Combined Transoral Robotic Tongue Base Surgery and Palate Surgery in Obstructive Sleep Apnea Syndrome: Modified Uvulopalatopharyngoplasty versus Barbed Reposition Pharyngoplasty
Abstract
:1. Introduction
2. Methods
2.1. Study Procedures
2.2. Participants
2.3. Surgical Technique of BRP and UPPP
2.4. TORSTBR
2.5. Assessments
2.5.1. Polysomnography
2.5.2. Epworth Sleepiness Scale
2.5.3. Follow-Up Assessments
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OSA | obstructive sleep apnea |
TDI | threshold, discrimination, and identification |
FTP | Friedman Tongue Position |
CT90 | cumulative time spent below 90% |
AI | arousal index |
DISE | drug-induced sleep endoscopy |
UPPP | uvulopalatoplasty |
BRP | barbed repositioning pharyngoplasty |
TORS | transoral robotic surgery |
TORSTBR | transoral robotic surgery tongue base reduction |
AHI | apnea–hypopnea index |
PSG | polysomnography |
AASM | American Academy of Sleep Medicine |
VAS | Visual Analogue Scale |
References
- Bozkurt, M.K.; Öy, A.; Aydın, D.; Bilen, S.H.; Ertürk, I.Ö.; Saydam, L.; Özgen, F. Gender differences in polysomnographic findings in Turkish patients with obstructive sleep apnea syndrome. Eur. Arch. Otorhinolaryngol. 2008, 265, 821–824. [Google Scholar] [CrossRef]
- Hao, W.; Wang, X.; Fan, J.; Zeng, Y.; Ai, H.; Nie, S.; Wei, Y. Association between apnea-hypopnea index and coronary artery calcification: A systematic review and meta-analysis. Ann. Med. 2021, 53, 302–317. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Mokhlesi, B. Obstructive sleep apnea and diabetes: A state of the art review. Chest 2017, 152, 1070–1086. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Tsai, T.Y.; Li, C.Y.; Hwang, J.H. Obstructive sleep apnea and risk of Parkinson’s disease: A population-based cohort study. J. Sleep Res. 2015, 24, 432–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, A.G.; Bubu, O.M.; Varga, A.W.; Osorio, R.S. The relationship between obstructive sleep apnea and Alzheimer’s disease. J. Alzheimer’s Dis. 2018, 64, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Dzierzewski, J.M.; Dautovich, N.; Ravyts, S. Sleep and Cognition in Older Adults. Sleep Med. Clin. 2018, 13, 93–106. [Google Scholar] [CrossRef]
- Iannella, G.; Magliulo, G.; Maniaci, A.; Meccariello, G.; Cocuzza, S.; Cammaroto, G.; Gobbi, R.; Sgarzani, R.; Firinu, E.; Corso, R.M.; et al. Olfactory function in patients with obstructive sleep apnea: A meta-analysis study. Eur. Arch. Otorhinolaryngol. 2021, 278, 883–891. [Google Scholar] [CrossRef]
- Seet, E.; Nagappa, M.; Wong, D.T. Airway Management in Surgical Patients with Obstructive Sleep Apnea. Anesth. Analg. 2021, 132, 1321–1327. [Google Scholar] [CrossRef]
- Cho, H.-J.; Park, D.-Y.; Min, H.J.; Chung, H.J.; Lee, J.-G.; Kim, C.-H. Endoscope-guided coblator tongue base resection using an endoscope-holding system for obstructive sleep apnea. Head Neck 2015, 38, 635–639. [Google Scholar] [CrossRef]
- Vicini, C.; Dallan, I.; Canzi, P.; Frassineti, S.; Nacci, A.; Seccia, V.; Panicucci, E.; Grazia La Pietra, M.; Montevecchi, F.; Tschabitscher, M. Transoral robotic surgery of the tongue base in obstructive sleep apnea-hypopnea syndrome: Anatomic considerations and clinical experience. Head Neck 2012, 34, 15–22. [Google Scholar] [CrossRef]
- Di Luca, M.; Iannella, G.; Montevecchi, F.; Magliulo, G.; De Vito, A.; Cocuzza, S.; Maniaci, A.; Meccariello, G.; Cammaroto, G.; Sgarzani, R.; et al. Use of the transoral robotic surgery to treat patients with recurrent lingual tonsillitis. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16. [Google Scholar] [CrossRef] [PubMed]
- Sheen, D.; Abdulateef, S. Uvulopalatopharyngoplasty. Oral Maxillofac. Surg. Clin. N. Am. 2021, 33, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Tsou, Y.-A.; Chang, W.-D. Comparison of transoral robotic surgery with other surgeries for obstructive sleep apnea. Sci. Rep. 2020, 10, 18163. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.C.; Chang, W.D.; Tsai, M.H.; Tsou, Y.A. Trans-oral robotic surgery versus coblation tongue base reduction for obstructive sleep apnea syndrome. Peer J. 2019, 7, 7812. [Google Scholar] [CrossRef]
- Vicini, C.; Montevecchi, F.; Pang, K.; Bahgat, A.; Dallan, I.; Frassineti, S.; Campanini, A. Combined transoral robotic tongue base surgery and palate surgery in obstructive sleep apnea-hypopnea syndrome: Expansion sphincter pharyngoplasty versus uvulopalatopharyngoplasty. Head Neck 2014, 36, 77–83. [Google Scholar] [CrossRef]
- Cammaroto, G.; Montevecchi, F.; D’Agostino, G.; Zeccardo, E.; Bellini, C.; Meccariello, G.; Vicini, C. Palatal surgery in a transoral robotic setting (TORS): Preliminary results of a retrospective comparison between uvulopalatopharyngoplasty (UPPP), expansion sphincter pharyngoplasty (ESP) and barbed repositioning pharyngoplasty (BRP). Acta Otorhinolaryngol. Ital. 2017, 37, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Vicini, C.; Hendawy, E.; Campanini, A.; Eesa, M.; Bahgat, A.; Alghamdi, S.; Meccariello, G.; DeVito, A.; Montevecchi, F.; Mantovani, M. Barbed reposition pharyngoplasty (BRP) for OSAHS: A feasibility, safety, efficacy and teachability pilot study. “We are on the giant’s shoulders”. Eur. Arch. Otorhinolaryngol. 2015, 272, 3065–3070. [Google Scholar] [CrossRef] [PubMed]
- Meccariello, G.; Cammaroto, G.; Montevecchi, F.; Hoff, P.T.; Spector, M.E.; Negm, H.; Shams, M.; Bellini, C.; Zeccardo, E.; Vicini, C. Transoral robotic surgery for the management of obstructive sleep apnea: A systematic review and meta-analysis. Eur. Arch. Otorhinolaryngol. 2016, 274, 647–653. [Google Scholar] [CrossRef]
- Friedman, M.; Hamilton, C.; Samuelson, C.G.; Lundgren, M.E.; Pott, T. Diagnostic value of the Friedman tongue position and Mallampati classification for obstructive sleep apnea: A meta-analysis. Otolaryngol. Head Neck Surg. 2013, 148, 540–547. [Google Scholar] [CrossRef]
- Berg, L.M.; Ankjell, T.K.S.; Sun, Y.-Q.; Trovik, T.A.; Sjögren, A.; Rikardsen, O.G.; Moen, K.; Hellem, S.; Bugten, V. Friedman Score in Relation to Compliance and Treatment Response in Nonsevere Obstructive Sleep Apnea. Int. J. Otolaryngol. 2020, 2020, 6459276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairbanks, D.N. Operative techniques of uvulopalatopharyngoplasty. Ear Nose Throat J. 1999, 78, 846–850. [Google Scholar] [CrossRef] [Green Version]
- Vicini, C.; Dallan, I.; Canzi, P.; Frassineti, S.; La Pietra, M.G.; Montevecchi, F. Transoral robotic tongue base resection in obstructive sleep apnoea-hypopnoea syndrome: A preliminary report. ORL J. Otorhinolaryngol. Relat. Spec. 2010, 72, 22–27. [Google Scholar] [CrossRef]
- Friedman, M.; Hamilton, C.; Samuelson, C.G.; Kelley, K.; Taylor, D.; Pearson-Chauhan, K.; Maley, A.; Taylor, R.; Venkatesan, T.K. Transoral Robotic Glossectomy for the Treatment of Obstructive Sleep Apnea-Hypopnea Syndrome. Otolaryngol. Neck Surg. 2012, 146, 854–862. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirignotta, F. Classification and definition of respiratory disorders during sleep. Minerva Med. 2004, 95, 177–185. [Google Scholar]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, J.S.; Sullivan, C.D.; Frank, D.O.; Kimbell, J.S.; Garcia, G.J. A systematic review of patient-reported nasal obstruction scores: Defining normative and symptomatic ranges in surgical patients. JAMA Facial Plast. Surg. 2014, 16, 219–225. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Lechien, J.R.; Chiesa-Estomba, M.C.; Fakhry, N.; Saussez, S.; Badr, I.; Ayad, T.; Chekkoury-Idrissi, Y.; Melkane, A.E.; Bahgat, A.; Crevier-Buchman, L.; et al. Surgical, clinical, and functional outcomes of transoral robotic surgery used in sleep surgery for obstructive sleep apnea syndrome: A systematic review and meta-analysis. Head Neck 2021, 43, 2216–2239. [Google Scholar] [CrossRef] [PubMed]
- Stuck, B.A.; Ravesloot, M.J.; Eschenhagen, T.; de Vet, H.; Sommer, J.U. Uvulopalatopharyngoplasty with or without tonsillectomy in the treatment of adult obstructive sleep apnea—A systematic review. Sleep Med. 2018, 50, 152–165. [Google Scholar] [CrossRef]
- Alcaraz, M.; Bosco, G.; Pérez-Martín, N.; Morato, M.; Navarro, A.; Plaza, G. Advanced Palate Surgery: What Works? Curr. Otorhinolaryngol. Rep. 2021, 1–14. [Google Scholar] [CrossRef]
- Mittal, R.; Lee, L.-A.; Lin, C.H.; Hsin, L.-J.; Bhusri, N.; Li, H.-Y. Prediction of tongue obstruction observed from drug induced sleep computed tomography by cephalometric parameters. Auris Nasus Larynx 2019, 46, 384–389. [Google Scholar] [CrossRef]
- Kim, J.-W.; Ahn, J.-C.; Choi, Y.-S.; Rhee, C.-S.; Jung, H.J. Correlation between short-time and whole-night obstruction level tests for patients with obstructive sleep apnea. Sci. Rep. 2021, 11, 1509. [Google Scholar] [CrossRef] [PubMed]
- Turhan, M.; Bostanci, A. Robotic Tongue-Base Resection Combined with Tongue-Base Suspension for Obstructive Sleep Apnea. Laryngoscope 2019, 130, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-C.; Friedman, M.; Chang, H.-W.; Gurpinar, B. The Efficacy of Multilevel Surgery of the Upper Airway in Adults with Obstructive Sleep Apnea/Hypopnea Syndrome. Laryngoscope 2008, 118, 902–908. [Google Scholar] [CrossRef]
- Puccia, R.; Woodson, B.T. Palatopharyngoplasty and Palatal Anatomy and Phenotypes for Treatment of Sleep Apnea in the Twenty-first Century. Otolaryngol. Clin. N. Am. 2020, 53, 421–429. [Google Scholar] [CrossRef]
- Mandavia, R.; Mehta, N.; Veer, V. Guidelines on the surgical management of sleep disorders: A systematic review. Laryngoscope 2020, 130, 1070–1084. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, M.; Minetti, A.; Torretta, S.; Pincherle, A.; Tassone, G.; Pignataro, L. The “Barbed Roman Blinds” technique: A step forward. Acta Otorhinolaryngol. Ital. 2013, 33, 128. [Google Scholar] [PubMed]
- Salamanca, F.; Costantini, F.; Mantovani, M.; Bianchi, A.; Amaina, T.; Colombo, E.; Zibordi, F. Barbed anterior pharyngoplasty: An evolution of anterior palatoplasty. Acta Otorhinolaryngol. Ital. 2014, 34, 434–438. [Google Scholar] [PubMed]
- Vicini, C.; Meccariello, G.; Cammaroto, G.; Rashwan, G.; Montevecchi, F. Barbed reposition pharyngoplasty in multilevel robotic surgery for obstructive sleep apnoea. Acta Otorhinolaryngol. Ital. 2017, 37, 214–217. [Google Scholar] [CrossRef]
- Babademez, M.A.; Gul, F.; Teleke, Y.C. Barbed palatoplasty vs. expansion sphincter pharyngoplasty with anterior palatoplasty. Laryngoscope 2020, 130, E275–E279. [Google Scholar] [CrossRef]
- Barbieri, M.; Missale, F.; Incandela, F.; Fragale, M.; Barbieri, A.; Roustan, V.; Canevari, F.R.; Peretti, G. Barbed suspension pharyngoplasty for treatment of lateral pharyngeal wall and palatal collapse in patients affected by OSAHS. Eur. Arch. Otorhinolaryngol. 2019, 276, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Vicini, C.; Meccariello, G.; Montevecchi, F.; De Vito, A.; Frassineti, S.; Gobbi, R.; Pelucchi, S.; Iannella, G.; Magliulo, G.; Cammaroto, G. Effectiveness of barbed repositioning pharyngoplasty for the treatment of obstructive sleep apnea (OSA): A prospective randomized trial. Sleep Breath. 2019, 24, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Neruntarat, C.; Khuancharee, K.; Saengthong, P. Barbed reposition pharyngoplasty versus expansion sphincter pharyngoplasty: A meta-analysis. Laryngoscope 2021, 131, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Moffa, A.; Rinaldi, V.; Mantovani, M.; Pierri, M.; Fiore, V.; Costantino, A.; Pignataro, L.; Baptista, P.; Cassano, M.; Casale, M. Different barbed pharyngoplasty techniques for retropalatal collapse in obstructive sleep apnea patients: A systematic review. Sleep Breath 2020, 24, 1115–1127. [Google Scholar] [CrossRef]
- Missale, F.; Fragale, M.; Incandela, F.; Roustan, V.; Arceri, C.; Barbieri, A.; Canevari, F.R.; Peretti, G.; Barbieri, M. Outcome predictors for non-resective pharyngoplasty alone or as a part of multilevel surgery, in obstructive sleep apnea-hypopnea syndrome. Sleep Breath 2020, 24, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
BRP Plus TORSTBR Group (n = 31) | UPPP Plus TORSTBR Group (n = 31) | p | |
---|---|---|---|
Age | 37.51 ± 9.42 | 39.61 ± 11.63 | 0.59 |
Male/female | 26/5 | 24/7 | 0.52 |
Body mass index | 28.22 ± 3.19 | 28.20 ± 3.62 | 0.88 |
Preop ESS | 9.02 ± 4.57 | 11.02 ± 4.58 | 0.28 |
Tonsil grade | 1.93 ± 1.14 | 2.11 ± 1.38 | 0.55 |
FTP | 2.92 ± 0.66 | 3.01 ± 0.55 | 0.22 |
Preop AHI | 46.35 ± 21.76 | 48.24 ± 21.18 | 0.69 |
BRP Plus TORSTBR Group (n = 31) | UPPP Plus TORSTBR Group (n = 31) | |||||||
---|---|---|---|---|---|---|---|---|
Pre-Op | Post-Op | p | Effect Size | Pre-Op | Post-Op | p | Effect Size | |
ESS | 9.03 ± 4.52 | 6.60 ± 3.82 | 0.02 * | 0.58 | 11.01 ± 4.52 | 7.82 ± 3.45 | 0.01 * | 0.79 |
AHI | 46.21 ± 22.03 | 21.60 ± 21.54 | 0.001 * | 1.12 | 45.13 ± 19.31 | 28.75 ± 23.09 | 0.04 * | 0.76 |
Minimum SpO2% | 76.44 ± 7.63 | 80.51 ± 7.33 | 0.02 * | 0.54 | 75.12 ± 7.66 | 82.56 ± 7.64 | 0.02 * | 0.97 |
CT90 | 16.32 ± 17.13 | 6.95 ± 10.46 | 0.001 * | 0.66 | 14.24 ± 14.65 | 7.54 ± 10.37 | 0.03 * | 0.52 |
AI | 31.66 ± 23.53 | 14.39 ± 18.34 | 0.001 * | 0.81 | 33.3 ± 19.24 | 16.5 ± 17.57 | 0.01 * | 0.91 |
BRP Plus TORSTBR Group (n = 31) | UPPP Plus TORSTBR Group (n = 31) | p | |
---|---|---|---|
Pre-op AHI | |||
Mild (AHI 5–15) (n, %) | 0 (0%) | 0(0%) | 0.75 |
Moderate (AHI 16–30)(n, %) | 11 (35.48%) | 10 (32.25%) | |
Severe (AHI > 30)(n, %) | 20 (64.51%) | 21 (67.74%) | |
Postop AHI | |||
Normal (AHI < 5)(n, %) | 6 (19.35%) | 8 (25.80%) | 0.54 |
Abnormal(AHI ≥ 5) (n, %) | 25 (80.64%) | 23 (74.19%) | |
AHI reduction | 24.73 ± 10.46 | 17.34 ± 14.82 | 0.04 * |
AHI reduction rate (%) | 62.01 ± 3.03 | 43.07 ± 9.06 | 0.01 * |
Outcome | |||
Cure (n, %) | 6 (19.35%) | 5 (16.12%) | 0.69 |
Surgical success (n, %) | 21 (67.74%) | 12 (38.71%) | 0.02 * |
Comorbidities | |||
Bleeding (n, %) | 1 (3.22%) | 2 (6.45%) | 0.55 |
Dysgeusia (n, %) | 1 (3.22%) | 1 (3.22%) | 1.00 |
Dysphagia (n, %) | 5 (16.12%) | 6 (19.35%) | 0.73 |
Globus (n, %) | 7 (22.58%) | 3 (9.67%) | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsou, Y.-A.; Hsu, C.-C.; Shih, L.-C.; Lin, T.-C.; Chiu, C.-J.; Tien, V.H.-C.; Tsai, M.-H.; Chang, W.-D. Combined Transoral Robotic Tongue Base Surgery and Palate Surgery in Obstructive Sleep Apnea Syndrome: Modified Uvulopalatopharyngoplasty versus Barbed Reposition Pharyngoplasty. J. Clin. Med. 2021, 10, 3169. https://doi.org/10.3390/jcm10143169
Tsou Y-A, Hsu C-C, Shih L-C, Lin T-C, Chiu C-J, Tien VH-C, Tsai M-H, Chang W-D. Combined Transoral Robotic Tongue Base Surgery and Palate Surgery in Obstructive Sleep Apnea Syndrome: Modified Uvulopalatopharyngoplasty versus Barbed Reposition Pharyngoplasty. Journal of Clinical Medicine. 2021; 10(14):3169. https://doi.org/10.3390/jcm10143169
Chicago/Turabian StyleTsou, Yung-An, Chun-Chieh Hsu, Liang-Chun Shih, Tze-Chieh Lin, Chien-Jen Chiu, Vincent Hui-Chi Tien, Ming-Hsui Tsai, and Wen-Dien Chang. 2021. "Combined Transoral Robotic Tongue Base Surgery and Palate Surgery in Obstructive Sleep Apnea Syndrome: Modified Uvulopalatopharyngoplasty versus Barbed Reposition Pharyngoplasty" Journal of Clinical Medicine 10, no. 14: 3169. https://doi.org/10.3390/jcm10143169