COVID-19 Vaccination and Immunosuppressive Therapy in Immune-Mediated Inflammatory Diseases
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Disease-Modifying Antirheumatic Drugs (DMARDs)
3.2. Glucocorticoids
3.3. Tumor Necrosis Factor-α Inhibitors
3.4. ANTI-CD20
3.5. Janus Kinase Inhibitors
3.6. Interleukin-6 Receptor Inhibitors
3.7. Abatacept
4. Discussion
Limitations
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Elkayam, O.; Bashkin, A.; Mandelboim, M.; Litinsky, I.; Comaheshter, D.; Levartovsky, D.; Mendelson, E.; Wigler, I.; Caspi, D.; Paran, D. The effect of infliximab and timing of vaccination on the humoral response to influenza vaccination in patients with rheumatoid arthritis and ankylosing spondylitis. Semin. Arthritis Rheum. 2010, 39, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Andreica, I.; Blazquez-Navarro, A.; Sokolar, J.; Anft, M.; Kiltz, U.; Pfaender, S.; Blanco, E.V.; Westhoff, T.; Babel, N.; Stervbo, U.; et al. Different humoral but similar cellular responses of patients with autoimmune inflammatory rheumatic diseases under disease-modifying antirheumatic drugs after COVID-19 vaccination. RMD Open 2022, 8, e002293. [Google Scholar] [CrossRef] [PubMed]
- Keshtkar-Jahromi, M.; Argani, H.; Rahnavardi, M.; Mirchi, E.; Atabak, S.; Tara, S.A.; Gachkar, L.; Noori-Froothghe, A.; Mokhtari-Azad, T. Antibody response to influenza immunization in kidney transplant recipients receiving either azathioprine or mycophenolate: A controlled trial. Am. J. Nephrol. 2008, 28, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Fomin, I.; Caspi, D.; Levy, V.; Varsano, N.; Shalev, Y.; Paran, D.; Levartovsky, D.; Litinsky, I.; Kaufman, I.; Wigler, I.; et al. Vaccination against influenza in rheumatoid arthritis: The effect of disease modifying drugs, including TNFa blockers. Ann. Rheum. Dis. 2006, 65, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Barnetche, T.; Combe, B.; Morel, J. Effect of methotrexate, anti-tumor necrosis factor a, and rituximab on the immune response to influenza and pneumococcal vaccines in patients with rheumatoid arthritis: A systematic review and meta-analysis. Arthritis Care Res. 2014, 66, 1016–1026. [Google Scholar] [CrossRef]
- Farhangian, M.E.; Feldman, S.R. Immunogenicity of biologic treatments for psoriasis: Therapeutic consequences and the potential value of concomitant methotrexate. Am. J. Clin. Dermatol. 2015, 16, 285–294. [Google Scholar] [CrossRef]
- Park, J.K.; Lee, Y.J.; Shin, K.; Ha, Y.-J.; Lee, E.Y.; Song, Y.W.; Choi, Y.; Winthrop, K.L.; Lee, E.B. Impact of temporary methotrexate discontinuation for 2 weeks on immunogenicity of seasonal influenza vaccination in patients with rheumatoid arthritis: A randomised clinical trial. Ann. Rheum. Dis. 2018, 77, 898–904. [Google Scholar] [CrossRef]
- Araujo, C.S.R.; Medeiros-Ribeiro, A.C.; Saad, C.G.S.; Bonfiglioli, K.R.; Domiciano, D.S.; Shimabuco, A.Y.; Silva, M.S.R.; Yuki, E.F.N.; Pasoto, S.G.; Pedrosa, T.; et al. Two-week methotrexate discontinuation in patients with rheumatoid arthritis vaccinated with inactivated SARS-CoV-2 vaccine: A randomised clinical trial. Ann. Rheum. Dis. 2022, 81, 889–897. [Google Scholar] [CrossRef]
- Abhishek, A.; Boyton, R.J.; Peckham, N.; McKnight, Á.; Coates, L.C.; Bluett, J.; Barber, V.; Cureton, L.; Francis, A.; Appelbe, D.; et al. Effect of a 2-week interruption in methotrexate treatment versus continued treatment on COVID-19 booster vaccine immunity in adults with inflammatory conditions (VROOM study): A randomised, open label, superiority trial. Lancet Respir. Med. 2022, 10, 840–850. [Google Scholar] [CrossRef]
- McHugh, J. Optimizing methotrexate withdrawal during COVID vaccination. Nat. Rev. Rheumatol. 2022, 18, 613. [Google Scholar] [CrossRef] [PubMed]
- Arumahandi de Silva, A.N.; Frommert, L.M.; Albach, F.N.; Klotsche, J.; Scholz, V.; Jeworowski, L.M.; Schwarz, T.; Hagen, A.T.; Zernicke, J.; Corman, V.M.; et al. Pausing methotrexate improves immunogenicity of COVID-19 vaccination in elderly patients with rheumatic diseases. Ann. Rheum. Dis. 2022, 81, 881–888. [Google Scholar] [CrossRef]
- Haberman, R.H.; Herati, R.; Simon, D.; Samanovic, M.; Blank, R.B.; Tuen, M.; Koralov, S.B.; Atreya, R.; Tascilar, K.; Allen, J.R.; et al. Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease. Ann. Rheum. Dis. 2021, 80, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Habermann, E.; Gieselmann, L.; Tober-Lau, P.; Klotsche, J.; Albach, F.N.; Hagen, A.T.; Zernicke, J.; Ahmadov, E.; de Silva, A.N.A.; Frommert, L.M.; et al. Pausing methotrexate prevents impairment of omicron BA.1 and BA.2 neutralisation after COVID-19 booster vaccination. RMD Open 2022, 8, e002639. [Google Scholar] [CrossRef] [PubMed]
- Stahl, D.; Tho Pesch, C.; Brück, C.; Esser, R.L.; Thiele, J.; Di Cristanziano, V.; Kofler, D.M. Reduced humoral response to a third dose (booster) of SARS-CoV-2 mRNA vaccines by concomitant methotrexate therapy in elderly patients with rheumatoid arthritis. RMD Open 2022, 8, e002632. [Google Scholar] [CrossRef] [PubMed]
- Frommert, L.M.; Arumahandi de Silva, A.N.; Zernicke, J.; Scholz, V.; Braun, T.; Jeworowski, L.M.; Schwarz, T.; Tober-Lau, P.; Hagen, A.T.; Habermann, E.; et al. Type of vaccine and immunosuppressive therapy but not diagnosis critically influence antibody response after COVID-19 vaccination in patients with rheumatic disease. RMD Open 2022, 8, e002650. [Google Scholar] [CrossRef] [PubMed]
- Schmiedeberg, K.; Abela, I.A.; Pikor, N.B.; Vuilleumier, N.; Schwarzmueller, M.; Epp, S.; Pagano, S.; Grabherr, S.; Patterson, A.B.; Nussberger, M.; et al. Postvaccination anti-S IgG levels predict anti-SARS-CoV-2 neutralising activity over 24 weeks in patients with RA. RMD Open 2022, 8, e002575. [Google Scholar] [CrossRef] [PubMed]
- Ammitzbøll, C.; Bartels, L.E.; Bøgh Andersen, J.; Vils, S.R.; Mistegård, C.E.; Johannsen, A.D.; Hermansen, M.-L.F.; Thomsen, M.K.; Erikstrup, C.; Hauge, E.-M.; et al. Impaired Antibody Response to the BNT162b2 Messenger RNA Coronavirus Disease 2019 Vaccine in Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis. ACR Open Rheumatol. 2021, 3, 622–628. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Ruddy, J.A.; Connolly, C.M.; Ou, M.T.; Werbel, W.A.; Garonzik-Wang, J.M.; Segev, D.L.; Paik, J.J. Antibody response to a single dose of SARS-CoV-2 mRNA vaccine in patients with rheumatic and musculoskeletal diseases. Ann Rheum Dis. 2021, 80, 1098–1099. [Google Scholar] [CrossRef]
- Braun-Moscovici, Y.; Kaplan, M.; Braun, M.; Markovits, D.; Giryes, S.; Toledano, K.; Tavor, Y.; Dolnikov, K.; Balbir-Gurman, A. Disease activity and humoral response in patients with inflammatory rheumatic diseases after two doses of the Pfizer mRNA vaccine against SARS-CoV-2. Ann. Rheum. Dis. 2021, 80, 1317–1321. [Google Scholar] [CrossRef]
- Bugatti, S.; De Stefano, L.; Balduzzi, S.; Greco, M.I.; Luvaro, T.; Cassaniti, I.; Bogliolo, L.; Mazzucchelli, I.; D’Onofrio, B.; di Lernia, M.; et al. Methotrexate and glucocorticoids, but not anticytokine therapy, impair the immunogenicity of a single dose of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic inflammatory arthritis. Ann. Rheum. Dis. 2021, 80, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Furer, V.; Eviatar, T.; Zisman, D.; Peleg, H.; Paran, D.; Levartovsky, D.; Zisapel, M.; Elalouf, O.; Kaufman, I.; Meidan, R.; et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: A multicentre study. Ann. Rheum. Dis. 2021, 80, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Kappelman, M.D.; Weaver, K.N.; Boccieri, M.E.; Firestine, A.; Zhang, X.; Long, M.D.; Chun, K.; Fernando, M.; Zikry, M.; Dai, X.; et al. Humoral Immune Response to Messenger RNA COVID-19 Vaccines Among Patients With Inflammatory Bowel Disease. Gastroenterology 2021, 161, 1340–1343.e2. [Google Scholar] [CrossRef] [PubMed]
- Mrak, D.; Tobudic, S.; Koblischke, M.; Graninger, M.; Radner, H.; Sieghart, D.; Hofer, P.; Perkmann, T.; Haslacher, H.; Thalhammer, R.; et al. SARS-CoV-2 vaccination in rituximab-treated patients: B cells promote humoral immune responses in the presence of T-cell-mediated immunity. Ann Rheum Dis. 2021, 80, 1345–1350. [Google Scholar] [CrossRef]
- Deepak, P.; Kim, W.; Paley, M.A.; Yang, M.; Carvidi, A.B.; El-Qunni, A.A.; Haile, A.; Huang, K.; Kinnett, B.; Liebeskind, M.J.; et al. Glucocorticoids and B Cell Depleting Agents Substantially Impair Immunogenicity of mRNA Vaccines to SARS-CoV-2. medRxiv 2021. [Google Scholar] [CrossRef]
- Ruddy, J.A.; Connolly, C.M.; Boyarsky, B.J.; Werbel, W.A.; Christopher-Stine, L.; Garonzik-Wang, J.M.; Segev, D.L.; Paik, J.J. High antibody response to two-dose SARS-CoV-2 messenger RNA vaccination in patients with rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 80, 1351–1352. [Google Scholar] [CrossRef]
- Shenoy, P.; Ahmed, S.; Cherian, S.; Paul, A.; Shenoy, V.; Vijayan, A.; Reji, R.; Thampi, A.; Babu, A.S.S.; Mohan, M. Immunogenicity of the ChAdOx1 nCoV-19 and the BBV152 vaccines in patients with autoinmune rheumatic diseases. medRxiv 2021. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Fagni, F.; Krönke, G.; Kleyer, A.; Meder, C.; Atreya, R.; Leppkes, M.; Kremer, A.E.; Ramming, A.; et al. SARS-CoV-2 vaccination responses in untreated, conventionally treated and anticytokine-treated patients with immune-mediated inflammatory diseases. Ann. Rheum. Dis. 2021, 80, 1312–1316. [Google Scholar] [CrossRef]
- Veenstra, J.; Wang, J.; McKinnon-Maksimowicz, K.; Liu, T.; Zuniga, B.; Hamzavi, I.; Zhou, L.; Mi, Q.-S. Correspondence on ‘Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort’. Ann. Rheum. Dis. 2021, 80, e160. [Google Scholar] [CrossRef]
- Fischer, L.; Gerstel, P.F.; Poncet, A.; Siegrist, C.-A.; Laffitte, E.; Gabay, C.; Seebach, J.D.; Ribi, C. Pneumococcal polysaccharide vaccination in adults undergoing immunosuppressive treatment for inflammatory diseases a longitudinal study. Arthritis Res. Ther. 2015, 17, 151. [Google Scholar] [CrossRef]
- Gianfrancesco, M.; Hyrich, K.L.; Al-Adely, S.; Carmona, L.; I Danila, M.; Gossec, L.; Izadi, Z.; Jacobsohn, L.; Katz, P.; Lawson-Tovey, S.; et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020, 79, 859–866. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Sinha, S.; Rosin, N.L.; Arora, R.; Labit, E.; Jaffer, A.; Cao, L.; Farias, R.; Nguyen, A.P.; de Almeida, L.G.N.; Dufour, A.; et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat. Med. 2022, 28, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cirera, S.; Calvet, J.; Berenguer-Llergo, A.; Pradenas, E.; Marfil, S.; Massanella, M.; Mateu, L.; Trinité, B.; Llop, M.; Arévalo, M.; et al. Glucocorticoids’ treatment impairs the medium-term immunogenic response to SARS-CoV-2 mRNA vaccines in Systemic Lupus Erythematosus patients. Sci Rep. 2022, 12, 14772. [Google Scholar] [CrossRef] [PubMed]
- Galmiche, S.; Luong Nguyen, L.B.; Tartour, E.; de Lamballerie, X.; Wittkop, L.; Loubet, P.; Launay, O. Immunological and clinical efficacy of COVID-19 vaccines in immunocompromised populations: A systematic review. Clin. Microbiol. Infect. 2022, 28, 163–177. [Google Scholar] [CrossRef]
- Kivitz, A.J.; Schechtman, J.; Texter, M.; Fichtner, A.; de Longueville, M.; Chartash, E.K. Vaccine responses in patients with rheumatoid arthritis treated with certolizumab pegol: Results from a single-blind randomized phase IV trial. J. Rheumatol. 2014, 41, 648–657. [Google Scholar] [CrossRef]
- Curtis, J.; Bridges, S.L.; Cofield, S.S.; Bassler, J.; Ford, T.; Lindsey, S.; Kivitz, A.; Messaoudi, I.; Michaud, K.; Huffstter, J.; et al. Results from a randomized controlled trial of the safety of the live varicella vaccine in TNF-treated patients. Arthritis Rheumatol. 2019, 71 (Suppl. 10), 1417–1418. [Google Scholar]
- Mahil, S.K.; Bechman, K.; Raharja, A.; Domingo-Vila, C.; Baudry, D.; A Brown, M.; Cope, A.P.; Dasandi, T.; Graham, C.; Khan, H.; et al. Humoral and cellular immunogenicity to a second dose of COVID-19 vaccine BNT162b2 in people receiving methotrexate or targeted immunosuppression: A longitudinal cohort study. Lancet Rheumatol. 2022, 4, e42–e52. [Google Scholar] [CrossRef]
- Al-Janabi, A.; Littlewood, Z.; Griffiths, C.E.M.; Hunter, H.J.A.; Chinoy, H.; Moriarty, C.; Yiu, Z.Z.N.; Warren, R.B. Antibody responses to single-dose SARS-CoV-2 vaccination in patients receiving immunomodulators for immune-mediated inflammatory disease. Br. J. Dermatol. 2021, 185, 646–648. [Google Scholar] [CrossRef]
- Dailey, J.; Kozhaya, L.; Dogan, M.; Hopkins, D.; Lapin, B.; Herbst, K.; Brimacombe, M.; Grandonico, K.; Karabacak, F.; Schreiber, J.; et al. Antibody Responses to SARS-CoV-2 after Infection or Vaccination in Children and Young Adults with Inflammatory Bowel Disease. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Geisen, U.M.; Berner, D.K.; Tran, F.; Sümbül, M.; Vullriede, L.; Ciripoi, M.; Reid, H.M.; Schaffarzyk, A.; Longardt, A.C.; Franzenburg, J.; et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort. Ann. Rheum. Dis. 2021, 80, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.A.; Lin, S.; Goodhand, J.R.; Chanchlani, N.; Hamilton, B.; Bewshea, C.; Nice, R.; Chee, D.; Cummings, J.F.; Fraser, A.; et al. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut 2021, 70, 1884–1893. [Google Scholar] [CrossRef] [PubMed]
- Rubbert-Roth, A.; Vuilleumier, N.; Ludewig, B.; Schmiedeberg, K.; Haller, C.; von Kempis, J. Anti-SARS-CoV-2 mRNA vaccine in patients with rheumatoid arthritis. Lancet Rheumatol. 2021, 3, e470–e472. [Google Scholar] [CrossRef] [PubMed]
- Seyahi, E.; Bakhdiyarli, G.; Oztas, M.; Kuskucu, M.A.; Tok, Y.; Sut, N.; Ozcifci, G.; Ozcaglayan, A.; Balkan, I.I.; Saltoglu, N.; et al. Antibody response to inactivated COVID-19 vaccine (CoronaVac) in immune-mediated diseases: A controlled study among hospital workers and elderly. Rheumatol. Int. 2021, 41, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Spiera, R.; Jinich, S.; Jannat-Khah, D. Rituximab, but not other antirheumatic therapies, is associated with impaired serological response to SARS- CoV-2 vaccination in patients with rheumatic diseases. Ann. Rheum. Dis. 2021, 80, 1357–1359. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, T.H.; Seibert, F.S.; Anft, M.; Blazquez-Navarro, A.; Skrzypczyk, S.; Doevelaar, A.; Hölzer, B.; Paniskaki, K.; Dolff, S.; Wilde, B.; et al. Correspondence on ‘SARS-CoV-2 vaccination in rituximab-treated patients: Evidence for impaired humoral but inducible cellular immune response’. Ann. Rheum. Dis. 2021, 80, e162. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Y.; Dixon, R.; Martinez Pazos, V.; Gnjatic, S.; Colombel, J.F.; Cadwell, K.; ICARUS-IBD Working Group. Serologic response to messenger RNA coronavirus disease 2019 vaccines in inflammatory bowel disease patients receiving biologic therapies. Gastroenterology 2021, 161, 715–718.e4. [Google Scholar] [CrossRef]
- Nuño, L.; Novella Navarro, M.; Bonilla, G.; Franco-Gómez, K.; Aguado, P.; Peiteado, D.; Monjo, I.; Tornero, C.; Villalba, A.; Miranda-Carus, M.-E.; et al. Clinical course, severity and mortality in a cohort of patients with COVID-19 with rheumatic diseases. Ann. Rheum. Dis. 2020, 79, 1659–1661. [Google Scholar] [CrossRef]
- Schulze-Koops, H.; Krueger, K.; Vallbracht, I.; Hasseli, R.; Skapenko, A. Increased risk for severe COVID-19 in patients with inflammatory rheumatic diseases treated with rituximab. Ann. Rheum. Dis. 2021, 80, e67. [Google Scholar] [CrossRef]
- Seree-Aphinan, C.; Ratanapokasatit, Y.; Suchonwanit, P.; Rattanakaemakorn, P.; O-Charoen, P.; Pisitkun, P.; Suangtamai, T.; Setthaudom, C.; Chirasuthat, S.; Chanprapaph, K. Optimal time for COVID-19 vaccination in rituximab-treated dermatologic patients. Front. Immunol. 2023, 14, 1138765. [Google Scholar] [CrossRef]
- Schumacher, F.; Mrdenovic, N.; Scheicht, D.; Pons-Kühnemann, J.; Scheibelhut, C.; Strunk, J. Humoral immunogenicity of COVID-19 vaccines in patients with inflammatory rheumatic diseases under treatment with Rituximab: A case-control study (COVID-19VacRTX). Rheumatology 2022, 61, 3912–3918. [Google Scholar] [CrossRef] [PubMed]
- Egri, N.; Calderón, H.; Martinez, R.; Vazquez, M.; Gómez-Caverzaschi, V.; Pascal, M.; Araújo, O.; Juan, M.; González-Navarro, E.A.; Hernández-Rodríguez, J. Cellular and humoral responses after second and third SARS-CoV-2 vaccinations in patients with autoimmune diseases treated with rituximab: Specific T cell immunity remains longer and plays a protective role against SARS-CoV-2 reinfections. Front. Immunol. 2023, 14, 1146841. [Google Scholar] [CrossRef] [PubMed]
- Asplund Högelin, K.; Ruffin, N.; Pin, E.; Hober, S.; Nilsson, P.; Starvaggi Cucuzza, C.; Khademi, M.; Olsson, T.; Piehl, F.; Al Nimer, F. B-cell repopulation dynamics and drug pharmacokinetics impact SARS-CoV-2 vaccine efficacy in anti-CD20-treated multiple sclerosis patients. Eur. J. Neurol. 2022, 29, 3317–3328. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.; Tahir, H.; Ganguly, S.; Moorthy, A. An update on the considerations for patients with rheumatic disease being treated with rituximab during the COVID-19 pandemic and the potential drug treatment strategies. Expert Opin. Pharmacother. 2022, 23, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Winthrop, K.L.; Bingham, C.O., III; Komocsar, W.J.; Bradley, J.; Issa, M.; Klar, R.; Kartman, C.E. Evaluation of pneumococcal and tetanus vaccine responses in patients with rheumatoid arthritis receiving baricitinib: Results from a long-term extension trial substudy. Arthritis Res. Ther. 2019, 21, 102. [Google Scholar] [CrossRef] [PubMed]
- Seror, R.; Camus, M.; Salmon, J.-H.; Roux, C.; Dernis, E.; Basch, A.; Germain, V.; Leske, C.; Brousseau, S.; Truchetet, M.-E.; et al. Do JAK inhibitors affect immune response to COVID-19 vaccination? Data from the MAJIK-SFR Registry. Lancet Rheumatol. 2022, 4, e8–e11. [Google Scholar] [CrossRef]
- Schäfer, A.; Kovacs, M.S.; Eder, A.; Nigg, A.; Feuchtenberger, M. Janus kinase (JAK) inhibitors significantly reduce the humoral vaccination response against SARS-CoV-2 in patients with rheumatoid arthritis. Clin. Rheumatol. 2022, 41, 3707–3714. [Google Scholar] [CrossRef]
- Iancovici, L.; Khateeb, D.; Harel, O.; Peri, R.; Slobodin, G.; Hazan, Y.; Melamed, D.; Kessel, A.; Bar-On, Y. Rheumatoid arthritis patients treated with Janus kinase inhibitors show reduced humoral immune responses following BNT162b2 vaccination. Rheumatology 2022, 61, 3439–3447. [Google Scholar] [CrossRef]
- Mori, S.; Ueki, Y.; Hirakata, N.; Oribe, M.; Hidaka, T.; Oishi, K. Impact of tocilizumab therapy on antibody response to influenza vaccine in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2012, 71, 2006–2010. [Google Scholar] [CrossRef]
- Chauvin, C.; Levillayer, L.; Roumier, M.; Nielly, H.; Roth, C.; Karnam, A.; Bonam, S.R.; Bourgarit, A.; Dubost, C.; Bousquet, A.; et al. Tocilizumab-treated convalescent COVID-19 patients retain the cross-neutralization potential against SARS-CoV-2 variants. iScience 2023, 26, 106124. [Google Scholar] [CrossRef]
- Schwake, C.; Pakeerathan, T.; Kleiter, I.; Ringelstein, M.; Aktas, O.; Korporal-Kuhnke, M.; Wildemann, B.; Jarius, S.; Bayas, A.; Pul, R.; et al. Humoral COVID-19 vaccine response in patients with NMOSD/MOGAD during anti-IL-6 receptor therapy compared to other immunotherapies. Mult. Scler. J. 2023, 29, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.; Laurindo, I.M.; Guedes, L.K.; Saad, C.G.; Moraes, J.C.; Silva, C.A.; Bonfa, E. Abatacept and reduced immune response to pandemic 2009 influenza A/H1N1 vaccination in patients with rheumatoid arthritis. Arthritis Care Res. 2013, 65, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Kapetanovic, M.C.; Saxne, T.; Jönsson, G.; Truedsson, L.; Geborek, P. Rituximab and abatacept but not tocilizumab impair antibody response to pneumococcal conjugate vaccine in patients with rheumatoid arthritis. Arthritis Res. Ther. 2013, 15, R171. [Google Scholar] [CrossRef] [PubMed]
- Isnardi, C.A.; Cerda, O.L.; Landi, M.; Cruces, L.; Schneeberger, E.E.; Montoro, C.C.; Alfaro, M.A.; Roldán, B.M.; Gómez Vara, A.B.; Giorgis, P.; et al. Immune Response to SARS-CoV-2 Third Vaccine in Patients With Rheumatoid Arthritis Who Had No Seroconversion After Primary 2-Dose Regimen With Inactivated or Vector-Based Vaccines. J. Rheumatol. 2022, 49, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
- Filippini, F.; Giacomelli, M.; Bazzani, C.; Fredi, M.; Semeraro, P.; Tomasi, C.; Franceschini, F.; Caruso, A.; Cavazzana, I.; Giagulli, C. Efficacy of COVID-19 mRNA vaccination in patients with autoimmune disorders: Humoral and cellular immune response. BMC Med. 2023, 21, 210. [Google Scholar] [CrossRef] [PubMed]
- Sieiro Santos, C.; Calleja Antolin, S.; Moriano Morales, C.; Garcia Herrero, J.; Diez Alvarez, E.; Ramos Ortega, F.; Ruiz de Morales, J.G. Immune responses to mRNA vaccines against SARS-CoV-2 in patients with immune-mediated inflammatory rheumatic diseases. RMD Open 2022, 8, e001898. [Google Scholar] [CrossRef] [PubMed]
- Saleem, B.; Ross, R.L.; Bissell, L.A.; Aslam, A.; Mankia, K.; Duquenne, L.; Corsadden, D.; Carter, C.; Hughes, P.; Nadat, F.A.; et al. Effectiveness of SARS-CoV-2 vaccination in patients with rheumatoid arthritis (RA) on DMARDs: As determined by antibody and T cell responses. RMD Open 2022, 8, e002050. [Google Scholar] [CrossRef] [PubMed]
- Van Assen, S.; Agmon-Levin, N.; Elkayam, O.; Cervera, R.; Doran, M.F.; Dougados, M.; Emery, P.; Geborek, P.; Ioannidis, J.P.; Jayne, D.R.; et al. EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2011, 70, 414–422. [Google Scholar] [CrossRef]
- Landewé, R.B.M.; Kroon, F.P.B.; Alunno, A.; Najm, A.; Bijlsma, J.W.; Burmester, G.R.; Caporali, R.; Combe, B.; Conway, R.; Curtis, J.R.; et al. EULAR recommendations for the management and vaccination of people with rheumatic and musculoskeletal diseases in the context of SARS-CoV-2: The November 2021 update. Ann. Rheum. Dis. 2022, 81, 1628–1639. [Google Scholar] [CrossRef]
- Tam, L.S.; Tanaka, Y.; Handa, R.; Li, Z.; Lorenzo, J.P.; Louthrenoo, W.; Hill, C.; Pile, K.; Robinson, P.C.; Dans, L.F.; et al. Updated APLAR consensus statements on care for patients with rheumatic diseases during the COVID-19 pandemic. Int. J. Rheum. Dis. 2021, 24, 733–745. [Google Scholar] [CrossRef]
- Curtis, J.R.; Johnson, S.R.; Anthony, D.D.; Arasaratnam, R.J.; Baden, L.R.; Bass, A.R.; Calabrese, C.; Gravallese, E.M.; Harpaz, R.; Kroger, A.; et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients with Rheumatic and Musculoskeletal Diseases: Version 5. Arthritis Rheumatol. 2023, 75, E1–E16. [Google Scholar] [CrossRef] [PubMed]
- Harris, E. Updated WHO Guidance for Prioritizing COVID-19 Vaccines. JAMA 2023, 329, 144. [Google Scholar] [CrossRef] [PubMed]
- Mallory, R.M.; Formica, N.; Pfeiffer, S.; Wilkinson, B.; Marcheschi, A.; Albert, G.; McFall, H.; Robinson, M.; Plested, J.S.; Zhu, M.; et al. Safety and immunogenicity following a homologous booster dose of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373): A secondary analysis of a randomised, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 2022, 22, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, M.; Tincani, A.; Andreoli, L.; Cattalini, M.; Greenbaum, A.; Kanduc, D.; Alijotas-Reig, J.; Zinserling, V.; Semenova, N.; Amital, H.; et al. COVID-19 and autoimmunity. Autoimmun Rev. 2020, 19, 102597. [Google Scholar] [CrossRef] [PubMed]
- Valero, C.; Baldivieso-Achá, J.P.; Uriarte, M.; Vicente-Rabaneda, E.F.; Castañeda, S.; García-Vicuña, R. Vasculitis flare after COVID-19: Report of two cases in patients with preexistent controlled IgA vasculitis and review of the literature. Rheumatol. Int. 2022, 42, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Aftab, S.; Bayoumy, N.M.; Meo, A.S. Efficacy of Oxford-AstraZeneca (ChAdOx1 CoV-19) vaccine against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) cases, hospital admissions, type of variants, and deaths. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 10133–10143. [Google Scholar] [PubMed]
- Zhang, X.; Xia, J.; Jin, L.; Wu, Y.; Zheng, X.; Cao, X.; Meng, X.; Li, J.; Zhu, F. Effectiveness of homologous or heterologous immunization regimens against SARS-CoV-2 after two doses of inactivated COVID-19 vaccine: A systematic review and meta-analysis. Hum. Vaccin. Immunother. 2023, 19, 2221146. [Google Scholar] [CrossRef]
- Monteiro, H.S.; Lima Neto, A.S.; Kahn, R.; Sousa, G.S.; Carmona, H.A.; Andrade, J.S., Jr.; Castro, M.C. Impact of CoronaVac on COVID-19 outcomes of elderly adults in a large and socially unequal Brazilian city: A target trial emulation study. Vaccine 2023, 41, 5742–5751. [Google Scholar] [CrossRef]
- Marchese, A.M.; Zhou, X.; Kinol, J.; Underwood, E.; Woo, W.; McGarry, A.; Beyhaghi, H.; Áñez, G.; Toback, S.; Dunkle, L.M. NVX-CoV2373 vaccine efficacy against hospitalization: A post hoc analysis of the PREVENT-19 phase 3, randomized, placebo-controlled trial. Vaccine 2023, 41, 3461–3466. [Google Scholar] [CrossRef]
- Yanfang, W.; Jianfeng, C.; Changlian, L.; Yan, W. COVID-19 vaccination of patients with chronic immune-mediated inflammatory disease. Adv. Rheumatol. 2023, 63, 54. [Google Scholar] [CrossRef]
- COVID-19 Vaccination and Prioritisation Strategies in the EU/EEA. European Center for Disease Prevention and Control. December 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19vaccination-and-prioritisation-strategies.pdf (accessed on 10 October 2023).
- Lista de Actividades Esenciales. Gobierno de España. March 2020. Available online: https://www.mites.gob.es/ficheros/ministerio/contacto_ministerio/lista_actividades_esenciales.pdf (accessed on 10 October 2023).
First Author and Reference Number | Pts (N) | Age (Median) | Disease | DMARDs |
---|---|---|---|---|
Abhishek A et al. [10] | 340 | 59 | RA, PsA | MTX |
Ammitzbøll C et al. [18] | 134 | 70 | SLE, RA | MTX |
Boyarsky BJ et al. [19] | 123 | 50 | IJDs, SLE, SS, myositis, vasculitis | AZA, HCQ, MMF, SSZ, TAC, MTX, leflunomide |
Braun-Moscovici Y et al. [20] | 264 | 50 | IJDs, CTDs, vasculitis | MTX, MMF, GC |
Bugatti S et al. [21] | 140 | 55.7 | RA, PsA, SpA | MTX, SSZ, leflunomide, cyclosporine A |
Furer V et al. [22] | 686 | 59 | RA, PsA, SpA, SLE, vasculitis, LVV, AAV | GC, MTX, HCQ, MMF, leflunomide |
Haberman RH et al. [13] | 77 | 36 | Lymphoma | MTX |
Kappelman MD et al. [23] | 317 | 50.9 | IBD | GC, 5-ASA, SSZ, thiopurines |
Mrak D et al. [24] | 74 | 61.7 | IgG4-related, CTDs, RA, vasculitis | MTX, MMF, HCQ, AZA, SSZ, GC leflunomide |
Deepak P et al. [25] | 133 | 45.5 | IBD, IJDs, RA, SpA, SLE, SS, psoriasis, PsA | AZA, MMF, MTX, GC, leflunomide |
Ruddy JA et al. [26] | 404 | 384 | Myositis | MMF, GC |
Shenoy P et al. [27] | 449 | 52 | RA, IJDs, SpA, SLE, PR, scleroderma vasculitis, myositis | MTX, SSZ, leflunomide, HCQ, MMF, GC, TAC, AZA |
Simon D et al. [28] | 84 | 53.1 | IBD, RA, SpA, psoriasis | 5-ASA, HCQ, MTX, GC |
Veenstra J et al. [29] | 74 | 55.9 | IBD, RA, SLE, psoriasis, PsA | HCQ, AZA, MMF, GC |
First Author and Reference Number | Pts (N) | Age (Median) | Disease | bDMARDs/Targeted Therapies |
---|---|---|---|---|
Al-Janabi A et al. [39] | 120 | 53 | Psoriasis, PsA, RA, SLE, Cröhn’s | Abatacept, adalimumab, brodalumab, certolizumab, etanercept, guselkumab, ixekizumab, risankizumab, secukinumab, tildrakizumab, ustekinumab |
Ammitzbøll C et al. [18] | 134 | 70 | SLE, RA | Infliximab, adalimumab, JAKi, rituximab, tocilizumab, abatacept, belimumab |
Boyarsky BJ et al. [19] | 123 | 50 | IJDs, SLE, SS, myositis, vasculitis | Abatacept, belimumab, rituximab, infliximab, adalimumab, tofacitinib |
Braun-Moscovici Y et al. [20] | 264 | 50 | IJDs, CTDs, vasculitis | Rituximab, belimumab, infliximab, adalimumab, abatacept, JAKi |
Bugatti S et al. [21] | 140 | 56 | RA, PsA, SpA | Infliximab, adalimumab, tocilizumab, guselkumab, secukinumab, JAKi, CTLA4-Ig |
Dailey J et al. [40] | 33 | - | IBD | Vedolizumab, infliximab |
Furer V et al. [22] | 686 | 59 | RA, PsA, SpA, SLE, IIM, vasculitis, LVV, AAV vasculitis | Infliximab, adalimumab, tocilizumab, rituximab, guselkumab, abatacept, JAKi, belimumab |
Geisen UM et al. [41] | 26 | 51 | PsA, RA, MCTD, SpA, SLE, IBD, psoriasis, myositis, vasculitis, sarcoidosis | Infliximab, adalimumab, golimumab, certolizumab, etanercept, tocilizumab, vedolizumab, secukinumab, ustekinumab, ixekizumab, belimumab |
Kappelman MD et al. [23] | 317 | 51 | IBD | Vedolizumab, ustekinumab |
Kennedy NA et al. [42] | 1293 | 44 | IBD | Infliximab, vedolizumab |
Mahil SK et al. [38] | 84 | 43 | Infliximab, adalimumab, guselkumab | |
Deepak P et al. [25] | 133 | 46 | IBD, IJDs, RA, SpA, SLE, SS, psoriasis, PsA | Infliximab, adalimumab, golimumab, abatacept, vedolizumab, ustekinumab, tofacitinib, rituximab, tocilizumab |
Rubbert-Roth A et al. [43] | 51 | 64 | RA | Abatacept, JAKi |
Ruddy JA et al. [26] | 404 | 44 | Myositis | Infliximab, adalimumab, rituximab |
Seyahi E et al. [44] | 104 | 42 | RA, SpA/IBD, vasculitis, CTDs | Rituximab and various biological agents |
Shenoy P et al. [27] | 449 | 52 | RA, PR, IJDs, SpA, SLE, vasculitis, scleroderma, myositis | Tofacitinib, apremilast, rituximab, adalimumab |
Simon D et al. [28] | 84 | 53 | IBD, RA, SpA, psoriasis | Infliximab, adalimumab, guselkumab, secukinumab, JAKi, tocilizumab |
Spiera R et al. [45] | 89 | 61 | RA, SLE, SS, PsA, vasculitis, myositis, MCTD, scleroderma | Adalimumab, etanercept, abatacept, secukinumab, JAKi, rituximab, tocilizumab, belimumab, anakinra |
Veenstra J et al. [29] | 74 | 56 | IBD, RA, SLE, psoriasis, PsA | Infliximab, tofacitinib, ixekizumab |
Westhoff TH et al. [46] | 9 | 64 | Rituximab-treated pts | Rituximab |
Wong SY et al. [47] | 26 | - | IBD | Infliximab, adalimumab, vedolizumab, ustekinumab |
Year | Author/Institution [Reference Number] | Title |
---|---|---|
2021 | European League Against Rheumatism (EULAR) [69] | EULAR recommendations for the management and vaccination of people with rheumatic and musculoskeletal diseases in the context of SARS-CoV-2: the November 2021 update |
2021 | Asia Pacific League of Associations for Rheumatology (APLAR) [70] | Updated APLAR consensus statements on care for patients with rheumatic diseases during the COVID-19 pandemic |
2023 | American College of Rheumatology (ACR) [71] | American College of Rheumatology Guidance for COVID-19 Vaccination in Patients With Rheumatic and Musculoskeletal Diseases: Version 5 |
2023 | World Health Organization (WHO) [72] | Updated WHO Guidance for Prioritizing COVID-19 Vaccines |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra López-Matencio, J.M.; Vicente-Rabaneda, E.F.; Alañón, E.; Aranguren Oyarzabal, A.; Martínez Fleta, P.; Castañeda, S. COVID-19 Vaccination and Immunosuppressive Therapy in Immune-Mediated Inflammatory Diseases. Vaccines 2023, 11, 1813. https://doi.org/10.3390/vaccines11121813
Serra López-Matencio JM, Vicente-Rabaneda EF, Alañón E, Aranguren Oyarzabal A, Martínez Fleta P, Castañeda S. COVID-19 Vaccination and Immunosuppressive Therapy in Immune-Mediated Inflammatory Diseases. Vaccines. 2023; 11(12):1813. https://doi.org/10.3390/vaccines11121813
Chicago/Turabian StyleSerra López-Matencio, José M., Esther F. Vicente-Rabaneda, Estefanía Alañón, Ainhoa Aranguren Oyarzabal, Pedro Martínez Fleta, and Santos Castañeda. 2023. "COVID-19 Vaccination and Immunosuppressive Therapy in Immune-Mediated Inflammatory Diseases" Vaccines 11, no. 12: 1813. https://doi.org/10.3390/vaccines11121813