Immunogenicity and Effectiveness of Primary and Booster Vaccine Combination Strategies during Periods of SARS-CoV-2 Delta and Omicron Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population, Data Sources, and Study Design
- A retrospective part dealing with the different homologous and heterologous vaccination schemes’ effectiveness at different time points.
- A prospective part dealing with the different homologous and heterologous vaccination schemes’ immunogenicity at different time points.
- A retrospective part dealing with the safety of heterologous booster vaccination with one BNT162b2 dose after primary two-dose Gam-COVID-Vac vaccination.
2.1.1. Vaccine Effectiveness (VE)
2.1.2. Humoral Immunity
- At <3 months after two BNT162b2 doses: employees received two BNT162b2 doses (21 days apart) in <3 months prior to the time of assessment.
- At 3 to <6 months after two BNT162b2 doses: employees received two BNT162b2 doses (21 days apart) in the past 3 months up to <6 months prior to the time of assessment.
- At 6 months and above after two BNT162b2 doses: employees received two BNT162b2 doses (21 days apart) in the past 6 months or more prior to the time of assessment.
- At <3 months after one BNT162b2 booster dose following 2*BNT162b2 doses: employees received a single BNT162b2 booster dose after being primarily immunized with two BNT162b2 doses in the past 6 months (booster given at <3 months prior to the time of assessment).
- At 3 to <6 months after two Gam-COVID-Vac doses: employees received two Gam-COVID-Vac doses (21 days apart) in the past 3 to <6 months prior to the time of assessment. Of note, none of the employees received Gam-COVID-Vac with the second dose given in <3 months prior to the time of assessment. No employees were recruited for the assessment of humoral immunity at >6 months of the second dose.
- At <3 months after one BNT162b2 booster dose following two Gam-COVID-Vac doses: employees received a single BNT162b2 booster dose after being primarily immunized with two Gam-COVID-Vac doses in the past 6 months (booster given at <3 months prior to the time of assessment).
2.1.3. Sample Collection and Humoral Immunity Measurement
3. Safety of BNT162b2 Booster Dose in Employees Previously Vaccinated with 2*Gam-COVID-Vac Doses
Statistical Analysis
4. Results
4.1. Study Population for VE Analyses
4.1.1. Delta Surge Period
4.1.2. Omicron Surge Period
4.2. VE against Delta Variant
4.2.1. VE among All Participants, including Those with and Those without Previous Exposure to COVID-19 Prior to the Delta Wave
4.2.2. Longitudinal Variation in the Effectiveness of the Different Vaccination Schemes in Subsequent Months during the Delta Wave
4.3. VE against Omicron Variant among All Participants, including Those with and without Previous COVID-19 Exposure
4.4. Effectiveness of COVID-19 Vaccination Alone versus Hybrid Immunity against Delta and Omicron Variants
4.5. Assessment of Humoral Immunity of Different Vaccination Schemes in Subgroup Analysis
4.6. Safety of BNT162b2 Booster Vaccination in the Gam-COVID-Vac Primary Vaccination Cohort in Subgroup Analysis
5. Discussion
5.1. Immunogenicity and Effectiveness of Primary Vaccination Schemes with Gam-COVID-Vac and/or BNT162b2
5.2. BNT162b2 Booster Immunity and Effectiveness in Participants Previously Vaccinated with Gam-COVID-Vac or BNT162b2
5.3. Longitudinal Dynamics of Effectiveness during the Same Wave
5.4. Effect of Hybrid Immunity
5.5. Safety
5.6. Importance of Mosaic Vaccination in Epidemic Control and Equity
5.7. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saliou, P. L’éradication des maladies infectieuses par la vaccination [Eradication of infectious diseases by vaccination]. Med. Trop. 2007, 67, 321–327. (In French) [Google Scholar]
- White, N.D.; Grimm, H. Vaccine Equity: Lessons Learned from the COVID-19 Pandemic. Am. J. Lifestyle Med. 2022, 16, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Wyka, K.; White, T.M.; Picchio, C.A.; Rabin, K.; Ratzan, S.C.; Leigh, J.P.; Hu, J.; El-Mohandes, A. Revisiting COVID-19 vaccine hesitancy around the world using data from 23 countries in 2021. Nat. Commun. 2022, 13, 3801. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef]
- Barouch, D.H. Covid-19 Vaccines—Immunity, Variants, Boosters. N. Engl. J. Med. 2022, 387, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Naaber, P.; Tserel, L.; Kangro, K.; Sepp, E.; Jürjenson, V.; Adamson, A.; Haljasmägi, L.; Rumm, A.P.; Maruste, R.; Kärner, J.; et al. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. Lancet Reg. Health Eur. 2021, 10, 100208. [Google Scholar] [CrossRef]
- Peck, K.M.; Lauring, A.S. Complexities of Viral Mutation Rates. J. Virol. 2018, 92, e01031-17. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Sputnik Vaccine. Available online: https://sputnikvaccine.com/about-vaccine/ (accessed on 8 August 2022).
- Precision Vaccinations. Sputnik V Vaccine, Updated 23 May 2022. Available online: https://www.precisionvaccinations.com/vaccines/sputnik-v-vaccine (accessed on 8 August 2022).
- Sputnik Vaccine. Available online: https://sputnikvaccine.com/newsroom/pressreleases/sputnik-v-vaccine-granted-full-permanent-approval-in-russia/ (accessed on 8 August 2022).
- Nogrady, B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature 2021, 595, 339–340. [Google Scholar] [CrossRef] [PubMed]
- TASS. FACTBOX: How Countries Approved Sputnik v Anti-Coronavirus Vaccine, 11 August 2021. Available online: https://tass.com/world/1324643 (accessed on 8 August 2022).
- Bello-Chavolla, O.Y.; Antonio-Villa, N.E.; Valdés-Ferre, S.I.; Fermín-Martínez, C.A.; Fernandez-Chirino, L.; Ramírez-García, D.; Mancilla-Galindo, J.; Kammar-García, A.; Ávila-Funes, J.A.; Zúñiga-Gil, C.H.; et al. Effectiveness of a nation-wide COVID-19 vaccination program in Mexico. medRxiv, 2022; preprint. [Google Scholar]
- Borobia, A.M.; Carcas, A.J.; Pérez-Olmeda, M.; Castaño, L.; Bertran, M.J.; García-Pérez, J.; Campins, M.; Portolés, A.; González-Pérez, M.; Morales, M.T.G.; et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet 2021, 398, 121–130. [Google Scholar] [CrossRef]
- Hillus, D.; Schwarz, T.; Tober-Lau, P.; Vanshylla, K.; Hastor, H.; Thibeault, C.; Jentzsch, S.; Helbig, E.T.; Lippert, L.J.; Tscheak, P.; et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: A prospective cohort study. Lancet Respir. Med. 2021, 9, 1255–1265. [Google Scholar] [CrossRef]
- Schmidt, T.; Klemis, V.; Schub, D.; Mihm, J.; Hielscher, F.; Marx, S.; Abu-Omar, A.; Ziegler, L.; Guckelmus, C.; Urschel, R.; et al. Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat. Med. 2021, 27, 1530–1535. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Sung, H.; Kim, S.H. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1629–1630. [Google Scholar] [PubMed]
- Abu-Raddad, L.J.; Chemaitelly, H.; Ayoub, H.H.; AlMukdad, S.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Tang, P.; Hasan, M.R.; Coyle, P.; et al. Effect of mRNA Vaccine Boosters against SARS-CoV-2 Omicron Infection in Qatar. N. Engl. J. Med. 2022, 386, 1804–1816. [Google Scholar] [CrossRef] [PubMed]
- Nour, D.; Rafei, R.; Lamarca, A.P.; de Almeida, L.G.P.; Osman, M.; Ismail, M.B.; Mallat, H.; Berry, A.; Burfin, G.; Semanas, Q.; et al. The Role of Lebanon in the COVID-19 Butterfly Effect: The B.1.398 Example. Viruses 2022, 14, 1640. [Google Scholar] [CrossRef]
- Al Kalamouni, H.; Abou Hassan, F.; Bou Hamdan, M.; Page, A.J.; Lott, M.; Ghosn, N.; Rady, A.; Mahfouz, R.; Araj, G.F.; Dbaibo, G.; et al. Genomic Surveillance of SARS CoV2 in COVID-19 vaccinated healthcare workers in Lebanon. bioRxiv, 2022; preprint. [Google Scholar] [CrossRef]
- Moghnieh, R.; Mekdashi, R.; El-Hassan, S.; Abdallah, D.; Jisr, T.; Bader, M.; Jizi, I.; Sayegh, M.H.; Bizri, A.R. Immunogenicity and reactogenicity of BNT162b2 booster in BBIBP-CorV-vaccinated individuals compared with homologous BNT162b2 vaccination: Results of a pilot prospective cohort study from Lebanon. Vaccine 2021, 39, 6713–6719. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Chung, H.; He, S.; Nasreen, S.; Sundaram, M.E.; Buchan, S.A.; Wilson, S.E.; Chen, B.; Calzavara, A.; Fell, D.B.; Austin, P.C.; et al. Effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe COVID-19 outcomes in Ontario, Canada: Test negative design study. BMJ 2021, 374, n1943. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.-M.; et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Tenforde, M.W.; Chappell, J.D.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Clinical severity of, and effectiveness of mRNA vaccines against, COVID-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: Prospective observational study. BMJ 2022, 376, e069761. [Google Scholar] [CrossRef] [PubMed]
- Tonnara, G.; Piselli, P.; Cimaglia, C.; Arlotti, M.; Sacchini, E.; Manoni, S.; Zani, A.; Muccioli, F.; Laderchi, A.; Rabini, S.; et al. The impact of COVID-19 vaccination program in the Republic of San Marino: Focus on effectiveness of Gam-COVID-Vac. Clin. Microbiol. Infect. 2022, 4, S1198-743X(22)00341-X. [Google Scholar]
- Petrović, V.; Vuković, V.; Patić, A.; Marković, M.; Ristić, M. Immunogenicity of BNT162b2, BBIBP-CorV and Gam-COVID-Vac vaccines and immunity after natural SARS-CoV-2 infection-A comparative study from Novi Sad, Serbia. PLoS ONE 2022, 17, e0263468. [Google Scholar] [CrossRef]
- Papadopoli, R.; De Sarro, C.; Palleria, C.; Gallelli, L.; Pileggi, C.; De Sarro, G. Serological Response to SARS-CoV-2 Messenger RNA Vaccine: Real-World Evidence from Italian Adult Population. Vaccines 2021, 9, 1494. [Google Scholar] [CrossRef]
- Shrotri, M.; Navaratnam, A.M.D.; Nguyen, V.; Byrne, T.; Geismar, C.; Fragaszy, E.; Beale, S.; Fong, W.L.E.; Patel, P.; Kovar, J.; et al. Spike-antibody waning after second dose of BNT162b2 or ChAdOx1. Lancet 2021, 398, 385–387. [Google Scholar] [CrossRef]
- Cheng, S.M.S.; Mok, C.K.P.; Leung, Y.W.Y.; Ng, S.S.; Chan, K.C.; Ko, F.W.; Chen, C.; Yiu, K.; Lam, B.H.; Lau, E.H.; et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 2022, 28, 486–489. [Google Scholar] [CrossRef]
- Pérez-Then, E.; Lucas, C.; Monteiro, V.S.; Miric, M.; Brache, V.; Cochon, L.; Vogels, C.B.; Malik, A.A.; De la Cruz, E.; Jorge, A.; et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 2022, 28, 481–485. [Google Scholar] [CrossRef]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J. and Verani, J.R. Association between 3 doses of mRNA COVID-19 Vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef]
- Nemet, I.; Kliker, L.; Lustig, Y.; Zuckerman, N.; Erster, O.; Cohen, C.; Kreiss, Y.; Alroy-Preis, S.; Regev-Yochay, G.; Mendelson, E.; et al. Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron infection. N. Engl. J. Med. 2022, 386, 492–494. [Google Scholar] [CrossRef]
- Hachmann, N.P.; Miller, J.; Collier, A.Y.; Ventura, J.D.; Yu, J.; Rowe, M.; Bondzie, E.A.; Powers, O.; Surve, N.; Hall, K.; et al. Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5. N. Engl. J. Med. 2022, 387, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Dolzhikova, I.V.; Iliukhina, A.A.; Kovyrshina, A.V.; Kuzina, A.V.; Gushchin, V.A.; Siniavin, A.E.; Pochtovyi, A.A.; Shidlovskaya, E.V.; Kuznetsova, N.A.; Megeryan, M.M.; et al. Sputnik Light booster after Sputnik V vaccination induces robust neutralizing antibody response to B.1.1.529 (Omicron) SARS-CoV-2 variant. medRxiv 2021, 2021.12.17.21267976. [Google Scholar]
- Lv, J.; Wu, H.; Xu, J.; Liu, J. Immunogenicity and safety of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine: A systematic review. Infect. Dis. Poverty 2022, 11, 53. [Google Scholar] [CrossRef]
- Chiu, N.C.; Chi, H.; Tu, Y.K.; Huang, Y.N.; Tai, Y.L.; Weng, S.L.; Chang, L.; Huang, D.T.N.; Huang, F.Y. and Lin, C.Y. To mix or not to mix? A rapid systematic review of heterologous prime-boost COVID-19 vaccination. Expert Rev. Vaccines 2021, 20, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Munro, A.P.S.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K.; et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276, Erratum in Lancet 2021, 398, 2246. [Google Scholar] [CrossRef]
- Gonzalez Lopez Ledesma, M.M.; Sanchez, L.; Ojeda, D.S.; Oviedo Rouco, S.; Rossi, A.H.; Varese, A.; Mazzitelli, I.; Pascuale, C.A.; Miglietta, E.A.; Rodríguez, P.E.; et al. Longitudinal Study after Sputnik V Vaccination Shows Durable SARS-CoV-2 Neutralizing Antibodies and Reduced Viral Variant Escape to Neutralization over Time. mBio 2022, 13, e0344221. [Google Scholar] [CrossRef] [PubMed]
- Saul, A.; Scott, N.; Spelman, T.; Crabb, B.S.; Hellard, M. The impact of three progressively introduced interventions on second wave daily COVID-19 case numbers in Melbourne, Australia. BMC Infect. Dis. 2022, 22, 514. [Google Scholar] [CrossRef]
- Edouard Mathieu. “How Do Key COVID-19 Metrics Compare to Previous Waves?” 10 January 2022. Published Online at OurWorldInData.org. 2022. Available online: https://ourworldindata.org/covid-metrics-previous-waves (accessed on 8 August 2022).
- Centers for Disease Control and Prevention. COVID-19 Vaccine Interim COVID-19 Immunization Schedule for 6 Months of Age and Older (07/23/2022). Available online: https://www.cdc.gov/vaccines/COVID-19/downloads/COVID-19-immunization-schedule-ages-6months-older.pdf (accessed on 8 August 2022).
- Chahla, R.E.; Tomas-Grau, R.H.; Cazorla, S.I.; Ploper, D.; Pingitore, E.V.; López, M.A.; Aznar, P.; Alcorta, M.E.; del Mar Vélez, E.M.; Stagnetto, A.; et al. Long-term analysis of antibodies elicited by SPUTNIK V: A prospective cohort study in Tucumán, Argentina. Lancet Reg. Health Am. 2022, 6, 100123. [Google Scholar] [CrossRef]
- Dimeglio, C.; Herin, F.; Da-Silva, I.; Da-Silva, I.; Porcheron, M.; Martin-Blondel, G.; Gernigon, C.; Chapuy-Regaud, S.; Villars, H. and Izopet, J. Post-vaccination SARS-CoV-2 antibody kinetics and protection duration. Clin. Infect. Dis. 2021, 27, ciab984. [Google Scholar]
- Altarawneh, H.N.; Chemaitelly, H.; Ayoub, H.H.; Tang, P.; Hasan, M.R.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Coyle, P.; Al-Kanaani, Z.; et al. Effects of Previous Infection and Vaccination on Symptomatic Omicron Infections. N. Engl. J. Med. 2022, 387, 21–34. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Montalti, M.; Soldà, G.; Di Valerio, Z.; Salussolia, A.; Lenzi, J.; Forcellini, M.; Barvas, E.; Guttmann, S.; Messina, R.; Poluzzi, E.; et al. ROCCA observational study: Early results on safety of Sputnik V vaccine (Gam-COVID-Vac) in the Republic of San Marino using active surveillance. eClinicalMedicine 2021, 38, 101027. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Dattani, S.; Roser, M. Coronavirus Pandemic (COVID-19). Published Online at OurWorldInData.org. 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 8 August 2022).
- McLeod, D.V.; Wahl, L.M.; Mideo, N. Mosaic vaccination: How distributing different vaccines across a population could improve epidemic control. Evol. Lett. 2021, 5, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Moghnieh, R.; Abdallah, D.; Sayegh, M.H.; Bizri, A.R. Response to letter to the editor: Immunophenotyping of SARS-CoV-2 and vaccine design. Vaccine 2022, 40, 3987–3988. [Google Scholar] [CrossRef] [PubMed]
- Al Kaabi, N.; Oulhaj, A.; Ganesan, S.; Al Hosani, F.I.; Najim, O.; Ibrahim, H.; Acuna, J.; Alsuwaidi, A.R.; Kamour, A.M.; Alzaabi, A.; et al. Effectiveness of BBIBP-CorV vaccine against severe outcomes of COVID-19 in Abu Dhabi, United Arab Emirates. Nat. Commun. 2022, 13, 3215. [Google Scholar] [CrossRef]
Effectiveness against Delta Infection | |||||
---|---|---|---|---|---|
Cases | Controls | Effectiveness % (95% Confidence Interval) | |||
Vaccinated | Unvaccinated | Vaccinated | Unvaccinated | ||
2 × Gam-COVID-Vac doses (2nd dose given 3 to <6 months prior to start of wave) (All participants) | 175 | 23 | 2698 | 193 | 41.8 (5.6 to 62.6) |
Month 1 (August 2021) | 36 | 6 | 2772 | 210 | 52.3 (−27.4 to 78.7) |
Month 2 (September 2021) | 20 | 2 | 2752 | 208 | 22.4 (−85 to 77.6) |
Month 3 (October 2021) | 9 | 3 | 2743 | 205 | 76.9 (−4.8 to 93.2) |
Month 4 (November 2021) | 37 | 5 | 2706 | 200 | 44.1 (−64.4 to 76.3) |
Month 5 (December 2021) | 73 | 7 | 2633 | 193 | 23.7 (−84.7 to 62.8) |
2 × Gam-COVID-Vac doses (2nd dose given 3 to <6 months prior to start of wave) (COVID-19-naïve) | 68 | 7 | 2043 | 151 | 20.1 (−94.7 to 61.6) |
Month 1 (August 2021) | 0 | 0 | 2060 | 158 | - |
Month 2 (September 2021) | 0 | 0 | 2060 | 158 | - |
Month 3 (October 2021) | 0 | 0 | 2060 | 158 | - |
Month 4 (November 2021) | 0 | 0 | 2060 | 158 | - |
Month 5 (December 2021) | 68 | 7 | 1992 | 151 | 20.1 (−94.7 to 61.6) |
2 × Gam-COVID-Vac doses (2nd dose given 3 to <6 months prior to start of wave) (COVID-19-experienced) | 107 | 7 | 655 | 151 | 82.6 (44.4 to 94.9) |
Month 1 (August 2021) | 36 | 0 | 712 | 158 | - |
Month 2 (September 2021) | 20 | 0 | 692 | 158 | - |
Month 3 (October 2021) | 9 | 0 | 683 | 158 | - |
Month 4 (November 2021) | 37 | 0 | 646 | 158 | - |
Month 5 (December 2021) | 5 | 7 | 641 | 151 | 82.6 (44.4 to 94.9) |
2 × BNT162b2 doses (2nd dose given <3 months prior to start of wave) (All participants) | 33 | 23 | 1383 | 193 | 81.0 (66.3 to 89.2) |
Month 1 (August 2021) | 2 | 6 | 1414 | 210 | 95.1 (78.4 to 99.3) |
Month 2 (September 2021) | 1 | 2 | 1413 | 208 | 92.2 (16.3 to 99.6) |
Month 3 (October 2021) | 4 | 3 | 1409 | 205 | 80.6 (15 to 95.8) |
Month 4 (November 2021) | 12 | 5 | 1397 | 200 | 72.7 (12.5 to 90.1) |
Month 5 (December 2021) | 14 | 7 | 1383 | 193 | 67.5 (12.8 to 87.2) |
2 ×BNT162b2 doses (2nd dose given <3 months prior to start of wave) (COVID-19-naïve) | 11 | 7 | 841 | 151 | 71.8 (22.3 to 89.1) |
Month 1 (August 2021) | 0 | 0 | 852 | 158 | - |
Month 2 (September 2021) | 0 | 0 | 852 | 158 | - |
Month 3 (October 2021) | 0 | 0 | 852 | 158 | - |
Month 4 (November 2021) | 0 | 0 | 852 | 158 | - |
Month 5 (December 2021) | 11 | 7 | 841 | 151 | 71.8 (22.3 to 89.1) |
2 × BNT162b2 doses (2nd dose given <3 months prior to start of wave) (COVID-19-experienced) | 22 | 7 | 542 | 151 | 88.1 (56.5 to 97.5) |
Month 1 (August 2021) | 2 | 0 | 562 | 158 | - |
Month 2 (September 2021) | 1 | 0 | 561 | 158 | - |
Month 3 (October 2021) | 4 | 0 | 557 | 158 | - |
Month 4 (November 2021) | 12 | 0 | 545 | 158 | - |
Month 5 (December 2021) | 3 | 7 | 542 | 151 | 88.1 (56.5 to 97.5) |
Effectiveness against Omicron Infection | |||||
---|---|---|---|---|---|
Cases | Controls | Effectiveness % (95% Confidence Interval) | |||
Vaccinated | Unvaccinated | Vaccinated | Unvaccinated | ||
2 × Gam-COVID-Vac doses (2nd dose given >6 months prior to start of wave) | |||||
All participants | 315 | 22 | 1755 | 181 | −54.1 (−151 to 0.84) |
COVID-19-naïve | 245 | 19 | 1205 | 127 | −46 (−149.7 to 10.1) |
COVID-19-experienced | 70 | 19 | 550 | 127 | 18.8 (−43.8 to 52.2) |
2 × BNT162b2 doses (2nd dose given 3 to <6 months prior to start of wave) | |||||
All participants | 109 | 22 | 1251 | 181 | 23.1 (−28.7 to 52.1) |
COVID-19-naïve | 77 | 19 | 742 | 127 | 21.9 (−38.9 to 54.1) |
COVID-19-experienced | 32 | 19 | 509 | 127 | 60.6 (26.0 to 78.5) |
2 × Gam-COVID-Vac/1 × BNT162b2 doses (booster dose given <3 months prior to start of wave) | |||||
All participants | 34 | 22 | 731 | 181 | 57.0 (23.2 to 75.5) |
COVID-19-naïve | 32 | 19 | 529 | 127 | 53.7 (13.3 to 74.7) |
COVID-19-experienced | 2 | 19 | 202 | 127 | 90.5 (71.6 to 97.8) |
2 × BNT162b2/1 × BNT162b2 doses (booster dose given <3 months prior to start of wave) | |||||
All participants | 3 | 22 | 68 | 181 | 63.7 (−9.1 to 91.6) |
COVID-19-naïve | 2 | 19 | 26 | 127 | 48.6 (−92.2 to 92.1) |
COVID-19-experienced | 1 | 19 | 42 | 127 | 84.1 (19.6 to 99.1) |
All Participants | COVID-19-Naïve | COVID-19-Experienced | |
---|---|---|---|
<3 months after 2 × BNT162b2 doses (N = 87 individuals) | 9473 (7156–12,542) | 5181 (3709–7237) | 21,413 (15,170–30,227) |
3 to <6 months after 2 × BNT162b2 doses (N = 75 individuals) | 1060 (841–1336) | 726 (500–1055) | 1363 (1028–1808) |
≥6 months after 2 × BNT162b2 doses (N = 68 individuals) | 676 (485–941) | 536 (351–818) | 1283 (938–1756) |
<3 months after 2 × BNT162b2/1 × BNT162b2 doses (N = 60 individuals) | 20,256 (16,244–25,258) | 20,256 (16,244–25,258) | - |
3 to <6 months after 2 × Gam-COVID-Vac (N = 135 individuals) | 252 (187–340) | 181 (133–248) | 1070 (581–1971) |
<3 months after 2 × Gam-COVID-Vac/1 × BNT162b2 doses (N = 135 individuals) | 9497 (7682–11,742) | 8884 (6966–11,330) | 12,741 (8367–19,401) |
Any Adverse Event | Muscle or Joint Pain | Fever | Headache | Pain at Injection Site | Chills | Lethargy | Nausea | Dyspnea | Vomiting | Diarrhea | Abdominal Pain | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total (N = 135) | 77 (57.0%) | 45 (33.3%) | 39 (28.9%) | 29 (21.5%) | 21 (15.6%) | 19 (14.1%) | 7 (5.2%) | 5 (3.7%) | 2(1.5%) | 1 (0.7%) | 1 (0.7%) | 1 (0.7%) |
Age (years) | ||||||||||||
<50 | 43 (55.8%) | 26 (57.8%) | 25 (64.1%) | 17 (58.6%) | 10 (47.6%) | 13 (68.4%) | 5 (71.4%) | 3 (60%) | 1 (50%) | 1 (100%) | 0 | 1 (100%) |
50–65 | 31 (40.3%) | 16 (35.6%) | 14 (35.9%) | 11 (37.9%) | 10 (47.6%) | 6 (31.6%) | 2 (28.6%) | 2 (40%) | 1 (50%) | 0 | 1 (100%) | 0 |
>65 | 3 (3.9%) | 3 (6.7%) | 0 | 1 (3.9%) | 1 (4.8%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Gender | ||||||||||||
Male | 40 (3.9%) | 21 (46.7%) | 18 (46.2%) | 12 (41.4%) | 12 (57.1%) | 8 (42.1%) | 4 (57.1%) | 0 | 1 (50%) | 0 | 1 (100%) | 0 |
Female | 37 (51.9%) | 24 (53.3%) | 21 (53.8%) | 17 (58.6%) | 9 (42.9%) | 11 (57.9%) | 3 (42.9%) | 5 (100%) | 1 (50%) | 1 (100%) | 0 | 1 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghnieh, R.; El Hajj, C.; Abdallah, D.; Jbeily, N.; Bizri, A.R.; Sayegh, M.H. Immunogenicity and Effectiveness of Primary and Booster Vaccine Combination Strategies during Periods of SARS-CoV-2 Delta and Omicron Variants. Vaccines 2022, 10, 1596. https://doi.org/10.3390/vaccines10101596
Moghnieh R, El Hajj C, Abdallah D, Jbeily N, Bizri AR, Sayegh MH. Immunogenicity and Effectiveness of Primary and Booster Vaccine Combination Strategies during Periods of SARS-CoV-2 Delta and Omicron Variants. Vaccines. 2022; 10(10):1596. https://doi.org/10.3390/vaccines10101596
Chicago/Turabian StyleMoghnieh, Rima, Claude El Hajj, Dania Abdallah, Nayla Jbeily, Abdul Rahman Bizri, and Mohamed H. Sayegh. 2022. "Immunogenicity and Effectiveness of Primary and Booster Vaccine Combination Strategies during Periods of SARS-CoV-2 Delta and Omicron Variants" Vaccines 10, no. 10: 1596. https://doi.org/10.3390/vaccines10101596