdominal distention, ascites or signs of pleural effusion. Between the ages of 30 and 55, it should be offered the opportunity to perform US or MRI scans of the thoraco-abdominal and urinary tract areas every 2 years. After the age of 55, a thoraco-abdominal CT or MRI scan, both with contrast media, should be performed every 2 years. A renal and chest US may be considered in the interval between CT/MRI.
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Florell, S.R.; Boucher, K.M.; Garibotti, G.; Astle, J.; Kerber, R.; Mineau, G.; Wiggins, C.; Noyes, R.D.; Tsodikov, A.; Cannon-Albright, L.A.; et al. Population-based analysis of prognostic factors and survival in familial melanoma. J. Clin. Oncol. 2005, 23, 7168–7177. [Google Scholar] [CrossRef]
- Tsao, H.; Chin, L.; Garraway, L.A.; Fisher, D.E. Melanoma: From mutations to medicine. Genes Dev. 2012, 26, 1131–1155. [Google Scholar] [CrossRef] [Green Version]
- Psaty, E.L.; Scope, A.; Halpern, A.C.; Marghoob, A.A. Defining the patient at high risk for melanoma. Int. J. Dermatol. 2010, 49, 362–376. [Google Scholar] [CrossRef]
- Soura, E.; Eliades, P.J.; Shannon, K.; Stratigos, A.J.; Tsao, H. Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome. J. Am. Acad. Dermatol. 2016, 74, 395–407, quiz 8–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potrony, M.; Badenas, C.; Aguilera, P.; Puig-Butille, J.A.; Carrera, C.; Malvehy, J.; Puig, S. Update in genetic susceptibility in melanoma. Ann. Transl. Med. 2015, 3, 210. [Google Scholar] [CrossRef] [PubMed]
- Leachman, S.A.; Carucci, J.; Kohlmann, W.; Banks, K.; Asgari, M.M.; Bergman, W.; Scarrà, G.B.; Brentnall, T.; Paillerets, B.B.-D.; Bruno, W.; et al. Selection criteria for genetic assessment of patients with familial melanoma. J. Am. Acad. Dermatol. 2009, 61, 677.e1–677.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, A.M.; Chan, M.; Harland, M.; Hayward, N.K.; Demenais, F.; Bishop, D.T.; Azizi, E.; Bergman, W.; Scarrà, G.B.; Bruno, W.; et al. Features associated with germline CDKN2A mutations: A GenoMEL study of melanoma-prone families from three continents. J. Med. Genet. 2006, 44, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Ma, J.; Cai, G.; Fang, S.; Lee, J.E.; Wei, Q.; Amos, C.I. Natural and orthogonal model for estimating gene–gene interactions applied to cutaneous melanoma. Qual. Life Res. 2014, 133, 559–574. [Google Scholar] [CrossRef] [Green Version]
- Maccioni, L.; Rachakonda, P.S.; Bermejo, J.L.; Planelles, D.; Requena, C.; Hemminki, K.; Nagore, E.; Kumar, R. Variants at the 9p21 locus and melanoma risk. BMC Cancer 2013, 13, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitchins, M.P.; Ward, R. Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer. J. Med. Genet. 2009, 46, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Raval, A.; Tanner, S.M.; Byrd, J.C.; Angerman, E.B.; Perko, J.D.; Chen, S.-S.; Hackanson, B.; Grever, M.R.; Lucas, D.M.; Matkovic, J.J.; et al. Downregulation of Death-Associated Protein Kinase 1 (DAPK1) in Chronic Lymphocytic Leukemia. Cell 2007, 129, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Salgado, C.; Gruis, N.; BIOS Consortium; Heijmans, B.T.; Oosting, J.; Van Doorn, R.; Bonder, M.J. Genome-wide analysis of constitutional DNA methylation in familial melanoma. Clin. Epigenet. 2020, 12, 43. [Google Scholar] [CrossRef]
- Hawkes, J.E.; Truong, A.; Meyer, L.J. Genetic predisposition to melanoma. Semin. Oncol. 2016, 43, 591–597. [Google Scholar] [CrossRef]
- Aoude, L.; Wadt, K.A.W.; Pritchard, A.; Hayward, N.K. Genetics of familial melanoma: 20 years afterCDKN2A. Pigment Cell Melanoma Res. 2015, 28, 148–160. [Google Scholar] [CrossRef]
- Potrony, M.; Puig-Butille, J.A.; Aguilera, P.; Badenas, C.; Tell-Marti, G.; Carrera, C.; Del Pozo, L.J.; Conejo-Mir, J.; Malvehy, J.; Puig, S. Prevalence of MITF p.E318K in Patients with Melanoma Independent of the Presence of CDKN2A Causative Mutations. JAMA Dermatol. 2016, 152, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangas, C.; Potrony, M.; Mainetti, C.; Bianchi, E.; Merlani, P.C.; Eberhardt, A.M.; Maspoli-Postizzi, E.; Marazza, G.; Marcollo-Pini, A.; Pelloni, F.; et al. Genetic susceptibility to cutaneous melanoma in southern Switzerland: Role of CDKN2A, MC1R and MITF. Br. J. Dermatol. 2016, 175, 1030–1037. [Google Scholar] [CrossRef]
- Puig, S.; Potrony, M.; Cuellar, F.; Puig-Butille, J.A.; Carrera, C.; Aguilera, P.; Nagore, E.; Garcia-Casado, Z.; Requena, C.; Kumar, R.; et al. Characterization of individuals at high risk of developing melanoma in Latin America: Bases for genetic counseling in melanoma. Genet. Med. 2016, 18, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Bruno, W.; Pastorino, L.; Ghiorzo, P.; Andreotti, V.; Martinuzzi, C.; Menin, C.; Elefanti, L.; Stagni, C.; Vecchiato, A.; Rodolfo, M.; et al. Multiple primary melanomas (MPMs) and criteria for genetic assessment: MultiMEL, a multicenter study of the Italian Melanoma Intergroup. J. Am. Acad. Dermatol. 2016, 74, 325–332. [Google Scholar] [CrossRef] [PubMed]
- De Snoo, F.A.; Hayward, N.K. Cutaneous melanoma susceptibility and progression genes. Cancer Lett. 2005, 230, 153–186. [Google Scholar] [CrossRef]
- Goldstein, A.M.; Struewing, J.P.; Chidambaram, A.; Fraser, M.C.; Tucker, M.A. Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J. Natl. Cancer Inst. 2000, 92, 1006–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cust, A.E.; Harland, M.; Makalic, E.; Schmidt, D.; Dowty, J.; Aitken, J.; Agha-Hamilton, C.; Armstrong, B.K.; Barrett, J.; Chan, M.; et al. Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. J. Med. Genet. 2011, 48, 266–272. [Google Scholar] [CrossRef]
- Bishop, D.T.; Demenais, F.; Goldstein, A.M.; Bergman, W.; Bishop, J.N.; Paillerets, B.B.; Chompret, A.; Ghiorzo, P.; Gruis, N.; Hansson, J.; et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J. Natl. Cancer Inst. 2002, 94, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Harland, M.; Cust, A.E.; Badenas, C.; Chang, Y.-M.; Holland, E.A.; Aguilera, P.; Aitken, J.F.; Armstrong, B.K.; Barrett, J.H.; Carrera, C.; et al. Prevalence and predictors of germline CDKN2A mutations for melanoma cases from Australia, Spain and the United Kingdom. Hered. Cancer Clin. Pract. 2014, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.M.; Tucker, M.A. Genetic epidemiology of cutaneous melanoma: A global perspective. Arch. Dermatol. 2001, 137, 1493–1496. [Google Scholar] [CrossRef]
- Bishop, D.T.; Demenais, F.; Goldstein, A.M.; Bergman, W.; Bishop, J.N.; Paillerets, B.B.; Chompret, A.; Ghiorzo, P.; Gruis, N.; Hansson, J.; et al. High-risk Melanoma Susceptibility Genes and Pancreatic Cancer, Neural System Tumors, and Uveal Melanoma across GenoMEL. Cancer Res. 2006, 66, 9818–9828. [Google Scholar] [CrossRef] [Green Version]
- Helgadottir, H.; Höiom, V.; Jönsson, G.; Tuominen, R.; Ingvar, C.; Borg, Å.; Olsson, H.; Hansson, J. High risk of tobacco-related cancers in CDKN2A mutation-positive melanoma families. J. Med. Genet. 2014, 51, 545–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McWilliams, R.R.; Wieben, E.D.; Rabe, K.G.; Pedersen, K.; Wu, Y.; Sicotte, H.; Petersen, G.M. Prevalence of CDKN2A mutations in pancreatic cancer patients: Implications for genetic counseling. Eur. J. Hum. Genet. 2010, 19, 472–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, A.M.; Chaudru, V.; Ghiorzo, P.; Badenas, C.; Malvehy, J.; Pastorino, L.; Laud, K.; Hulley, B.; Avril, M.-F.; Puig-Butille, J.A.; et al. Cutaneous phenotype andMC1R variants as modifying factors for the development of melanoma inCDKN2A G101W mutation carriers from 4 countries. Int. J. Cancer 2007, 121, 825–831. [Google Scholar] [CrossRef]
- Helgadottir, H.; Olsson, H.; Tucker, M.A.; Yang, X.R.; Hoiom, V.; Goldstein, A.M. Phenocopies in melanoma-prone families with germ-line CDKN2A mutations. Genet. Med. 2017, 20, 1087–1090. [Google Scholar] [CrossRef] [Green Version]
- Potrony, M.; Puig-Butillé, J.A.; Aguilera, P.; Badenas, C.; Carrera, C.; Malvehy, J.; Puig, S. Increased prevalence of lung, breast, and pancreatic cancers in addition to melanoma risk in families bearing the cyclin-dependent kinase inhibitor 2A mutation: Implications for genetic counseling. J. Am. Acad. Dermatol. 2014, 71, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Vasen, H.F.; Gruis, N.A.; Frants, R.R.; van Der Velden, P.A.; Hille, E.T.; Bergman, W. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int. J. Cancer 2000, 87, 809–811. [Google Scholar] [CrossRef]
- De Unamuno, B.; Garcia-Casado, Z.; Banuls, J.; Requena, C.; Lopez-Guerrero, J.A.; Nagore, E. CDKN2A germline alterations in melanoma patients with personal or familial history of pancreatic cancer. Melanoma Res. 2018, 28, 246–249. [Google Scholar] [CrossRef]
- Suszynska, M.; Klonowska, K.; Jasinska, A.J.; Kozlowski, P. Large-scale meta-analysis of mutations identified in panels of breast/ovarian cancer-related genes—Providing evidence of cancer predisposition genes. Gynecol. Oncol. 2019, 153, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhang, H.; Yang, W.; Yadav, R.; Morrison, A.; Qian, M.; Devidas, M.; Liu, Y.; Perez-Andreu, V.; Zhao, X.; et al. Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nat. Commun. 2015, 6, 7553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherborne, A.; Hosking, F.; Prasad, R.; Kumar, R.; Koehler, R.; Vijayakrishnan, J.; Papaemmanuil, E.; Bartram, C.R.; Stanulla, M.; Schrappe, M.; et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat. Genet. 2010, 42, 492–494. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, B.; DeLancey, J.O.; Raskin, L.; Everett, J.; Jeter, J.; Begg, C.B.; Orlow, I.; Berwick, M.; Armstrong, B.K.; Kricker, A.; et al. Risk of Non-Melanoma Cancers in First-Degree Relatives of CDKN2A Mutation Carriers. J. Natl. Cancer Inst. 2012, 104, 953–956. [Google Scholar] [CrossRef]
- Chan, A.K.; Han, S.J.; Choy, W.; Beleford, D.; Aghi, M.K.; Berger, M.S.; Shieh, J.T.; Bollen, A.W.; Perry, A.; Phillips, J.J.; et al. Familial melanoma-astrocytoma syndrome: Synchronous diffuse astrocytoma and pleomorphic xanthoastrocytoma in a patient with germline CDKN2A/B deletion and a significant family history. Clin. Neuropathol. 2017, 36, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.M.; Martinez, M.; Tucker, M.A.; Demenais, F. Gene-covariate interaction between dysplastic nevi and the CDKN2A gene in American melanoma-prone families. Cancer Epidemiol. Biomark. Prev. 2000, 9, 889–894. [Google Scholar]
- Mahajan, A.; Go, M.J.; Zhang, W.; Below, J.E.; Gaulton, K.J.; Ferreira, T.; Horikoshi, M.; Johnson, A.D.; Ng, M.C.Y.; Prokopenko, I.; et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 2014, 46, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Puig, S.; Malvehy, J.; Badenas, C.; Ruiz, A.; Jimenez, D.; Cuellar, F.; Azon, A.; Gonzàlez, U.; Castel, T.; Campoy, A.; et al. Role of the CDKN2A Locus in Patients with Multiple Primary Melanomas. J. Clin. Oncol. 2005, 23, 3043–3051. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.; Handorf, E.A.; Mitra, N.; Avril, M.-F.; Azizi, E.; Bergman, W.; Scarrà, G.B.; Bishop, D.T.; Paillerets, B.B.-D.; Calista, D.; et al. Phenotypic and Histopathological Tumor Characteristics According to CDKN2A Mutation Status among Affected Members of Melanoma Families. J. Investig. Dermatol. 2016, 136, 1066–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Rhee, J.I.; Krijnen, P.; Gruis, N.A.; de Snoo, F.A.; Vasen, H.F.; Putter, H.; Kukutsch, N.A.; Bergman, W. Clinical and histologic characteristics of malignant melanoma in families with a germline mutation in CDKN2A. J. Am. Acad. Dermatol. 2011, 65, 281–288. [Google Scholar] [CrossRef]
- Visconti, A.; Ribero, S.; Sanna, M.; Spector, T.D.; Bataille, V.; Falchi, M. Body site-specific genetic effects influence naevus count distribution in women. Pigment Cell Melanoma Res. 2019, 33, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Florell, S.R.; Meyer, L.J.; Boucher, K.M.; Porter-Gill, P.A.; Hart, M.; Erickson, J.; Cannon-Albright, L.A.; Pershing, L.K.; Harris, R.M.; Samlowski, W.E.; et al. Longitudinal assessment of the nevus phenotype in a melanoma kindred. J. Investig. Dermatol. 2004, 123, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, K.; Harbst, K.; Måsbäck, A.; Jönsson, G.B.; Borg, Å.; Olsson, H.; Ingvar, C. Swedish CDKN2A mutation carriers do not present the atypical mole syndrome phenotype. Melanoma Res. 2010, 20, 266–272. [Google Scholar] [CrossRef]
- Quint, K.; Rhee, J.; Gruis, N.; Huurne, J.; Wolterbeek, R.; Stoep, N.; Bergman, W.; Kukutsch, N. Melanocortin 1 Receptor (MC1R) Variants in High Melanoma Risk Patients are Associated with Specific Dermoscopic ABCD Features. Acta Derm. Venereol. 2012, 92, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Cuéllar, F.; Puig, S.; Kolm, I.; Puig-Butille, J.; Zaballos, P.; Martí-Laborda, R.; Badenas, C.; Malvehy, J. Dermoscopic features of melanomas associated with MC1R variants in Spanish CDKN2A mutation carriers. Br. J. Dermatol. 2009, 160, 48–53. [Google Scholar] [CrossRef]
- Bassoli, S.; Maurichi, A.; Rodolfo, M.; Casari, A.; Frigerio, S.; Pupelli, G.; Farnetani, F.; Pelosi, G.; Santinami, M.; Pellacani, G. CDKN2A and MC1R variants influence dermoscopic and confocal features of benign melanocytic lesions in multiple melanoma patients. Exp. Dermatol. 2013, 22, 411–416. [Google Scholar] [CrossRef]
- Rossi, M.; Pellegrini, C.; Cardelli, L.; Ciciarelli, V.; di Nardo, L.; Fargnoli, M.C. Familial melanoma: Diagnostic and management implications. Dermatol. Pract. Concept. 2019, 9, 10–16. [Google Scholar] [CrossRef]
- Canto, M.I.; Hruban, R.H.; Fishman, E.; Kamel, I.R.; Schulick, R.; Zhang, Z.; Topazian, M.; Takahashi, N.; Fletcher, J.; Petersen, G.; et al. Frequent Detection of Pancreatic Lesions in Asymptomatic High-Risk Individuals. Gastroenterology 2012, 142, 796–804, quiz e14–e15. [Google Scholar] [CrossRef] [Green Version]
- Barnes, C.A.; Krzywda, E.; Lahiff, S.; McDowell, D.; Christians, K.K.; Knechtges, P.; Tolat, P.; Hohenwalter, M.; Dua, K.; Khan, A.H.; et al. Development of a high risk pancreatic screening clinic using 3.0 T MRI. Fam. Cancer 2017, 17, 101–111. [Google Scholar] [CrossRef] [PubMed]
- García-Borrón, J.C.; Sánchez-Laorden, B.L.; Jiménez-Cervantes, C. Melanocortin-1 receptor structure and functional regulation. Pigment Cell Res. 2005, 18, 393–410. [Google Scholar] [CrossRef]
- Tagliabue, E.; Fargnoli, M.C.; Gandini, S.; Maisonneuve, P.; Cornelius, L.a.; Kayser, M.; Nijsten, T.; Han, J.; Kumar, R.; Gruis, N.A.; et al. MC1R gene variants and non-melanoma skin cancer: A pooled-analysis from the M-SKIP project. Br. J. Cancer 2015, 113, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Valverde, P.; Healy, E.; Jackson, I.; Rees, J.L.; Thody, A.J. Variants of the melanocyte–stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 1995, 11, 328–330. [Google Scholar] [CrossRef]
- Box, N.F.; Wyeth, J.R.; O’Gorman, L.E.; Martin, N.G.; Sturm, R.A. Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum. Mol. Genet. 1997, 6, 1891–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernando, B.; Ibarrola-Villava, M.; Peña-Chilet, M.; Alonso, S.; Ribas, G.; Martinez-Cadenas, C. Sex and MC1R variants in human pigmentation: Differences in tanning ability and sensitivity to sunlight between sexes. J. Dermatol. Sci. 2016, 84, 346–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendt, J.; Mueller, C.; Rauscher, S.; Fae, I.; Fischer, G.; Okamoto, I. Contributions by MC1R Variants to Melanoma Risk in Males and Females. JAMA Dermatol. 2018, 154, 789–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fargnoli, M.C.; Pike, K.; Pfeiffer, R.M.; Tsang, S.; Rozenblum, E.; Munroe, D.J.; Golubeva, Y.; Calista, D.; Seidenari, S.; Massi, D.; et al. MC1R Variants Increase Risk of Melanomas Harboring BRAF Mutations. J. Investig. Dermatol. 2008, 128, 2485–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, M.T.; Bauer, J.; Pfeiffer, R.M.; Elder, D.E.; Hulley, B.; Minghetti, P.; Calista, D.; Kanetsky, P.A.; Pinkel, D.; Bastian, B.C. MC1R Germline Variants Confer Risk for BRAF-Mutant Melanoma. Science 2006, 313, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Hacker, E.; Nagore, E.; Cerroni, L.; Woods, S.L.; Hayward, N.K.; Chapman, B.; Montgomery, G.W.; Soyer, H.P.; Whiteman, D.C. NRAS and BRAF mutations in cutaneous melanoma and the association with MC1R genotype: Findings from Spanish and Austrian populations. J. Investig. Dermatol. 2013, 133, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.E.; Edmiston, S.N.; Kanetsky, P.A.; Busam, K.J.; Kricker, A.; Armstrong, B.K.; Cust, A.E.; Anton-Culver, H.; Gruber, S.B.; Luo, L.; et al. Associations of MC1R Genotype and Patient Phenotypes with BRAF and NRAS Mutations in Melanoma. J. Investig. Dermatol. 2017, 137, 2588–2598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fargnoli, M.C.; Gandini, S.; Peris, K.; Maisonneuve, P.; Raimondi, S. MC1R variants increase melanoma risk in families with CDKN2A mutations: A meta-analysis. Eur. J. Cancer 2010, 46, 1413–1420. [Google Scholar] [CrossRef]
- Espinoza, C.D.R.; Roberts, N.; Chen, S.; Leacy, F.P.; Alexandrov, L.B.; Pornputtapong, N.; Halaban, R.; Krauthammer, M.; Cui, R.; Bishop, D.T.; et al. Germline MC1R status influences somatic mutation burden in melanoma. Nat. Commun. 2016, 7, 12064. [Google Scholar] [CrossRef] [PubMed]
- Wintzen, M.; Gilchrest, B.A. Proopiomelanocortin, Its Derived Peptides, and the Skin. J. Investig. Dermatol. 1996, 106, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Kalden, D.H.; Scholzen, T.; Brzoska, T.; Luger, T.A. Mechanisms of the antiinflammatory effects of alpha-MSH. Role of transcription factor NF-kappa B and adhesion molecule expression. Ann. N. Y. Acad. Sci. 1999, 885, 254–261. [Google Scholar] [CrossRef]
- Raimondi, S.; Sera, F.; Gandini, S.; Iodice, S.; Caini, S.; Maisonneuve, P.; Fargnoli, M.C. MC1R variants, melanoma and red hair color phenotype: A meta-analysis. Int. J. Cancer 2008, 122, 2753–2760. [Google Scholar] [CrossRef]
- Palmer, J.S.; Duffy, D.; Box, N.; Aitken, J.; O’Gorman, L.E.; Green, A.C.; Hayward, N.K.; Martin, N.; Sturm, R.A. Melanocortin-1 Receptor Polymorphisms and Risk of Melanoma: Is the Association Explained Solely by Pigmentation Phenotype? Am. J. Hum. Genet. 2000, 66, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.; ter Huurne, J.; Berkhout, M.; Gruis, N.; Bastiaens, M.; Bergman, W.; Willemze, R.; Bavinck, J.N.B. Melanocortin 1 Receptor (MC1R) Gene Variants are Associated with an Increased Risk for Cutaneous Melanoma Which is Largely Independent of Skin Type and Hair Color. J. Investig. Dermatol. 2001, 117, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Matichard, E.; Verpillat, P.; Meziani, R.; Gérard, B.; Descamps, V.; Legroux, E.; Burnouf, M.; Bertrand, G.; Bouscarat, F.; Archimbaud, A.; et al. Melanocortin 1 receptor (MC1R) gene variants may increase the risk of melanoma in France independently of clinical risk factors and UV exposure. J. Med. Genet. 2004, 41, e13. [Google Scholar] [CrossRef]
- Demenais, F.; Mohamdi, H.; Chaudru, V.; Goldstein, A.M.; Bishop, J.A.N.; Bishop, D.T.; Kanetsky, P.A.; Hayward, N.K.; Gillanders, E.; Elder, D.E.; et al. Association of MC1R Variants and Host Phenotypes with Melanoma Risk in CDKN2A Mutation Carriers: A GenoMEL Study. J. Natl. Cancer Inst. 2010, 102, 1568–1583. [Google Scholar] [CrossRef]
- Box, N.; Duffy, D.; Chen, W.; Stark, M.; Martin, N.; Sturm, R.; Hayward, N.K. MC1R Genotype Modifies Risk of Melanoma in Families Segregating CDKN2A Mutations. Am. J. Hum. Genet. 2001, 69, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Chaudru, V.; Laud, K.; Avril, M.F.; Minière, A.; Chompret, A.; Bressac-de Paillerets, B.; Demenais, F. Melanocortin-1 receptor (MC1R) gene variants and dysplastic nevi modify penetrance of CDKN2A mutations in French melanoma-prone pedigrees. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2384–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Velden, P.A.; Sandkuijl, L.A.; Bergman, W.; Pavel, S.; van Mourik, L.; Frants, R.R.; Gruis, N.A. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am. J. Hum. Genet. 2001, 69, 774–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastiaens, M.; Ter Huurne, J.; Gruis, N.; Bergman, W.; Westendorp, R.; Vermeer, B.-J.; Bavinck, J.-N.B. The melanocortin-1-receptor gene is the major freckle gene. Hum. Mol. Genet. 2001, 10, 1701–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, D.; Box, N.; Chen, W.; Palmer, J.S.; Montgomery, G.; James, M.R.; Hayward, N.K.; Martin, N.; Sturm, R.A. Interactive effects of MC1R and OCA2 on melanoma risk phenotypes. Hum. Mol. Genet. 2003, 13, 447–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodd, A.T.; Morelli, J.; Mokrohisky, S.T.; Asdigian, N.; Byers, T.E.; Crane, L.A. Children with red hair have more freckles but fewer melanocytic nevi: Results from a cohort study of 280 three-year-olds. Arch. Dermatol. 2005, 141, 1042–1043. [Google Scholar]
- Puig-Butillé, J.; Carrera, C.; Kumar, R.; Garcia-Casado, Z.; Badenas, C.; Aguilera, P.; Malvehy, J.; Nagore, E.; Puig, S. Distribution ofMC1Rvariants among melanoma subtypes: P.R163Q is associated with lentigo maligna melanoma in a Mediterranean population. Br. J. Dermatol. 2013, 169, 804–811. [Google Scholar] [CrossRef]
- Akey, J.M.; Wang, H.; Xiong, M.; Wu, H.; Liu, W.; Shriver, M.D.; Jin, L. Interaction between the melanocortin-1 receptor and P genes contributes to inter-individual variation in skin pigmentation phenotypes in a Tibetan population. Qual. Life Res. 2001, 108, 516–520. [Google Scholar] [CrossRef]
- Kanetsky, P.A.; Panossian, S.; Elder, D.E.; Guerry, D.; Ming, M.E.; Schuchter, L.; Rebbeck, T.R. Does MC1R genotype convey information about melanoma risk beyond risk phenotypes? Cancer 2010, 116, 2416–2428. [Google Scholar]
- Pellegrini, C.; Maturo, M.G.M.; Martorelli, C.C.; Suppa, M.; Antonini, A.A.; Kostaki, D.D.; Verna, L.; Landi, M.T.M.; Peris, K.; Fargnoli, M.M.C.M. Characterization of melanoma susceptibility genes in high-risk patients from Central Italy. Melanoma Res. 2017, 27, 258–267. [Google Scholar] [CrossRef]
- Höiom, V.; Tuominen, R.; Käller, M.; Lindén, D.; Ahmadian, A.; Månsson-Brahme, E.; Egyhazi, S.; Sjöberg, K.; Lundeberg, J.; Hansson, J. MC1R variation and melanoma risk in the Swedish population in relation to clinical and pathological parameters. Pigment Cell Melanoma Res. 2009, 22, 196–204. [Google Scholar] [CrossRef]
- Vallone, M.G.; Tell-Marti, G.; Potrony, M.; Rebollo-Morell, A.; Badenas, C.; Puig-Butille, J.A.; Gimenez-Xavier, P.; Carrera, C.; Malvehy, J.; Puig, S. Melanocortin 1 receptor (MC1R ) polymorphisms’ influence on size and dermoscopic features of nevi. Pigment Cell Melanoma Res. 2017, 31, 39–50. [Google Scholar] [CrossRef]
- Carrera, C.; Palou, J.; Malvehy, J.; Segura, S.; Aguilera, P.; Salerni, G.; Lovatto, L.; Puig-Butillé, J.; Alós, L.; Puig, S. Early Stages of Melanoma on the Limbs of High-risk Patients: Clinical, Dermoscopic, Reflectance Confocal Microscopy and Histopathological Characterization for Improved Recognition. Acta Derm. Venereol. 2011, 91, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Barón, A.E.; Asdigian, N.L.; Gonzalez, V.; Aalborg, J.; Terzian, T.; Stiegmann, R.A.; Torchia, E.C.; Berwick, M.; Dellavalle, R.P.; Morelli, J.G.; et al. Interactions between Ultraviolet Light and MC1R and OCA2 Variants Are Determinants of Childhood Nevus and Freckle Phenotypes. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2829–2839. [Google Scholar] [CrossRef] [Green Version]
- Kinsler, V.A.; Abu-Amero, S.; Budd, P.; Jackson, I.; Ring, S.M.; Northstone, K.; Atherton, D.J.; Bulstrode, N.; Stanier, P.; Hennekam, R.C.; et al. Germline Melanocortin-1-Receptor Genotype Is Associated with Severity of Cutaneous Phenotype in Congenital Melanocytic Nevi: A Role for MC1R in Human Fetal Development. J. Investig. Dermatol. 2012, 132, 2026–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calbet-Llopart, N.; Pascini-Garrigos, M.; Tell-Martí, G.; Potrony, M.; Da Silva, V.M.; Barreiro, A.; Puig, S.; Captier, G.; James, I.; Degardin, N.; et al. Melanocortin-1 receptor (MC1R) genotypes do not correlate with size in two cohorts of medium-to-giant congenital melanocytic nevi. Pigment Cell Melanoma Res. 2020, 33, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Fargnoli, M.; Sera, F.; Suppa, M.; Piccolo, D.; Landi, M.; Chiarugi, A.; Pellegrini, C.; Seidenari, S.; Peris, K. Dermoscopic features of cutaneous melanoma are associated with clinical characteristics of patients and tumours and with MC1R genotype. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1768–1775. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.; Barquet, V.; Hernandez, E.; Marghoob, A.; Potrony, M.; Carrera, C.; Aguilera, P.; Badenas, C.; Malvehy, J.; Puig, S. Dermoscopy comparative approach for early diagnosis in familial melanoma: Influence of MC1R genotype. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 403–410. [Google Scholar] [CrossRef]
- Cheli, Y.; Ohanna, M.; Ballotti, R.; Bertolotto, C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res. 2009, 23, 27–40. [Google Scholar] [CrossRef]
- Bertolotto, C.; Lesueur, F.; Giuliano, S.; Strub, T.; De Lichy, M.; Bille, K.; Dessen, P.; d’Hayer, B.; Mohamdi, H.; Remenieras, A.; et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011, 480, 94–98. [Google Scholar] [CrossRef]
- Yokoyama, S.; Woods, S.L.; Boyle, G.; Aoude, L.; MacGregor, S.; Zismann, V.; Gartside, M.; Cust, A.E.; Haq, R.; Harland, M.; et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011, 480, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Ghiorzo, P.; Pastorino, L.; Queirolo, P.; Bruno, W.; Tibiletti, M.G.; Nasti, S.; Andreotti, V.; Paillerets, B.B.-D.; Scarrà, G.B.; Genoa Pancreatic Cancer Study Group. Prevalence of the E318K MITF germline mutation in Italian melanoma patients: Associations with histological subtypes and family cancer history. Pigment Cell Melanoma Res. 2012, 26, 259–262. [Google Scholar] [CrossRef]
- Castro-Vega, L.J.; Kiando, S.R.; Burnichon, N.; Buffet, A.; Amar, L.; Simian, C.; Berdelou, A.; Galan, P.; Schlumberger, M.; Bouatia-Naji, N.; et al. The MITF, p.E318K Variant, as a Risk Factor for Pheochromocytoma and Paraganglioma. J. Clin. Endocrinol. Metab. 2016, 101, 4764–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturm, R.A.; Fox, C.; McClenahan, P.; Jagirdar, K.; Ibarrola-Villava, M.; Banan, P.; Abbott, N.C.; Ribas, G.; Gabrielli, B.; Duffy, D.L.; et al. Phenotypic Characterization of Nevus and Tumor Patterns in MITF E318K Mutation Carrier Melanoma Patients. J. Investig. Dermatol. 2014, 134, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Ciccarese, G.; Dalmasso, B.; Bruno, W.; Queirolo, P.; Pastorino, L.; Andreotti, V.; Spagnolo, F.; Tanda, E.; Ponti, G.; Massone, C.; et al. Clinical, pathological and dermoscopic phenotype of MITF p.E318K carrier cutaneous melanoma patients. J. Transl. Med. 2020, 18, 78. [Google Scholar]
- Berwick, M.; MacArthur, J.; Orlow, I.; Kanetsky, P.; Begg, C.B.; Luo, L.; Reiner, A.; Sharma, A.; Armstrong, B.K.; Kricker, A.; et al. MITF E318K’s effect on melanoma risk independent of, but modified by, other risk factors. Pigment Cell Melanoma Res. 2014, 27, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Bassoli, S.; Pellegrini, C.; Longo, C.; Di Nardo, L.; Farnetani, F.; Cesinaro, A.M.; Pellacani, G.; Fargnoli, M.C. Clinical, dermoscopic, and confocal features of nevi and melanomas in a multiple primary melanoma patient with the MITF p.E318K homozygous mutation. Melanoma Res. 2018, 28, 166–169. [Google Scholar] [CrossRef]
- Puntervoll, H.E.; Yang, X.R.; Vetti, H.H.; Bachmann, I.M.; Avril, M.F.; Benfodda, M.; Catricalà, C.; Dalle, S.; Duval-Modeste, A.B.; Ghiorzo, P.; et al. Melanoma prone families with CDK4 germline mutation: Phenotypic profile and associations with MC1R variants. J. Med. Genet. 2013, 50, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Aoude, L.G.; Pritchard, A.; Espinoza, C.D.R.; Wadt, K.; Harland, M.; Choi, J.; Gartside, M.; Quesada, V.; Johansson, P.; Palmer, J.M.; et al. Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma. J. Natl. Cancer Inst. 2014, 107, dju408. [Google Scholar] [CrossRef]
- Artandi, S.E.; DePinho, R.A. Telomeres and telomerase in cancer. Carcinogenesis 2010, 31, 9–18. [Google Scholar] [CrossRef]
- Espinoza, C.D.R.; Harland, M.; Ramsay, A.J.; Aoude, L.; Quesada, V.; Ding, Z.; Pooley, K.A.; Pritchard, A.; Tiffen, J.C.; Petljak, M.; et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 2014, 46, 478–481. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; NCI DCEG Cancer Sequencing Working Group; Yang, X.R.; Ballew, B.; Rotunno, M.; Calista, D.; Fargnoli, M.C.; Ghiorzo, P.; Paillerets, B.B.-D.; Nagore, E.; et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 2014, 46, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Sargen, M.R.; Calista, D.; Elder, D.E.; Massi, D.; Chu, E.Y.; Potrony, M.; Pfeiffer, R.M.; Carrera, C.; Aguilera, P.; Alos, L.; et al. Histologic features of melanoma associated with germline mutations of CDKN2A, CDK4, and POT1 in melanoma-prone families from the United States, Italy, and Spain. J. Am. Acad. Dermatol. 2020, 83, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Speedy, H.E.; Di Bernardo, M.C.; Sava, G.; Dyer, M.; Holroyd, A.; Wang, Y.; Sunter, N.J.; Mansouri, L.; Juliusson, G.; Smedby, K.E.; et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat. Genet. 2014, 46, 56–60. [Google Scholar] [CrossRef]
- Calvete, O.; Martinez, P.; Garcia-Pavia, P.; Benitez-Buelga, C.; Paumard, B.; Fernandez, V.; Dominguez, F.; Salas, C.; Romero-Laorden, N.; Garcia-Donas, J.; et al. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li–Fraumeni-like families. Nat. Commun. 2015, 6, 8383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chubb, D.; Broderick, P.; Dobbins, S.E.; Frampton, M.; Kinnersley, B.; Penegar, S.; Price, A.; Ma, Y.P.; Sherborne, A.L.; Palles, C.; et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat. Commun. 2016, 7, 11883. [Google Scholar] [CrossRef]
- Wilson, T.L.-S.; Hattangady, N.; Lerario, A.; Williams, C.; Koeppe, E.; Quinonez, S.; Osborne, J.; Cha, K.B.; Else, T. A new POT1 germline mutation—Expanding the spectrum of POT1-associated cancers. Fam. Cancer 2017, 16, 561–566. [Google Scholar] [CrossRef]
- Bainbridge, M.N.; Armstrong, G.N.; Gramatges, M.M.; Bertuch, A.A.; Jhangiani, S.N.; Doddapaneni, H.; Lewis, L.; Tombrello, J.; Tsavachidis, S.; Liu, Y.; et al. Germline Mutations in Shelterin Complex Genes Are Associated with Familial Glioma. J. Natl. Cancer Inst. 2015, 107, 384. [Google Scholar] [CrossRef] [PubMed]
- Robles-Espinoza, C.D.; Velasco-Herrera Mdel, C.; Hayward, N.K.; Adams, D.J. Telomere-regulating genes and the telomere interactome in familial cancers. Mol. Cancer Res. 2015, 13, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Boardman, L.A.; Litzelman, K.; Seo, S.; Johnson, R.A.; Vanderboom, R.J.; Kimmel, G.W.; Cunningham, J.M.; Gangnon, R.; Engelman, C.D.; Riegert-Johnson, D.L.; et al. The Association of Telomere Length with Colorectal Cancer Differs by the Age of Cancer Onset. Clin. Transl. Gastroenterol. 2014, 5, e52. [Google Scholar] [CrossRef]
- Harland, M.; Petljak, M.; Espinoza, C.D.R.; Ding, Z.; Gruis, N.A.; Van Doorn, R.; Pooley, K.A.; Dunning, A.M.; Aoude, L.; Wadt, K.A.W.; et al. Germline TERT promoter mutations are rare in familial melanoma. Fam. Cancer 2016, 15, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Horn, S.; Figl, A.; Rachakonda, P.S.; Fischer, C.; Sucker, A.; Gast, A.; Kadel, S.; Moll, I.; Nagore, E.; Hemminki, K.; et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013, 339, 959–961. [Google Scholar] [CrossRef] [Green Version]
- Jäger, R.; Harutyunyan, A.; Rumi, E.; Pietra, D.; Berg, T.; Olcaydu, D.; Houlston, R.; Cazzola, M.; Kralovics, R. Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. Am. J. Hematol. 2014, 89, 1107–1110. [Google Scholar] [CrossRef] [Green Version]
- Tashi, T.; Swierczek, S.; Prchal, J.T. Familial MPN Predisposition. Curr. Hematol. Malign. Rep. 2017, 12, 442–447. [Google Scholar] [CrossRef]
- Gago-Dominguez, M.; Jiang, X.; Conti, D.V.; Castelao, J.E.; Stern, M.C.; Cortessis, V.K.; Pike, M.C.; Xiang, Y.-B.; Gao, Y.-T.; Yuan, J.-M.; et al. Genetic variations on chromosomes 5p15 and 15q25 and bladder cancer risk: Findings from the Los Angeles–Shanghai bladder case–control study. Carcinogenesis 2010, 32, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinnersley, B.; Registry, T.C.C.F.; Migliorini, G.; Broderick, P.; Whiffin, N.; Dobbins, S.E.; Casey, G.; Hopper, J.; Sieber, O.; Lipton, L.; et al. The TERT variant rs2736100 is associated with colorectal cancer risk. Br. J. Cancer 2012, 107, 1001–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinhold, N.; Jacobsen, A.; Schultz, N.; Sander, C.; Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 2014, 46, 1160–1165. [Google Scholar] [CrossRef]
- Kote-Jarai, Z.; Al Olama, A.A.; Giles, G.G.; Severi, G.; Schleutker, J.; Weischer, M.; Campa, D.; Riboli, E.; Key, T.; Gronberg, H.; et al. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat. Genet. 2011, 43, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Kratz, C.P.; Han, S.S.; Rosenberg, P.; I Berndt, S.; Burdett, L.; Yeager, M.; A Korde, L.; Mai, P.L.; Pfeiffer, R.; Greene, M.H. Variants in or near KITLG, BAK1, DMRT1, and TERT-CLPTM1L predispose to familial testicular germ cell tumour. J. Med. Genet. 2011, 48, 473–476. [Google Scholar] [CrossRef]
- Haiman, C.A.; Chen, G.K.; Vachon, C.M.; Canzian, F.; Dunning, A.; Millikan, R.C.; Wang, X.; Ademuyiwa, F.; Ahmed, S.; Ambrosone, C.B.; et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat. Genet. 2011, 43, 1210–1214. [Google Scholar] [CrossRef]
- Hosen, I.; Rachakonda, P.S.; Heidenreich, B.; Sitaram, R.T.; Ljungberg, B.; Roos, G.; Hemminki, K.; Kumar, R. TERT promoter mutations in clear cell renal cell carcinoma. Int. J. Cancer 2015, 136, 2448–2452. [Google Scholar] [CrossRef]
- Calado, R.T.; Regal, J.A.; Kleiner, D.E.; Schrump, D.S.; Peterson, N.R.; Pons, V.; Chanock, S.J.; Lansdorp, P.M.; Young, N.S. A spectrum of severe familial liver disorders associate with telomerase mutations. PLoS ONE 2009, 4, e7926. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, D.; Srivastava, U.; Thaler, M.; Kleinhans, K.N.; N’kontchou, G.; Scheffold, A.; Bauer, K.; Kratzer, R.F.; Kloos, N.; Katz, S.F.; et al. Telomerase gene mutations are associated with cirrhosis formation. Hepatology 2011, 53, 1608–1617. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.R.; Brennan, P.; Boffetta, P.; Amos, C.I.; Spitz, M.R.; Chen, C.; Goodman, G.; Heinrich, J.; Bickeböller, H.; Rosenberger, A.; et al. Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls. Qual. Life Res. 2013, 132, 579–589. [Google Scholar] [CrossRef] [Green Version]
- McKay, J.D.; EPIC Study; Hung, R.J.; Gaborieau, V.; Boffetta, P.; Chabrier, A.; Byrnes, G.; Zaridze, D.; Mukeria, A.; Szeszenia-Dabrowska, N.; et al. Lung cancer susceptibility locus at 5p15. Nat. Genet. 2008, 40, 1404–1406. [Google Scholar] [CrossRef]
- Wang, Y.; Broderick, P.; Webb, E.; Wu, X.; Vijayakrishnan, J.; Matakidou, A.; Qureshi, M.; Dong, Q.; Gu, X.; Chen, W.V.; et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet. 2008, 40, 1407–1409. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.S.; Hyland, P.L.; Pfeiffer, R.M.; Prescott, J.; Wheeler, W.; Mirabello, L.; Savage, S.A.; Burdette, L.; Yeager, M.; Chanock, S.; et al. Telomere Length and the Risk of Cutaneous Malignant Melanoma in Melanoma-Prone Families with and without CDKN2A Mutations. PLoS ONE 2013, 8, e71121. [Google Scholar] [CrossRef]
- Orlow, I.; Satagopan, J.; Berwick, M.; Enriquez, H.; White, K.; Cheung, K.; Dusza, S.; Oliveria, S.; Marchetti, M.; Scope, A.; et al. Genetic factors associated with naevus count and dermoscopic patterns: Preliminary results from the Study of Nevi in Children (SONIC). Br. J. Dermatol. 2015, 172, 1081–1089. [Google Scholar] [CrossRef]
- Martinez, P.; Thanasoula, M.; Carlos, A.R.; López, G.G.; Tejera, A.M.; Schoeftner, S.; Dominguez, O.; Pisano, D.; Tarsounas, M.; Blasco, M.A. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat. Cell Biol. 2010, 12, 768–780. [Google Scholar] [CrossRef] [Green Version]
- Teo, H.; Ghosh, S.; Luesch, H.; Ghosh, A.; Wong, E.T.; Malik, N.; Orth, A.; De Jesus, P.; Perry, A.S.; Oliver, J.D.; et al. Telomere-independent Rap1 is an IKK adaptor and regulates NF-kappaB-dependent gene expression. Nat. Cell Biol. 2010, 12, 758–767. [Google Scholar] [CrossRef]
- Li, J.; Chang, J.; Tian, J.; Ke, J.; Zhu, Y.; Yang, Y.; Gong, Y.; Zou, D.; Peng, X.; Yang, N.; et al. A Rare Variant P507L in TPP1 Interrupts TPP1–TIN2 Interaction, Influences Telomere Length, and Confers Colorectal Cancer Risk in Chinese Population. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1029–1035. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Kartawinata, M.; Li, J.; Pickett, H.A.; Teo, J.; Kilo, T.; Barbaro, P.; Keating, B.; Chen, Y.; Tian, L.; et al. Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP. Blood 2014, 124, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Soura, E.; Eliades, P.J.; Shannon, K.; Stratigos, A.J.; Tsao, H. Hereditary melanoma: Update on syndromes and management: Emerging melanoma cancer complexes and genetic counseling. J. Am. Acad. Dermatol. 2016, 74, 411–420, quiz 21–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njauw, C.-N.J.; Kim, I.; Piris, A.; Gabree, M.; Taylor, M.; Lane, A.M.; DeAngelis, M.M.; Gragoudas, E.; Duncan, L.M.; Tsao, H. Germline BAP1 Inactivation Is Preferentially Associated with Metastatic Ocular Melanoma and Cutaneous-Ocular Melanoma Families. PLoS ONE 2012, 7, e35295. [Google Scholar] [CrossRef] [Green Version]
- Aoude, L.G.; Vajdic, C.; Kricker, A.; Armstrong, B.; Hayward, N.K. Prevalence of germline BAP1 mutation in a population-based sample of uveal melanoma cases. Pigment Cell Melanoma Res. 2012, 26, 278–279. [Google Scholar] [CrossRef]
- Baumann, F.; Flores, E.; Napolitano, A.; Kanodia, S.; Taioli, E.; Pass, H.; Yang, H.; Carbone, M. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis 2015, 36, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Peña-Llopis, S.; Vega-Rubín-de-Celis, S.; Liao, A.; Leng, N.; Pavía-Jiménez, A.; Wang, S.; Yamasaki, T.; Zhrebker, L.; Sivanand, S.; Spence, P.; et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 2012, 44, 751–759. [Google Scholar] [CrossRef]
- Popova, T.; Hebert, L.; Jacquemin, V.; Gad, S.; Caux-Moncoutier, V.; Dubois-D’Enghien, C.; Richaudeau, B.; Renaudin, X.; Sellers, J.; Nicolas, A.; et al. Germline BAP1 Mutations Predispose to Renal Cell Carcinomas. Am. J. Hum. Genet. 2013, 92, 974–980. [Google Scholar] [CrossRef] [Green Version]
- Andrici, J.; Parkhill, T.R.; Jung, J.; Wardell, K.L.; Verdonk, B.; Singh, A.; Sioson, L.; Clarkson, A.; Watson, N.; Sheen, A.; et al. Loss of expression of BAP1 is very rare in non-small cell lung carcinoma. Pathology 2016, 48, 336–340. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.H.; Pilarski, R.; Cebulla, C.; Massengill, J.B.; Christopher, B.N.; Boru, G.; Hovland, P.; Davidorf, F.H. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J. Med. Genet. 2011, 48, 856–859. [Google Scholar] [CrossRef]
- Wadt, K.; Choi, J.; Chung, J.-Y.; Kiilgaard, J.F.; Heegaard, S.; Drzewiecki, K.T.; Trent, J.M.; Hewitt, S.M.; Hayward, N.; Gerdes, A.-M.; et al. A crypticBAP1splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res. 2012, 25, 815–818. [Google Scholar] [CrossRef]
- Andrici, J.; Goeppert, B.; Sioson, L.; Clarkson, A.; Renner, M.; Stenzinger, A.; Tayao, M.; Watson, N.; Farzin, M.; Toon, C.W.; et al. Loss of BAP1 Expression Occurs Frequently in Intrahepatic Cholangiocarcinoma. Medicine 2016, 95, e2491. [Google Scholar] [CrossRef]
- McDonnell, K.J.; Gallanis, G.T.; Heller, K.A.; Melas, M.; Idos, G.E.; Culver, J.O.; Martin, S.E.; Peng, D.H.; Gruber, S.B. A novel BAP1 mutation is associated with melanocytic neoplasms and thyroid cancer. Cancer Genet. 2016, 209, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Wadt, K.; Aoude, L.; Johansson, P.; Solinas, A.; Pritchard, A.; Crainic, O.; Andersen, M.; Kiilgaard, J.F.; Heegaard, S.; Sunde, L.; et al. A recurrent germlineBAP1mutation and extension of theBAP1tumor predisposition spectrum to include basal cell carcinoma. Clin. Genet. 2014, 88, 267–272. [Google Scholar] [CrossRef]
- Rawson, R.V.; Watson, G.F.; Maher, A.M.; McCarthy, S.W.; Thompson, J.F.; Scolyer, R.A. Germline BAP1 mutations also predispose to cutaneous squamous cell carcinoma. Pathology 2017, 49, 539–542. [Google Scholar] [CrossRef]
- Carbone, M.; Ferris, L.K.; Baumann, F.; Napolitano, A.; Lum, C.A.; Flores, E.G.; Gaudino, G.; Powers, A.; Bryant-Greenwood, P.; Krausz, T.; et al. BAP1 cancer syndrome: Malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J. Transl. Med. 2012, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Bochtler, T.; Endris, V.; Reiling, A.; Leichsenring, J.; Schweiger, M.R.; Klein, S.; Stögbauer, F.; Goeppert, B.; Schirmacher, P.; Krämer, A.; et al. Integrated Histogenetic Analysis Reveals BAP1 -Mutated Epithelioid Mesothelioma in a Patient with Cancer of Unknown Primary. J. Natl. Compr. Cancer Netw. 2018, 16, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Zauderer, M.G.; Bott, M.; McMillan, R.; Sima, C.S.; Rusch, V.; Krug, L.M.; Ladanyi, M. Clinical Characteristics of Patients with Malignant Pleural Mesothelioma Harboring Somatic BAP1 Mutations. J. Thorac. Oncol. 2013, 8, 1430–1433. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.P.; Lane, A.M.; DeAngelis, M.M.; Mayne, K.; Crabtree, M.; Gragoudas, E.S.; Kim, I.K. Clinical Characteristics of Uveal Melanoma in Patients with GermlineBAP1Mutations. JAMA Ophthalmol. 2015, 133, 881–887. [Google Scholar] [CrossRef] [Green Version]
- De la Fouchardière, A.; Cabaret, O.; Pètre, J.; Aydin, S.; Leroy, A.; De Potter, P.; Pissaloux, D.; Haddad, V.; Bressac-de Paillerets, B.; Janin, N. Primary leptomeningeal melanoma is part of the BAP1-related cancer syndrome. Acta Neuropathol. 2015, 129, 921–933. [Google Scholar] [CrossRef]
- Carbone, M.; Yang, H.; Pass, H.; Krausz, T.; Testa, J.R.; Gaudino, G. BAP1 and cancer. Nat. Rev. Cancer 2013, 13, 153–159. [Google Scholar] [CrossRef]
- Singh, A.D.; Turell, M.E.; Topham, A.K. Uveal Melanoma: Trends in Incidence, Treatment, and Survival. Ophthalmology 2011, 118, 1881–1885. [Google Scholar] [CrossRef]
- Cebulla, C.M.; Binkley, E.M.; Pilarski, R.; Massengill, J.B.; Rai, K.; Liebner, D.A.; Marino, M.J.; Singh, A.D.; Abdel-Rahman, M. Analysis of BAP1 Germline Gene Mutation in Young Uveal Melanoma Patients. Ophthalmic Genet. 2013, 36, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Aoude, L.G.; Wadt, K.; Bojesen, A.; Cruger, R.; Borg, A.; Trent, J.M.; Brown, K.M.; Gerdes, A.-M.; Jonsson, G.; Hayward, N. A BAP1 Mutation in a Danish Family Predisposes to Uveal Melanoma and Other Cancers. PLoS ONE 2013, 8, e72144. [Google Scholar] [CrossRef]
- Höiom, V.; Edsgärd, D.; Helgadottir, H.; Eriksson, H.; All-Ericsson, C.; Tuominen, R.; Ivanova, I.; Lundeberg, J.; Emanuelsson, O.; Hansson, J. Hereditary uveal melanoma: A report of a germline mutation in BAP. Genes Chromosom. Cancer 2013, 52, 378–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerami, P.; Yélamos, O.; Lee, C.Y.; Obregon, R.; Yazdan, P.; Sholl, L.M.; Guitart, G.E.; Njauw, C.-N.; Tsao, H. Multiple Cutaneous Melanomas and Clinically Atypical Moles in a Patient with a Novel Germline BAP1 Mutation. JAMA Dermatol. 2015, 151, 1235–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesner, T.; Obenauf, A.; Murali, R.; Fried, I.; Griewank, K.; Ulz, P.; Windpassinger, C.; Wackernagel, W.; Loy, S.; Wolf, I.; et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat. Genet. 2011, 43, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- Wiesner, T.; Fried, I.; Ulz, P.; Stacher, E.; Popper, H.; Murali, R.; Kutzner, H.; Lax, S.; Smolle-Jüttner, F.; Geigl, J.B.; et al. Toward an Improved Definition of the Tumor Spectrum Associated with BAP1 Germline Mutations. J. Clin. Oncol. 2012, 30, e337–e340. [Google Scholar] [CrossRef]
- Yélamos, O.; Navarrete-Dechent, C.; Marchetti, M.A.; Rogers, T.; Apalla, Z.; Bahadoran, P.; Blázquez-Sánchez, N.; Busam, K.; Carrera, C.; Dusza, S.W.; et al. Clinical and dermoscopic features of cutaneous BAP1-inactivated melanocytic tumors: Results of a multicenter case-control study by the International Dermoscopy Society. J. Am. Acad. Dermatol. 2019, 80, 1585–1593. [Google Scholar] [CrossRef]
- Martorano, L.M.; Winkelmann, R.R.; Cebulla, C.; Abdel-Rahman, M.; Campbell, S.M. Ocular melanoma and the BAP1 hereditary cancer syndrome: Implications for the dermatologist. Int. J. Dermatol. 2014, 53, 657–663. [Google Scholar] [CrossRef]
- Haugh, A.M.; Njauw, C.N.; Bubley, J.A.; Verzì, A.E.; Zhang, B.; Kudalkar, E.; VandenBoom, T.; Walton, K.; Swick, B.L.; Kumar, R.; et al. Genotypic and Phenotypic Features of BAP1 Cancer Syndrome: A Report of 8 New Families and Review of Cases in the Literature. JAMA Dermatol. 2017, 153, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Moawad, S.; Reigneau, M.; De La Fouchardière, A.; Soufir, N.; Schmutz, J.-L.; Granel-Brocard, F.; Phan, A.; Bursztejn, A.-C. Clinical, dermoscopic, histological and molecular analysis of BAP1-inactivated melanocytic naevus/tumour in two familial cases of BAP1 syndrome. Br. J. Dermatol. 2018, 179, 973–975. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.; Marino, M.L.; Raciti, P.; Jain, M.; Busam, K.J.; Marchetti, M.A.; Marghoob, A.A. Biologically distinct subsets of nevi. G. Ital. Dermatol. Venereol. 2016, 151, 365–384. [Google Scholar]
- Susana Puig, C.C.; Malvehy, J. Nevi in patients with BAP1 germ line mutation, red-hair polymorphism, and albinism. In Dermatoscopy of Non-Pigmented Skin Tumors; Iris Zalaudek, G.A., Giacomel, J., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Rai, K.; Pilarski, R.; Cebulla, C.; Abdelrahman, M.H. Comprehensive review ofBAP1tumor predisposition syndrome with report of two new cases. Clin. Genet. 2016, 89, 285–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genes | Prevalence in Familial Melanoma | Functions of Coded Proteins | |
---|---|---|---|
High penetrance genes | CDKN2A | 20–40% | Encodes 2 tumor-suppressor proteins |
CDK4 | <1% | Cell cycle regulator | |
POT1 | <1% | Telomere maintenance | |
ACD | <1% | Telomere maintenance | |
TERF2IP | <1% | Telomere maintenance | |
TERT | <1% | Telomere maintenance | |
BAP1 | <1% | Tumor suppressor | |
Intermediate penetrance genes | MC1R | 70–90% | Melanin production |
MITF | 1–5% | Regulation of melanocyte development |
Incidence of Melanoma by Geographical Area | Criteria for Access to Genetic Testing |
---|---|
Low moderate incidence areas (e.g., Italy) RULE OF 2 | Two primary melanomas (synchronous or metachronous) in an individual and/or Families with at least one invasive melanoma and 1 or more other diagnoses of melanoma and/or pancreatic cancer among first or second-degree relatives on the same side of the family |
Moderate/high incidence areas (e.g., US) RULE OF 3 | Three primary melanomas (synchronous or metachronous) in an individual and/or Families with at least one invasive melanoma and 2 or more other diagnoses of melanoma and/or pancreatic cancer among first or second-degree relatives on the same side of the family |
Very high incidence areas (e.g., Australia) RULE OF 4 | Four primary melanomas (synchronous or metachronous) in an individual and/or Families with at least one invasive melanoma and 3 or more other diagnoses of melanoma and/or pancreatic cancer among first or second-degree relatives on the same side of the family |
Variants | Melanoma Risk | Association with RHC Phenotype | Increased Risk for BCC | Increased Risk for SCC |
---|---|---|---|---|
R151C | + | + | + | + |
R160W | + | + | + | + |
D294H | + | + | + | + |
D84E | + | + | + | − |
R142H | + | + | − | − |
V60L | − | − | + | + |
V92M | − | − | + | + |
R163Q | + | − | − | − |
I155T | + | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zocchi, L.; Lontano, A.; Merli, M.; Dika, E.; Nagore, E.; Quaglino, P.; Puig, S.; Ribero, S. Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. J. Clin. Med. 2021, 10, 3760. https://doi.org/10.3390/jcm10163760
Zocchi L, Lontano A, Merli M, Dika E, Nagore E, Quaglino P, Puig S, Ribero S. Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. Journal of Clinical Medicine. 2021; 10(16):3760. https://doi.org/10.3390/jcm10163760
Chicago/Turabian StyleZocchi, Lamberto, Alberto Lontano, Martina Merli, Emi Dika, Eduardo Nagore, Pietro Quaglino, Susana Puig, and Simone Ribero. 2021. "Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management" Journal of Clinical Medicine 10, no. 16: 3760. https://doi.org/10.3390/jcm10163760