Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals, Reagents and Equipment
2.2. Tea Samples and Preparation
2.3. Determination of Total Phenolic Content
2.4. Micellar Electrokinetic Capillary Chromatography (MECK)
2.5. Determination of Antioxidant Activity
2.5.1. Trolox Equivalent Antioxidant Capacity (TEAC)
2.5.2. Oxygen Radical Antioxidant Capacity (ORAC)
2.6. Statistical Analysis
2.7. Response Surface Methodology (RSM)
Variables | Range and Level | ||
---|---|---|---|
1 | 0 | 1 | |
Temperature (°C) | 40 | 65 | 90 |
Time (min) | 5 | 47.5 | 90 |
% EtOH | 0 | 50 | 100 |
3. Results and Discussion
3.1. Selection of Extraction Solvents
3.2. Experimental Design
3.3. Total Polyphenol Content
Assay nº | % EtOH | t (min) | T (°C) | Experimental Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | TEAC | ORAC | Caffeine | EGC | EGCG | ECG | EC | |||||
23 factorial design | 1 | 0 | 5 | 40 | 62.4 ± 3.1 | 596 ± 27 | 710 ± 83 | 11.31 ± 6.34 | 1.19 ± 0.53 | 3.22 ± 1.97 | 0.46 ± 0.26 | 0.55 ± 0.37 |
2 | 96 | 5 | 40 | 20.9 ± 2.2 | 209 ± 23 | 437 ± 102 | 2.05 ± 0.43 | 1.86 ± 0.05 | 4.97 ± 0.44 | 1.08 ± 0.08 | 0.00 ± 0.00 | |
3 | 0 | 90 | 40 | 95.7 ± 4.1 | 945 ± 27 | 1396 ± 146 | 21.08 ± 0.90 | 4.00 ± 1.24 | 9.97 ± 3.58 | 0.97 ± 0.40 | 1.86 ± 0.53 | |
4 | 96 | 90 | 40 | 36.5 ± 8.6 | 348 ± 92 | 718 ± 156 | 3.68 ± 1.42 | 3.42 ± 1.83 | 10.50 ± 5.76 | 2.58 ± 1.36 | 0.33 ± 0.31 | |
5 | 0 | 5 | 90 | 96.1 ± 3.5 | 1067 ± 60 | 1053 ± 213 | 28.16 ± 2.13 | 0.64 ± 0.68 | 1.92 ± 1.04 | 0.30 ± 0.06 | 0.14 ± 0.05 | |
6 | 96 | 5 | 90 | 31.9 ± 2.9 | 341 ± 32 | 548 ± 177 | 3.52 ± 0.28 | 1.38 ± 0.21 | 1.21 ± 0.78 | 0.28 ± 0.17 | 0.22 ± 0.06 | |
7 | 0 | 90 | 90 | 112.6 ± 6.6 | 1165 ± 132 | 1355 ± 134 | 27.84 ± 1.88 | 1.16 ± 0.61 | 3.55 ± 2.44 | 0.64 ± 0.55 | 0.45 ± 0.45 | |
8 | 96 | 90 | 90 | 104.8 ± 2.1 | 1083 ± 50 | 1405 ± 45 | 9.18 ± 0.39 | 5.04 ± 0.20 | 10.90 ± 4.97 | 2.17 ± 0.93 | 1.29 ± 0.17 | |
star design | 9 | 0 | 47.5 | 65 | 94.8 ± 7.9 | 1042 ± 82 | 1244 ± 60 | 22.72 ± 2.26 | 0.80 ± 0.68 | 1.60 ± 0.76 | 0.18 ± 0.08 | 0.18 ± 0.20 |
10 | 96 | 47.5 | 65 | 113.3 ± 24.9 | 529 ± 126 | 906 ± 285 | 3.49 ± 0.83 | 4.79 ± 2.28 | 18.73 ± 12.90 | 4.66 ± 3.15 | 0.68 ± 0.34 | |
11 | 48 | 5 | 65 | 148.5 ± 6.8 | 1777 ± 25 | 1914 ± 171 | 27.84 ± 0.82 | 1.71 ± 1.60 | 7.81 ± 6.41 | 1.25 ± 1.07 | 0.20 ± 0.34 | |
12 | 48 | 90 | 65 | 138.1 ± 25.6 | 1433 ± 221 | 1749 ± 296 | 20.36 ± 3.38 | 1.06 ± 0.32 | 5.88 ± 1.91 | 0.90 ± 0.43 | 0.15 ± 0.12 | |
13 | 48 | 47.5 | 40 | 144.4 ± 16.0 | 1466 ± 124 | 2387 ± 467 | 23.08 ± 1.73 | 2.01 ± 0.52 | 10.05 ± 3.88 | 1.71 ± 0.89 | 0.44 ± 0.19 | |
14 | 48 | 47.5 | 90 | 173.4 ± 7.9 | 1940 ± 117 | 2174 ± 245 | 26.66 ± 0.64 | 4.01 ± 0.20 | 19.51 ± 2.59 | 3.20 ± 0.44 | 1.28 ± 0.42 | |
central design | 15 | 48 | 47.5 | 65 | 163.3 ± 13.8 | 1674 ± 130 | 1811 ± 105 | 25.08 ± 0.11 | 3.96 ± 0.72 | 21.25 ± 6.78 | 3.58 ± 1.02 | 1.77 ± 0.40 |
16 | 48 | 47.5 | 65 | 164.9 ± 7.9 | 1745 ± 130 | 1936 ± 205 | 26.85 ± 1.72 | 5.03 ± 1.06 | 27.45 ± 7.87 | 4.83 ± 1.26 | 1.31 ± 0.20 | |
17 | 48 | 47.5 | 65 | 178.7 ± 5.2 | 1820 ± 60 | 2132 ± 342 | 27.48 ± 2.37 | 4.71 ± 1.23 | 29.60 ± 10.60 | 5.40 ± 2.09 | 2.48 ± 1.10 |
Term | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Response | |||||||||
TP | Caffeine | EGC | EGCG | ECG | EC | ORAC | TEAC | ||
Complete Model | Constant | 0.986 | 0.562 | 0.230 | 0.742 | 0.496 | 0.150 | 0.003 | 0.174 |
% EtOH | 0.000 | 0.000 | 0.000 | 0.118 | 0.000 | 0.690 | 0.000 | 0.000 | |
t (min) | 0.008 | 0.156 | 0.002 | 0.007 | 0.003 | 0.007 | 0.170 | 0.416 | |
T (°C) | 0.115 | 0.337 | 0.798 | 0.752 | 0.960 | 0.458 | 0.053 | 0.724 | |
% EtOH × % EtOH | 0.000 | 0.000 | 0.610 | 0.045 | 0.786 | 0.270 | 0.000 | 0.000 | |
t (min) × t (min) | 0.000 | 0.550 | 0.004 | 0.002 | 0.004 | 0.000 | 0.013 | 0.130 | |
T × T | 0.157 | 0.959 | 0.470 | 0.717 | 0.550 | 0.563 | 0.049 | 0.958 | |
EtOH × t (min) | 0.204 | 0.692 | 0.490 | 0.590 | 0.715 | 0.175 | 0.740 | 0.133 | |
% EtOH × T (°C) | 0.344 | 0.004 | 0.720 | 0.730 | 0.209 | 0.269 | 0.276 | 0.538 | |
t × T | 0.184 | 0.269 | 0.400 | 0.940 | 0.385 | 0.980 | 0.671 | 0.220 | |
Reducted Model | Constant | 0.038 | 0.003 | 0.027 | 0.344 | −0.771 | 0.069 | 0.001 | 0.003 |
% EtOH | 0.000 | 0.000 | 0.017 | 0.060 | 0.016 | - | 0.000 | 0.000 | |
t (min) | 0.000 | 0.000 | 0.096 | 0.000 | 0.130 | 0.041 | 0.006 | 0.000 | |
T (°C) | 0.000 | 0.000 | - | - | - | - | 0.089 | 0.000 | |
% EtOH × % EtOH | 0.000 | 0.000 | - | 0.018 | - | - | 0.000 | 0.000 | |
t (min) × t (min) | - | - | 0.001 | 0.000 | 0.001 | 0.000 | 0.052 | - | |
T × T | 0.000 | - | - | - | - | - | - | - | |
EtOH × t (min) | - | - | - | - | - | - | - | - | |
% EtOH × T (°C) | - | 0.003 | - | - | - | - | - | - | |
t × T | - | - | - | - | - | - | - | - |
3.4. Polyphenol and Caffeine Composition
3.5. Antioxidant Capacity
3.5.1. TEAC
3.5.2. ORAC
3.6. Correlation between TP, TEAC and ORAC
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oh, J.; Jo, H.; Cho, A.R.; Kim, S.; Han, J. Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control 2013, 31, 403–409. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Silva-Weiss, A.; Ihl, M.; Sobral, P.J.A.; Gómez-Guillén, M.C.; Bifani, V. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Eng. Rev. 2013, 5, 200–216. [Google Scholar] [CrossRef]
- Perumalla, A.V.S.; Hettiarachchy, N.S. Green tea and grape seed extracts—Potential applications in food safety and quality. Food Res. Int. 2011, 44, 827–839. [Google Scholar] [CrossRef]
- Gramza, A.; Korczak, J. Tea constituents (Camellia sinensis L.) as antioxidants in lipid systems. Trends Food Sci. Technol. 2005, 16, 351–358. [Google Scholar] [CrossRef]
- Almajano, M.P.; Carbo, R.; Jimenez, J.A.L.; Gordon, M.H. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008, 108, 55–63. [Google Scholar] [CrossRef]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea—A review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Sharangi, A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—A review. Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Moderno, P.M.; Carvalho, M.; Silva, B.M. Recent patents on Camellia sinensis: Source of health promoting compounds. Recent Pat. Food Nutr. Agric. 2009, 1, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Venditti, E.; Bacchetti, T.; Tiano, L.; Carloni, P.; Greci, L.; Damiani, E. Hot vs. cold water steeping of different teas: Do they affect antioxidant activity? Food Chem. 2010, 119, 1597–1604. [Google Scholar] [CrossRef]
- Hilal, Y.; Engelhardt, U. Characterisation of white tea—Comparison to green and black tea. J. Verbrauch. Lebensm. 2007, 2, 414–421. [Google Scholar] [CrossRef]
- Müller, N.; Ellinger, S.; Alteheld, B.; Ulrich-Merzenich, G.; Berthold, H.K.; Vetter, H.; Stehle, P. Bolus ingestion of white and green tea increases the concentration of several flavan-3-ols in plasma, but does not affect markers of oxidative stress in healthy non-smokers. Mol. Nutr. Food Res. 2010, 54, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Rusak, G.; Komes, D.; Likić, S.; Horžić, D.; Kovač, M. Phenolic content antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem. 2008, 110, 852–858. [Google Scholar] [CrossRef]
- Unachukwu, U.J.; Ahmed, S.; Kavalier, A.; Lyles, J.T.; Kennelly, E.J. White and Green Teas (Camellia sinensis var. sinensis): Variation in Phenolic, Methylxanthine, and Antioxidant Profiles. J. Food Sci. 2010, 75, C541–C548. [Google Scholar] [CrossRef] [PubMed]
- Komes, D.; Belščak-Cvitanović, A.; Horžić, D.; Rusak, G.; Likić, S.; Berendika, M. Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis. Phytochem. Anal. 2011, 22, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Almajano, M.P.; Vila, I.; Gines, S. Neuroprotective effects of white tea against oxidative stress-induced toxicity in striatal cells. Neurotox. Res. 2011, 20, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Lopez, V.; Isabel Calvo, M. White Tea (Camellia sinensis Kuntze) Exerts Neuroprotection against Hydrogen Peroxide-Induced Toxicity in PC12 Cells. Plant Foods Hum. Nutr. 2011, 66, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells. J. Inflamm. 2011, 8, 27. [Google Scholar] [CrossRef]
- Yen, W.-J.; Chyau, C.-C.; Lee, C.-P.; Chu, H.-L.; Chang, L.-W.; Duh, P.-D. Cytoprotective effect of white tea against H2O2-induced oxidative stress in vitro. Food Chem. 2013, 14, 4107–4114. [Google Scholar] [CrossRef]
- Camouse, M.M.; Domingo, D.S.; Swain, F.R.; Conrad, E.P.; Matsui, M.S.; Maes, D.; Declercq, L.; Cooper, K.D.; Stevens, S.R.; Baron, E. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp. dermatol. 2009, 18, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.; Alves, M.G.; Socorro, S.; Silva, B.M.; Oliveira, P.F. White Tea as a Promising Antioxidant Medium Additive for Sperm. J. Agric. Food Chem. 2014, 62, 608–617. [Google Scholar] [CrossRef]
- Hengst, C.; Werner, S.; Müller, L.; Fröhlich, K.; Böhm, V. Determination of the antioxidant capacity: Influence of the sample concentration on the measured values. Eur. Food Res. Technol. 2009, 230, 249–254. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
- Rusaczonek, A.; Swiderski, F.; Waszkiewicz-Robak, B. Antioxidant Properties of Tea and Herbal Infusions—A Short Report. Pol. J. Food Nutr. Sci. 2010, 60, 33–35. [Google Scholar]
- Peres, R.G.; Tonin, F.G.; Tavares, M.F.M.; Rodriguez-Amaya, D.B. Determination of catechins in green tea infusions by reduced flow micellar electrokinetic chromatography. Food Chem. 2011, 127, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, D.; Chen, J.; Ye, X.; Yu, D. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrason. Sonochem. 2011, 18, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Terabe, S. Capillary separation: Micellar electrokinetic chromatography. Annual Rev. Anal. Chem. 2009, 2, 99–120. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Ibáñez, E.; Cifuentes, A. Analysis of natural antioxidants by capillary electromigration methods. J. Sep. Sci. 2005, 28, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, M.G.; Green, R.J. Analysis of catechins from milk-tea beverages by enzyme assisted extraction followed by high performance liquid chromatography. Food Chem. 2006, 99, 484–491. [Google Scholar] [CrossRef]
- Mariya John, K.M.; Vijayan, D.; Raj Kumar, R.; Premkumar, R. Factors influencing the efficiency of extraction of polyphenols from young tea leaves. Asian J. Plant Sci. 2006, 5, 123–126. [Google Scholar] [CrossRef]
- Zimmermann, B.F.; Gleichenhagen, M. The effect of ascorbic acid, citric acid and low pH on the extraction of green tea: How to get most out of it. Food Chem. 2011, 124, 1543–1548. [Google Scholar] [CrossRef]
- Del Río, J.A.; Fuster, M.D.; Gómez, P.; Porras, I.; García-Lidón, A.; Ortuño, A. Citrus limon: A source of flavonoids of pharmaceutical interest. Food Chem. 2004, 84, 457–461. [Google Scholar] [CrossRef]
- González-Molina, E.; Moreno, D.A.; García-Viguera, C. Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J. Agric. Food Chem. 2008, 56, 1669–1675. [Google Scholar] [CrossRef]
- López, M.D.M.C.; Vilariño, J.M.L.; Rodríguez, M.V.G.; Losada, L.F.B. Development, validation and application of Micellar Electrokinetic Capillary Chromatography method for routine analysis of catechins, quercetin and thymol in natural samples. Microchem. J. 2011, 99, 461–469. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frasquet, I.; Frígola, A. Vitamin C, vitamin A, phenolic compounds and total antioxidant capacity of new fruit juice and skim milk mixture beverages marketed in Spain. Food Chem. 2007, 103, 1365–1374. [Google Scholar] [CrossRef]
- Salah, N.; Miller, N.J.; Paganga, G.; Tijburg, L.; Bolwell, G.P.; Rice-Evans, C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 1995, 322, 339–346. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peiró, S.; Gordon, M.H.; Blanco, M.; Pérez-Llamas, F.; Segovia, F.; Almajano, M.P. Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration. Antioxidants 2014, 3, 684-699. https://doi.org/10.3390/antiox3040684
Peiró S, Gordon MH, Blanco M, Pérez-Llamas F, Segovia F, Almajano MP. Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration. Antioxidants. 2014; 3(4):684-699. https://doi.org/10.3390/antiox3040684
Chicago/Turabian StylePeiró, Sara, Michael H. Gordon, Mónica Blanco, Francisca Pérez-Llamas, Francisco Segovia, and María Pilar Almajano. 2014. "Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration" Antioxidants 3, no. 4: 684-699. https://doi.org/10.3390/antiox3040684