Fine Identification of Landslide Acceleration Phase Using Time Logarithm Prediction Method Based on Arc Synthetic Aperture Radar Monitoring Data
Abstract
:1. Introduction
2. Arc Synthetic Aperture Radar
3. Method
3.1. The Logarithmic Model
3.2. Selection of for the Slope Deformation Acceleration
- Data Preparation and Processing: Collect continuous deformation velocity data from slope radar monitoring and perform statistical analysis at a certain time step (for example, recording the deformation velocity at regular intervals).
- Calculation of Normal Distribution Parameters: Calculate the expected value () and standard deviation () of the monitoring data samples. These two parameters constitute the characteristics of the normal distribution. According to the normal distribution, approximately 68.27% of the data fall within the interval (), and 95.45% of the data fall within the interval (), and so on.
- Confidence Interval Testing: Set a confidence level (such as the commonly used 95%) and determine the width of the corresponding confidence interval (such as 1, 2, or 3). During the monitoring process, check whether the deformation velocity at each monitoring time point falls within this confidence interval.
- Identification of : When the deformation velocity points monitored consecutively for several times do not fall within a certain confidence interval of the normal distribution and the deformation velocity shows a clear upward trend, it is thought that the deformation velocity has increased significantly. At this time, the last monitoring data point that falls outside the confidence interval is identified as the for the slope deformation acceleration.
- Dynamic Updating and Confirmation: As time passes, continuously update the monitoring data and repeat the above steps until a series of deformation velocity values are found that continuously exceed the start point of the normal distribution confidence interval, confirming the existence of .
3.3. Landslide Time Prediction
4. Case Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Relative Time t/h | Displacement/mm | Velocity/(mm/h) | v-SMA/(mm/h) | v-LMA/(mm/h) |
---|---|---|---|---|
1.59 | 1.75 | 1.83 | - | - |
2.58 | 3.49 | 1.72 | - | - |
3.53 | 4.9 | 1.73 | 1.76 | - |
4.58 | 5.82 | 1.14 | 1.53 | - |
5.54 | 7.15 | 1.64 | 1.50 | - |
6.53 | 8.12 | 1.24 | 1.34 | - |
7.57 | 8.95 | 1.05 | 1.31 | 1.48 |
8.53 | 9.66 | 1 | 1.10 | 1.36 |
9.58 | 10.69 | 1.25 | 1.10 | 1.29 |
10.54 | 11.42 | 1.03 | 1.09 | 1.19 |
11.58 | 12.34 | 1.14 | 1.14 | 1.19 |
12.54 | 13.31 | 1.27 | 1.15 | 1.14 |
13.58 | 14.17 | 1.08 | 1.16 | 1.12 |
14.53 | 15.07 | 1.21 | 1.19 | 1.14 |
15.57 | 16.36 | 1.5 | 1.26 | 1.21 |
16.53 | 17.4 | 1.33 | 1.35 | 1.22 |
17.58 | 18.36 | 1.18 | 1.34 | 1.24 |
18.54 | 19.05 | 0.98 | 1.16 | 1.22 |
19.58 | 20.5 | 1.65 | 1.27 | 1.28 |
20.54 | 21.77 | 1.58 | 1.40 | 1.35 |
21.59 | 22.69 | 1.14 | 1.46 | 1.34 |
22.58 | 23.37 | 0.94 | 1.22 | 1.26 |
23.54 | 24.76 | 1.72 | 1.27 | 1.31 |
24.58 | 26.39 | 1.82 | 1.49 | 1.40 |
25.57 | 29.67 | 3.57 | 2.37 | 1.77 |
26.57 | 33.23 | 3.84 | 3.08 | 2.09 |
27.56 | 35.53 | 2.58 | 3.33 | 2.23 |
28.51 | 37.42 | 2.24 | 2.89 | 2.39 |
29.59 | 39.4 | 2.11 | 2.31 | 2.55 |
30.57 | 40.96 | 1.85 | 2.07 | 2.57 |
31.53 | 42.58 | 1.95 | 1.97 | 2.59 |
32.57 | 44.52 | 2.12 | 1.97 | 2.38 |
33.52 | 46.35 | 2.17 | 2.08 | 2.15 |
34.57 | 48.17 | 2 | 2.10 | 2.06 |
35.53 | 49.65 | 1.81 | 1.99 | 2.00 |
36.58 | 51.33 | 1.86 | 1.89 | 1.97 |
37.53 | 53.04 | 2.04 | 1.90 | 1.99 |
38.56 | 54.76 | 1.94 | 1.95 | 1.99 |
39.52 | 56.58 | 2.16 | 2.05 | 2.00 |
40.57 | 58.66 | 2.24 | 2.11 | 2.01 |
41.53 | 60.52 | 2.2 | 2.20 | 2.04 |
42.57 | 61.9 | 1.58 | 2.01 | 2.00 |
43.53 | 64.16 | 2.62 | 2.13 | 2.11 |
44.57 | 65.9 | 1.93 | 2.04 | 2.10 |
45.53 | 67.76 | 2.2 | 2.25 | 2.13 |
46.53 | 69.29 | 1.79 | 1.97 | 2.08 |
47.57 | 71.06 | 1.95 | 1.98 | 2.04 |
48.53 | 72.84 | 2.13 | 1.96 | 2.03 |
49.58 | 74.93 | 2.26 | 2.11 | 2.13 |
50.57 | 77.09 | 2.44 | 2.28 | 2.10 |
51.52 | 78.36 | 1.59 | 2.10 | 2.05 |
52.57 | 80.34 | 2.16 | 2.06 | 2.05 |
53.52 | 82.68 | 2.71 | 2.15 | 2.18 |
54.59 | 84.76 | 2.19 | 2.35 | 2.21 |
55.55 | 86.5 | 2.09 | 2.33 | 2.21 |
56.59 | 88.72 | 2.37 | 2.22 | 2.22 |
57.55 | 90.58 | 2.21 | 2.22 | 2.19 |
58.59 | 92.81 | 2.39 | 2.32 | 2.30 |
59.55 | 94.8 | 2.34 | 2.31 | 2.33 |
60.6 | 97.11 | 2.47 | 2.40 | 2.29 |
61.55 | 99.14 | 2.36 | 2.39 | 2.32 |
62.58 | 102.25 | 2.59 | 2.47 | 2.39 |
63.54 | 104.5 | 2.61 | 2.52 | 2.42 |
64.59 | 107.27 | 2.63 | 2.61 | 2.48 |
65.54 | 109.58 | 2.64 | 2.63 | 2.52 |
66.59 | 112.1 | 2.67 | 2.65 | 2.57 |
67.55 | 114.49 | 2.66 | 2.66 | 2.59 |
68.51 | 116.67 | 2.67 | 2.67 | 2.64 |
69.56 | 119.21 | 2.68 | 2.67 | 2.65 |
70.55 | 121.48 | 2.77 | 2.71 | 2.67 |
71.59 | 124.24 | 2.9 | 2.78 | 2.71 |
72.55 | 126.37 | 3.03 | 2.90 | 2.77 |
73.59 | 129.33 | 3.1 | 3.01 | 2.83 |
74.58 | 132.42 | 3.38 | 3.17 | 2.93 |
75.54 | 135.52 | 3.5 | 3.33 | 3.05 |
76.58 | 139.06 | 3.64 | 3.51 | 3.19 |
77.54 | 142.42 | 3.77 | 3.64 | 3.33 |
78.53 | 146.03 | 3.93 | 3.78 | 3.48 |
79.57 | 150.14 | 4.2 | 3.97 | 3.65 |
80.52 | 153.93 | 4.23 | 4.12 | 3.81 |
81.57 | 158.2 | 4.35 | 4.26 | 3.95 |
82.52 | 163.75 | 6.06 | 4.88 | 4.31 |
83.57 | 170.21 | 6.44 | 5.62 | 4.71 |
84.53 | 175.51 | 5.79 | 6.10 | 5.00 |
85.57 | 181.3 | 5.8 | 6.01 | 5.27 |
86.52 | 187.65 | 6.96 | 6.18 | 5.66 |
87.56 | 195.75 | 8.02 | 6.93 | 6.20 |
88.52 | 204.86 | 9.76 | 8.25 | 6.98 |
89.57 | 216.88 | 11.77 | 9.85 | 7.79 |
90.52 | 230.53 | 14.51 | 12.01 | 8.94 |
91.57 | 250.81 | 19.65 | 15.31 | 10.92 |
92.53 | 280.09 | 30.82 | 21.66 | 14.50 |
93.57 | 330.26 | 48.26 | 32.91 | 20.40 |
References
- Agliardi, F.; Crosta, G.; Frattini, P. Forecasting the Failure of Large Landslides for Early Warning: Issues and Directions. Berichte Geol. Bundesanst. 2010, 82, 50–51. [Google Scholar]
- Ietto, F.; Conforti, M.; Tolomei, C.; Cianflone, G. Village Relocation as Solution of the Landslide Risk, Is It Always the Right Choice? The Case Study of Cavallerizzo Ghost Village (Calabria, Southern Italy). Int. J. Disaster Risk Reduct. 2022, 81, 103267. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Antunes, I.M.H.R.; Reis, A.P.M.; Giano, S.I.; Masini, N.; Muceku, Y.; Pescatore, E.; Potenza, M.R.; Corbalán Andreu, C.; Sannazzaro, A.; et al. From Settlement Abandonment to Valorisation and Enjoyment Strategies: Insights through EU (Portuguese, Italian) and Non-EU (Albanian) ‘Ghost Towns’. Heritage 2024, 7, 3867–3901. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; Da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflič, M.J.; Andres, N.; Poyiadji, E. Fatal Landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Tran, T.-N.-D.; Tapas, M.R.; Do, S.K.; Etheridge, R.; Lakshmi, V. Investigating the Impacts of Climate Change on Hydroclimatic Extremes in the Tar-Pamlico River Basin, North Carolina. J. Environ. Manag. 2024, 363, 121375. [Google Scholar] [CrossRef]
- Tran, T.-N.-D.; Lakshmi, V. Enhancing Human Resilience against Climate Change: Assessment of Hydroclimatic Extremes and Sea Level Rise Impacts on the Eastern Shore of Virginia, United States. Sci. Total Environ. 2024, 947, 174289. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, H.; Zhang, Z.; Liu, C.; Nie, R.; Zhang, W.; Fan, G.; Chen, C.; Ma, L.; Dai, X. Visualization Analysis of Rainfall-Induced Landslides Hazards Based on Remote Sensing and Geographic Information System-an Overview. Int. J. Digit. Earth 2023, 16, 2374–2402. [Google Scholar] [CrossRef]
- Brenning, A. Spatial Prediction Models for Landslide Hazards: Review, Comparison and Evaluation. Nat. Hazards Earth Syst. Sci. 2005, 5, 853–862. [Google Scholar] [CrossRef]
- Cornelius, R.R.; Scott, P.A. A Materials Failure Relation of Accelerating Creep as Empirical Description of Damage Accumulation. Rock Mech. Rock Eng. 1993, 26, 233–252. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Peng, P.; Jiang, Y.; Wu, J.; Liu, Y. Efficient and Accurate Mapping Method of Underground Metal Mines Using Mobile Mining Equipment and Solid-State Lidar. Measurement 2023, 221, 113581. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, L.; He, Z. Open-Pit Mining Area Extraction from High-Resolution Remote Sensing Images Based on EMANet and FC-CRF. Remote Sens. 2023, 15, 3829. [Google Scholar] [CrossRef]
- He, Z.; Jia, M.; Wang, L. UACNet: A Universal Automatic Classification Network for Microseismic Signals Regardless of Waveform Size and Sampling Rate. Eng. Appl. Artif. Intell. 2023, 126, 107088. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J.; Xue, Y.; Wen, L.; Shi, D. Optimization of Airflow Distribution in Mine Ventilation Networks Using the Modified Sooty Tern Optimization Algorithm. Min. Metall. Explor. 2024, 41, 239–257. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, J.; Xiao, J. Bibliometric Analysis and Review of Mine Ventilation Literature Published between 2010 and 2023. Heliyon 2024, 10, e26133. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Jiang, Y.; Peng, P.; Wu, J.; Liu, Y. A Novel Global Re-Localization Method for Underground Mining Vehicles in Haulage Roadways: A Case Study of Solid-State LiDAR-Equipped Load-Haul-Dump Vehicles. Tunn. Undergr. Space Technol. 2025, 156, 106270. [Google Scholar] [CrossRef]
- Dick, G.J.; Eberhardt, E.; Cabrejo-Liévano, A.G.; Stead, D.; Rose, N.D. Development of an Early-Warning Time-of-Failure Analysis Methodology for Open-Pit Mine Slopes Utilizing Ground-Based Slope Stability Radar Monitoring Data. Can. Geotech. J. 2015, 52, 515–529. [Google Scholar] [CrossRef]
- Liu, B.; Ge, D.; Li, M.; Zhang, L.; Wang, Y.; Zhang, X. Using GB-SAR Technique to Monitor Displacement of Open Pit Slope. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 5986–5989. [Google Scholar]
- Lin, Y.; Liu, Y.; Wang, Y.; Ye, S.; Zhang, Y.; Li, Y.; Li, W.; Qu, H.; Hong, W. Frequency Domain Panoramic Imaging Algorithm for Ground-Based ArcSAR. Sensors 2020, 20, 7027. [Google Scholar] [CrossRef]
- Luo, Y.; Song, H.; Wang, R.; Deng, Y.; Zhao, F.; Xu, Z. Arc FMCW SAR and Applications in Ground Monitoring. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5989–5998. [Google Scholar] [CrossRef]
- Saito, M. Forecasting Time of Slope Failure by Tertiary Creep. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, 25–29 August 1969; Citeseer: University Park, PA, USA, 1969; Volume 2, pp. 677–683. [Google Scholar]
- Wang, Y.-Q.; Ma, C.-B.; Wang, Z.-F. Prediction of Landslide Position of Loose Rock Mass at Mountain Tunnel Exit. Adv. Civ. Eng. 2019, 2019, 3535606. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, C.; He, M.; Dong, M.; Zhang, G.; Zhang, F. Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction. Remote Sens. 2021, 14, 166. [Google Scholar] [CrossRef]
- Carlà, T.; Intrieri, E.; Di Traglia, F.; Nolesini, T.; Gigli, G.; Casagli, N. Guidelines on the Use of Inverse Velocity Method as a Tool for Setting Alarm Thresholds and Forecasting Landslides and Structure Collapses. Landslides 2017, 14, 517–534. [Google Scholar] [CrossRef]
- Bozzano, F.; Mazzanti, P.; Moretto, S. Discussion to: ‘Guidelines on the Use of Inverse Velocity Method as a Tool for Setting Alarm Thresholds and Forecasting Landslides and Structure Collapses’ by T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli and N. Casagli. Landslides 2018, 15, 1437–1441. [Google Scholar] [CrossRef]
- Voight, B. A Method for Prediction of Volcanic Eruptions. Nature 1988, 332, 125–130. [Google Scholar] [CrossRef]
- Fukuzono, T. A New Method for Predicting the Failure Time of Slope. In Proceedings of the 4th International Conference and Field Workshop on Landslides, Tokyo, Japan, 23–31 August 1985; pp. 145–150. [Google Scholar]
- Voight, B. A Relation to Describe Rate-Dependent Material Failure. Science 1989, 243, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.D.; Hungr, O. Forecasting Potential Rock Slope Failure in Open Pit Mines Using the Inverse-Velocity Method. Int. J. Rock Mech. Min. Sci. 2007, 44, 308–320. [Google Scholar] [CrossRef]
- Carlà, T.; Farina, P.; Intrieri, E.; Botsialas, K.; Casagli, N. On the Monitoring and Early-Warning of Brittle Slope Failures in Hard Rock Masses: Examples from an Open-Pit Mine. Eng. Geol. 2017, 228, 71–81. [Google Scholar] [CrossRef]
- Manconi, A.; Giordan, D. Landslide Failure Forecast in Near-Real-Time. Geomat. Nat. Hazards Risk 2016, 7, 639–648. [Google Scholar] [CrossRef]
- Guo, A.; Hu, J.; Zheng, W.; Gui, R.; Du, Z.; Zhu, W.; He, L. N-BEATS Deep Learning Method for Landslide Deformation Monitoring and Prediction Based on InSAR: A Case Study of Xinpu Landslide. Acta Geod. Cartogr. Sin. 2022, 51, 2171. [Google Scholar]
- Mulenga, F.K.; Mwashi, A.M.M. Preliminary Assessment of the Comminution Circuit of the Kambove Concentrator, Democratic Republic of Congo. In Proceedings of the New Technology and Innovation in the Minerals Industry Colloquium Emperors Palace, Johannesburg, South Africa, 9 June 2016; pp. 9–10. [Google Scholar]
- Moswathupa, H.T.S. Hydraulic Characterisation of the Kinsevere Geology, Democratic Republic of the Congo. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2019. [Google Scholar]
- Van Langendonck, S.; Muchez, P.; Dewaele, S.; Kalubi, A.K.; Cailteux, J. Petrographic and Mineralogical Study of the Sediment-Hosted Cu-Co Ore Deposit at Kambove West in the Central Part of the Katanga Copperbelt (DRC). Geol. Belg. 2013, 16, 91–104. [Google Scholar]
Parameter Name | Parameter |
---|---|
spatial resolution reaching | ΔR 0.3 m × ΔAz 5 mrad |
monitoring distance exceeding | 5 km |
deformation accuracy | 0.1 mm |
coverage area | 360° × 30° |
length, width, and height | 1.33 m × 0.42 m × 0.63 m |
scanning period | 0.5 to 4 min (configurable) |
Relative Time t/h | Displacement/mm | Velocity/(mm/h) | v-SMA/(mm/h) | v-LMA/(mm/h) |
---|---|---|---|---|
1.59 | 1.75 | 1.83 | - | - |
2.58 | 3.49 | 1.72 | - | - |
3.53 | 4.9 | 1.73 | 1.76 | - |
4.58 | 5.82 | 1.14 | 1.53 | - |
5.54 | 7.15 | 1.64 | 1.50 | - |
6.53 | 8.12 | 1.24 | 1.34 | - |
7.57 | 8.95 | 1.05 | 1.31 | 1.48 |
8.53 | 9.66 | 1 | 1.10 | 1.36 |
9.58 | 10.69 | 1.25 | 1.10 | 1.29 |
10.54 | 11.42 | 1.03 | 1.09 | 1.19 |
11.58 | 12.34 | 1.14 | 1.14 | 1.19 |
12.54 | 13.31 | 1.27 | 1.15 | 1.14 |
13.58 | 14.17 | 1.08 | 1.16 | 1.12 |
14.53 | 15.07 | 1.21 | 1.19 | 1.14 |
Sequence Number | Time/T | A | B | C | Prediction Time/h | Actual Failure Time/h |
---|---|---|---|---|---|---|
1 | 72.55 | – | – | – | – | |
2 | 73.59 | – | – | – | – | |
3 | 74.58 | – | – | – | – | |
4 | 75.54 | – | – | – | – | |
5 | 76.58 | 0.059 | 0.721 | 64.78 | 84.75 | 94.74 |
6 | 77.54 | 0.041 | 0.695 | 61.92 | 87.9 | 94.74 |
7 | 78.53 | 0.041 | 0.676 | 59.12 | 91.34 | 94.74 |
8 | 79.57 | 0.031 | 0.665 | 57.37 | 94.56 | 94.74 |
9 | 80.52 | 0.031 | 0.654 | 55.16 | 95.21 | 94.74 |
10 | 81.57 | 0.031 | 0.645 | 52.4 | 97.64 | 94.74 |
11 | 82.52 | 0.031 | 0.661 | 56.48 | 94.27 | 94.74 |
12 | 83.57 | 0.031 | 0.681 | 59.29 | 92.19 | 94.74 |
13 | 84.53 | 0.031 | 0.672 | 58.53 | 92.7 | 94.74 |
14 | 85.57 | 0.031 | 0.651 | 56.04 | 94.2 | 94.74 |
15 | 86.52 | 0.031 | 0.641 | 54.45 | 95.1 | 94.74 |
16 | 87.56 | 0.031 | 0.631 | 53.71 | 95.48 | 94.74 |
17 | 88.52 | 0.031 | 0.641 | 54.12 | 95.28 | 94.74 |
18 | 89.57 | 0.031 | 0.649 | 55.15 | 94.88 | 94.74 |
19 | 90.52 | 0.031 | 0.649 | 56.08 | 94.56 | 94.74 |
20 | 91.57 | 0.031 | 0.649 | 56.06 | 94.56 | 94.74 |
21 | 92.53 | 0.031 | 0.649 | 56.07 | 94.56 | 94.74 |
22 | 93.57 | 0.031 | 0.649 | 56.08 | 94.56 | 94.74 |
OOA (t = 60.6) | Prediction Time/h | Actual Failure Time/h |
---|---|---|
Raw data | 96.89 | 94.74 |
SMA | 97.91 | 94.74 |
LMA | 100.6 | 94.74 |
Time/T | Prediction Time/h | Actual Failure Time/h | △h |
---|---|---|---|
85.57 | 94.2 | 94.74 | −0.54 |
86.52 | 95.1 | 94.74 | 0.36 |
87.56 | 95.48 | 94.74 | 0.74 |
88.52 | 95.28 | 94.74 | 0.54 |
89.57 | 94.88 | 94.74 | 0.14 |
90.52 | 94.56 | 94.74 | −0.18 |
91.57 | 94.56 | 94.74 | −0.18 |
92.53 | 94.56 | 94.74 | −0.18 |
93.57 | 94.56 | 94.74 | −0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, L.; Wang, J.; Zhang, J. Fine Identification of Landslide Acceleration Phase Using Time Logarithm Prediction Method Based on Arc Synthetic Aperture Radar Monitoring Data. Appl. Sci. 2025, 15, 2147. https://doi.org/10.3390/app15042147
Li C, Wang L, Wang J, Zhang J. Fine Identification of Landslide Acceleration Phase Using Time Logarithm Prediction Method Based on Arc Synthetic Aperture Radar Monitoring Data. Applied Sciences. 2025; 15(4):2147. https://doi.org/10.3390/app15042147
Chicago/Turabian StyleLi, Chong, Liguan Wang, Jiaheng Wang, and Jun Zhang. 2025. "Fine Identification of Landslide Acceleration Phase Using Time Logarithm Prediction Method Based on Arc Synthetic Aperture Radar Monitoring Data" Applied Sciences 15, no. 4: 2147. https://doi.org/10.3390/app15042147
APA StyleLi, C., Wang, L., Wang, J., & Zhang, J. (2025). Fine Identification of Landslide Acceleration Phase Using Time Logarithm Prediction Method Based on Arc Synthetic Aperture Radar Monitoring Data. Applied Sciences, 15(4), 2147. https://doi.org/10.3390/app15042147